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Abstract
Background  Liver transplantation (LT) is offered as a cure for Hepatocellular carcinoma (HCC), however 15–20% 
develop recurrence post-transplant which tends to be aggressive. In this study, we examined the transcriptome 
profiles of patients with recurrent HCC to identify differentially expressed genes (DEGs), the involved pathways, 
biological functions, and potential gene signatures of recurrent HCC post-transplant using deep machine learning 
(ML) methodology.

Materials and methods  We analyzed the transcriptomic profiles of primary and recurrent tumor samples from 
7 pairs of patients who underwent LT. Following differential gene expression analysis, we performed pathway 
enrichment, gene ontology (GO) analyses and protein-protein interactions (PPIs) with top 10 hub gene networks. We 
also predicted the landscape of infiltrating immune cells using Cibersortx. We next develop pathway and GO term-
based deep learning models leveraging primary tissue gene expression data from The Cancer Genome Atlas (TCGA) 
to identify gene signatures in recurrent HCC.

Results  The PI3K/Akt signaling pathway and cytokine-mediated signaling pathway were particularly activated in HCC 
recurrence. The recurrent tumors exhibited upregulation of an immune-escape related gene, CD274, in the top 10 
hub gene analysis. Significantly higher infiltration of monocytes and lower M1 macrophages were found in recurrent 
HCC tumors. Our deep learning approach identified a 20-gene signature in recurrent HCC. Amongst the 20 genes, 
through multiple analysis, IL6 was found to be significantly associated with HCC recurrence.

Conclusion  Our deep learning approach identified PI3K/Akt signaling as potentially regulating cytokine-mediated 
functions and the expression of immune escape genes, leading to alterations in the pattern of immune cell 
infiltration. In conclusion, IL6 was identified to play an important role in HCC recurrence.
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Introduction
Hepatocellular carcinoma (HCC) ranks as the third lead-
ing cause of cancer-related mortality worldwide, with a 
5-year survival rate of less than 12% [1, 2]. Liver trans-
plantation (LT) is offered as a curative treatment for HCC 
[3]. However, HCC has emerged as the leading indica-
tion for LT worldwide in recent years [3, 4]. HCC recur-
rence after LT poses a significant clinical challenge, with 
reported rates of 10–20% in the first year after LT [5–8]. 
HCC recurrence also affects the post-transplant survival 
of up to 21% of patients, with a median survival of 10.6 
months [9].

Recent investigations into the genomic features of 
HCC tumor relapse made use of next-generation DNA 
sequencing in primary and recurrent HCC tumor sam-
ples [10, 11]. The studies have reported that TP53, TERT, 
CTNNB1, TSC2, and JAK1 mutations and the HERH-
4-miR-29b/c-CCNA2 axes were associated with the 
progression of recurrent HCC [10, 12]. However, tran-
scriptomic studies comparing primary and recurrent 
HCC tumors are still limited. Our study addresses this 
gap by analyzing the transcriptomic clonal evolution in 
HCC recurrence from a rare collection of primary and 
recurrent tumors.

Machine learning, especially deep learning with artifi-
cial neural networks, has proven highly effective in genet-
ics and genomics research [13]. It enables identification 
of complex patterns within large datasets, which may be 
too intricate for manual analysis [13]. Here, we present 
a transcriptome-wide study of HCC recurrence with pri-
mary and recurrent tumors. We further investigate the 
involved mechanisms, altered immune cell infiltration 
and through a deep learning-based approach identify 
gene signatures that are differentially modulated between 
primary and recurrent tissues. Overall, our study pro-
vides a better understanding of the genetic alterations 
and important gene signatures that differentiate primary 
from recurrent tumors.

Methods
Patient population
This study included patients who underwent LT for HCC 
between 2004 and 2016. Paired tumor samples were col-
lected from 7 patients at the initial resection and recur-
rence. Patients with a maximum of 4 lesions of the 
primary tumor were selected, and only the largest domi-
nant lesion was retrieved to obtain RNA from archived 
formalin-fixed, paraffin-embedded (FFPE) samples 
available for both groups. The RNeasy FFPE Kit (QIA-
GEN) was used to obtain RNA from the FFPE samples 

in accordance with the manufacturer’s instructions. The 
characteristics of the tumors, including grade, size, num-
ber of tumors, presence of microvascular invasion, and 
associated AFP, were collected for the explant or resected 
lesions. The date of recurrence, number of lesions iden-
tified, AFP peak, and type of therapy used for treatment 
were retrieved from patients with recurrent lesions. 
Trough level of the immunosuppressive medication from 
the time of transplant to the time of recurrence was also 
collected from the transplant patients. Patients’ clinico-
pathological characteristics on HCC recurrence are sum-
marized in Table 1. The study protocol was in accordance 
with the Declaration of Helsinki. The University Health 
Network (UHN) Research Ethics Board (REB#15- 9989) 
approved the request for a waiver of consent to retrieve 
retrospective data and tissue. Research followed Helsinki 
and Istanbul Declarations, approved by relevant ethics 
committees with written consent from all subjects.

Nanostring nCounter tumor signaling 360 panel
Five µm thick scrolls were sectioned from formalin-fixed, 
paraffin-embedded (FFPE) tumor tissue blocks. Total 
RNA was extracted using the RNeasy FFPE Kit (QIA-
GEN) according to the manufacturer’s protocol, using 
xylene for deparaffinization. The Nanostring nCounter 
tumor signaling 360 panel (760 genes) was utilized for 
gene expression analysis, and data was acquired with 
Nanostring’s Digital Analyser (FOV, 555). To account 
for background noise and sample variation across mul-
tiple runs on the nCounter platform, raw gene expres-
sion count data was normalized in NanoString nSolver 
4.0 using six positive controls and eight negative controls 
[14]. A manual calculation of the background threshold 
was carried out by taking the Mean of negative con-
trols ± 2 standard deviations of negative control probes to 
exclude lowly expressed targets before conducting gene 
expression analysis. The nSolver 4.0 software integrated 
housekeeping gene probes and facilitated data normal-
ization through the GeNorm Algorithm [14]. To address 
the issue of false discoveries, q-values were derived from 
the p-values obtained from NanoString nSolver analy-
sis to control the false discovery rate (FDR) [15, 16]. A 
q-value cutoff of 0.05 was applied to identify differentially 
expressed genes (DEGs).

Gene ontology and pathway enrichment analysis
Gene Ontology (GO) is a unique database that describes 
the characteristics and cell location of each gene [17]. 
Identifying GO terms elucidates how genes function by 
providing insight into their molecular activity, cellular 
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actions, and their locations within the cells. WikiPath-
ways is a database containing a large number of known 
genetic pathways of gene annotation [18]. The GO term 
enrichment and WikiPathways analyses, using DEGs, 
were performed in Enrichr [19]. This allowed for the 
identification of enriched biological processes and 

pathways with an adjusted p-value < 0.001, thus indicat-
ing significant differences.

Protein-protein interaction (PPI) network analysis
STRING (version 11.5) [20], a search tool for retrieving 
interacting genes/proteins, was used to evaluate protein-
PPI information. Homo sapiens was chosen as the organ-
ism of interest, with a minimum required interaction 
score set to medium confidence (0.4), while the remain-
ing parameters were left at their default settings. The PPI 
interaction network generated (interactions.tsv file) was 
imported into the Cytoscape software (version 3.9.1) 
[21]. The application plugin of CytoHubba [22] was used 
for further analysis of the PPI network to identify the top 
10 hub genes from the network based on the multiple 
correlation clustering (MCC) algorithms [23].

Cibersortx analysis
Cibersortx [24] software was utilized to determine the 
differential abundance of immune cells between initially 
resected and recurrent tumors based on gene expression 
data. Cibersortx is an established bioinformatics algo-
rithm that uses a matrix decomposition approach to infer 
the proportions of cell types in each tissue based on gene 
expression data [24]. The signature gene matrix used in 
the analysis contained expression counts of signature 
genes for 22 distinct human immune cells. The analysis 
involved extracting a submatrix from the gene expression 
count matrix and submitting it to the Cibersortx web-
site (https://cibersortx.stanford.edu/) for analysis. Batch 
correction was enabled in B-mode, with the single-cell 
expression matrix collapsed into a bulk matrix as refer-
ence, for the NanoString nCounter dataset [25, 26].

Deep learning-based analysis
Approach
In our deep learning (DL)-based approach, we lever-
aged prior biological knowledge obtained from path-
ways and GO term enrichment analyses to curate the 
list of pathways for analysis. Specifically, pathways with 
an adjusted p-value < 0.05 containing five or more differ-
entially expressed genes, and GO terms with an adjusted 
p-value < 0.05 comprising ten or more differentially 
expressed genes, were included in our pathway-centric 
DL approach. Our objective was to identify subsets of 
genes within critical pathways whose expression lev-
els could effectively distinguish primary from recur-
rent tumors. This process involved training independent 
supervised classifiers for each biological pathway and GO 
term.

Given the constraint of limited data, the risk of overfit-
ting was a significant concern. To mitigate this challenge, 
we employed a two-step strategy. First, we augmented 
the dataset by adding gene expressions of primary tissue 

Table 1  Clinicopathological characteristics of patients 
transplanted for HCC.
Variable Transplant 

patients 
(n = 7)

Mean age (range), y 64 (58–71)
Gender, No. of men (%) 7 (100%)
Etiology
• Hepatitis B
• Hepatitis C
• Alcohol

3 (43%)
3 (43%)
1 (14%)

AFP, median (range),
at the time of transplant (µmol/L)

136.5 
(11–593)

Tacrolimus trough level (ng/ml), median (range) trough 
level between transplant and recurrence

0–3 
months 
post LT
11.05 
(3.5–15.1)
4 months 
post LT -re-
currence)
8.55 (2-9.7)

Pathologic Factors:
Largest tumor diameter (cm),
mean ± SD

4.6 ± 2.4

Multiplicity of lesions on the explanted liver (%):
• 1 lesion
• 2 lesions
• 3 lesions
• 4 lesions

3 (43%)
4 (57%)
0 (0%)
0 (0%)

Histologic grade:
• Well-to-moderately differentiated
• Moderately-differentiated
• Poorly-differentiated
• Unclassified

5 (72%)
1 (14%)
1 (14%)
0 (0%)

Presence of microvascular invasion on the explant HCC 
(%)

4 (57%)

Macrovascular invasion 1 (14%)
HCC related outcome:
Vital status
• Alive
• Dead

1 (14%)
6 (86%)

Overall survival (median (range), in years 7 (1.5–13)
Time to recurrence (median (range), in months 33 (6–84)
Site of recurrence:
• Liver
• Lung
• Spinal column

3 (43%)
3 (43%)
1 (14%)

Primary treatment for recurrence:
• Liver resection
• Lung resection
• Radiotherapy

3 (43%)
3 (43%)
1 (14%)

https://cibersortx.stanford.edu/
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HCC samples from The Cancer Genome Atlas (TCGA) 
[27]. We excluded 8 samples of combined hepatocel-
lular carcinoma and intrahepatic cholangiocarcinoma, 
3 samples of fibrolamellar carcinoma and 2 samples of 
recurrent tissue type (liver cancer not otherwise speci-
fied), resulting in a final cohort of 360 HCC primary tis-
sue samples. This augmentation, however, resulted in 
imbalanced class distributions with a greater number of 
primary tissue samples compared to recurrent ones. To 
address this imbalance, we trained supervised classifi-
ers on pairs of tissues, where the learning objective was 
to differentiate between primary-primary and primary-
recurrent tumor pairs.

Model architecture
The classifier model processed pairs of gene expression 
values within specified pathways or Gene Ontology (GO) 
terms, subsequently assigning a binary label to indicate 
whether the gene expression pairs corresponded to pri-
mary-primary tissue pairs or primary-recurrent sample 
pairs. The model architecture was meticulously designed 
to capture pairwise relationships between expression lev-
els of the same gene across both samples. This network 
design included a first hidden layer with 16 convolution 
filters that convolved across the sample dimension to 
learn expression patterns across the two samples. The 
output of this layer was connected to two successive fully 
connected layers, with 32 and 16 filters, respectively fol-
lowed by the output layer. All hidden layers, including the 
convolution layer, utilized Rectified Linear Unit activa-
tion [28], while the output layer used Softmax activation 
to facilitate binary prediction. The same model architec-
ture was consistently applied across all relevant pathways 
and GO term models, with the input layer’s size deter-
mined by the number of differentially expressed genes 
within the pathway or GO term.

To optimize model performance, binary cross-entropy 
loss was minimized using Adagrad optimization [29]. To 
enhance robustness, each pathway-centric model under-
went 10 iterations of bootstrapping, where the train-test 
sets were randomly partitioned.

Data normalization
Combining different datasets, such as the HCC TCGA 
dataset and our experimental data, posed a major chal-
lenge due to variations in technologies and tissue type. 
These differences hindered direct comparisons. To 
address this issue, we implemented a rigorous form of 
normalization, wherein the gene expression levels of each 
sample within each pathway were independently scaled 
to adhere to a standard normal distribution. As a result, 
our models were trained solely on the relative expression 
patterns among pathway genes, mitigating the impact 

of dataset-specific biases and ensuring the compatibility 
and comparability of the combined datasets.

Feature importance analysis
To identify crucial features, we computed SHAP (SHap-
ley Additive exPlanations) values for each feature (gene) 
in each model using the test feature set. To ensure that 
only features consistently contributing to the model’s 
performance were considered, we set a threshold, requir-
ing features to have a SHAP value of 0.01 or higher in at 
least 50% of the high-performing models across the boot-
straps of the specific pathway or GO term. The SHAP 
value threshold of 0.01 was heuristically determined, 
and a model was deemed high-performing if it achieved 
greater than 80% classification accuracy on the test data-
set. For instance, in a particular pathway, if 8 out of the 
10 bootstrapped models achieved greater than 80% clas-
sification accuracy, only those features that had a SHAP 
value of 0.01 or higher in at least 4 of the 8 high-perform-
ing models were considered important.

Results
Functional enrichment analysis of DEGs on HCC recurrence 
after liver transplantation
Paired tumor samples were collected from 7 patients 
at both the initial resection and recurrence to investi-
gate the tumor genetic evolution of HCC recurrence. A 
q-value cutoff of 0.05 and | Fold change | ≥ 1.5 resulted 
in a total of 162 DEGs, with 160 upregulated and 2 down-
regulated genes. The heatmap of DEGs was presented 
(Supplementary Fig. 1). This data was further processed 
for different downstream analyses (Fig. 1). To investigate 
the function of the 162 DEGs regarding HCC recurrence 
during genetic evolution, pathways enrichment analysis 
and gene ontology (GO) assessment were performed. The 
top 10 most significantly enriched pathways were iden-
tified (Fig.  2A). PI3K-Akt signaling exhibited as the top 
pathway in the enrichment (WP4172). Other enriched 
pathways were identified with the association of cancer 
immunology and DNA damage response, such as DNA 
repair pathways full network (WP4946) and T-cell recep-
tor signaling pathway (WP69). These enriched pathways 
potentially promoted HCC recurrence during disease 
progression. In the GO assessment of biological process, 
the GO term was primarily related to cytokine-mediated 
signaling pathway (GO:19221), inflammatory response 
(GO:6954) and positive regulation of cytokine produc-
tion (GO:0001819) (Fig.  2B). The results indicated that 
the tumor microenvironment with cytokines mediated 
immunity significantly contributed to HCC recurrence. 
In the network constructed using the top 5 prominent 
enriched pathways and GO terms, each requiring a mini-
mum of 5 links per gene, 6 DEGs (FLT3, CCL4, IL6, OSM, 
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TNF and PDGFB) were identified as the most important 
bridge genes (Fig. 2C).

Identification of top 10 hub genes in PPI network
The protein-protein interaction (PPI) network was con-
structed using the DEGs involved in the top 5 func-
tional enrichment of pathways and GO terms. The genes 
were utilized as the seed to construct a medium confi-
dence (0.4) PPI network on the STRING database [20]. 
Subsequently, the PPI network was subjected to Cyto-
scape using the CytoHubba MCC clustering algorithm 
to identify the top 10 hub genes. The PPI network for 
HCC recurrence post-transplant consisted of 160 nodes 
and 1555 edges (PPI enrichment p-value < 1.0 × 10 − 16) 
(Fig. 3A). In the MCC clustering analysis, the top 10 hub 
genes identified were CD86, TNF, IL6, CCR7, CD80, 
CD274, IL7, CCR5, CD19, and TBX21, ranked accord-
ingly (Fig. 3B).

Cibersortx analysis of estimation of immune infiltration on 
HCC recurrence
Immune cell types and levels have been associated with 
cancer outcomes, with varying infiltration of immune 
cell types in the tumor microenvironment affecting the 
risk of cancer-free survival and overall survival [30–32]. 
In our functional enrichment analysis of recurrent HCC, 
cancer immunology played an important role in HCC 
recurrence after liver transplantation (Figs.  2 and 3). 
Therefore, Cibersortx analysis was performed to estimate 

immune cell infiltration based on gene expression pro-
files. The proportions of immune cells were determined 
in the paired tumor samples at both the initial resection 
and recurrence (Fig.  4A). The results showed decreased 
levels of resting CD4 + lymphocytes and M1 macro-
phages, while significantly increased infiltration of mono-
cytes and activated mast cells (Fig. 4B).

Deep learning-based approach to discern combinations of 
genes whose expression levels can discriminate between 
primary and recurrent tumors
The selected models employed in the feature importance 
analysis exhibit strong overall performance (Fig. 5). The 
distribution of different performance metrics across 
bootstrapped samples for both the pathway and Gene 
Ontology (GO) models are illustrated in Fig.  5A and B. 
Specifically, the median specificity and sensitivity values 
on the test set for the biological pathway models were 
0.964 and 0.918, respectively, while the median specificity 
and sensitivity values for the GO term models were 0.982 
and 0.956, respectively.

It is noteworthy that, despite utilizing a relatively 
small training dataset, we effectively mitigated the risk 
of overfitting, as evidenced by the balanced sensitivities 
and specificities of the models. Within this set of high-
performing models, we identified key genes based on 
their high SHAP values in at least 50% of their respec-
tive bootstrapped iterations. This stringent criterion 
ensures the identification of genes consistently utilized 

Fig. 1  Analysis workflow of this study

 



Page 6 of 12To et al. Human Genomics           (2024) 18:58 

Fig. 2  Functional enrichment analysis of the DEGs on HCC recurrence. (A) The top 10 pathway analysis results of the DEGs. (B) The top 10 Gene Ontol-
ogy of biological process analysis results of the DEGs. (C) Network visualization of top 5 prominent enriched pathways and GO terms with the filtering of 
minimum of 5 links per gene
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Fig. 3  Protein-protein interaction (PPI) network analysis on HCC recurrence. (A) STRING analysis shows that DEGs are involved in known and predicted 
PPI. Network nodes represent proteins. Edges represent protein-protein associations. Different coloured lines represent different types of evidence used 
to predict associations. Red line: gene fusions; green line: gene neighbourhood; blue line: gene co-occurrence; purple line: experimentally determined; 
yellow line: text mining; light blue line: curated database; black line: co-expression and violet line: protein homology. (B) PPI network was subjected to 
Cytoscape using the CytoHubba MCC clustering algorithm to identify the top 10 hub genes in the HCC recurrent post-transplant tumors compared with 
the paired primary tumors. The 10 hub genes are displayed from red (high degree value) to yellow (low degree value)
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by the models to discern primary from recurrent cases. 
The ensuing analysis reveals key discriminating genes 
in association with enriched pathways and GO terms as 
shown in Fig.  5C and D. Importantly, PI3K/Akt signal-
ing was consistently identified as the important pathway 

in recurrent HCC (Fig.  5C). The deep-learning analysis 
revealed 28 Gene Ontology (GO) terms and 12 path-
ways featuring 34 and 32 genes, respectively, exhibiting 
differential expression in recurrent tissues compared to 
primary tissues. A total of 12 genes overlapped between 

Fig. 4  The landscape of immune infiltration in recurrent HCC samples. (A) Bar charts of 22 immune cell proportions in primary tumor and recurrent 
tumor samples. (B) Differential expression of different immune cell types between primary tumor and recurrent tumor samples. *, p ≤ 0.05; **, p ≤ 0.01; 
***, p ≤ 0.001
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Fig. 5  Identifying gene signatures of recurrent HCC tumors using pathway-centric modeling. (A) Performance metrics of bootstrapped pathway models 
on the test data, (B) Performance metrics of bootstrapped GO term models on the test data. Overall, both pathway and GO term-based models achieved 
good performance on test data with accuracy, precision, recall (sensitivity) metrics > 0.80. (C), (D) Genes in corresponding pathway and GO term that the 
models used to distinguish between primary and recurrent tissue. (E) Overlapping genes between gene signatures from deep learning-based analysis, 
important bridge genes and the top 10 hub genes from PPI networks
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GO term-centric and pathway-centric analysis. We com-
puted a gene discriminant score based on the number 
of pathways and GO terms the gene appeared as a good 
discriminator between the two classes. The top ranked 
20 genes based on the discriminant score is shown in 
Supplementary Fig. 2. Among them, IL6 emerged as the 
topmost gene, showing the highest enrichment in the GO 
terms (Fig. 5D) and overlapping with both the important 
bridge genes and the top ten hub genes (Fig.  5E). Fur-
thermore, we applied our 20-gene signatures to conduct 
a disease-free analysis for TCGA HCC dataset. Notably, 
patients with high expression levels of the 20-gene signa-
tures (Altered group, z-score > 2) exhibited a significantly 
shorter median disease-free period compared to those 
with lower expression levels (Unaltered group), 15.70 
months vs. 29.66 months (Supplementary Fig. 3).

Discussion
The PI3K/Akt signaling pathway played the most signifi-
cant role in recurrent HCC post-transplant. Additionally, 
the enriched GO terms revealed that the DEGs primar-
ily contributed to cytokine-mediated signaling in tumor 
microenvironment during HCC recurrence. We further 
investigated the immune cell infiltration in recurrent 
HCC during tumor evolution. All the recurrent tumors 
exhibited a significantly higher monocyte and lower M1 
macrophage infiltration. Emerging evidence indicates 
that oncogenic signaling, such as CTNNB1, PI3K/PTEN/
AKT/mTOR, p53, NF-κB, and RAS/RAF/MAPK signal-
ing significantly regulates the tumor microenvironment 
by recruiting immunosuppressive cells and decreasing 
anti-tumor immune cells infiltration to promote tumor 
progression [33–35]. Oncogenic signaling can also lead to 
the upregulation of immune-escape proteins in cancers, 
such as CD274, CD80 and CD86 [36, 37]. Additionally, 
such signaling can promote the secretion of chemokines 
and cytokines, which can recruit immunosuppressive 
cells for tumor progression [33]. Our findings revealed 
that PI3K/Akt pathway was the main oncogenic signaling 
in HCC recurrence. PI3K/Akt pathway was suggested to 
coordinate the upregulation of cytokines, such as IL6 and 
IL7 in tumor microenvironment during HCC recurrence. 
Intervening upon the PI3K/Akt/mTOR pathway has also 
been the subject of therapeutic investigation in the clini-
cal setting for transplant recipients with hepatocellular 
carcinoma; prospective evaluation of sirolimus demon-
strated benefits in overall short-term post-transplant 
survival and recurrence-free survival compared to calci-
neurin inhibitor-based immunosuppression [38].

This cytokine secretion potentially recruited the 
activated mast cells and monocytes infiltration along 
with lower M1 macrophages to promote HCC recur-
rence. Specifically, the infiltration of mast cells has been 
reported in HCC progression through angiogenesis 

and tumor growth [39]. Monocytes can promote tumor 
angiogenesis, invasion and metastasis in HCC [40]. M1 
macrophages are regarded as anti-tumorigenic through 
phagocytosis of cancer cells [41]. As a result, the effective 
macrophages exclusion contributed to the evaluation of 
aggressive biological behaviors in HCC recurrence.

Our deep learning analysis pinpointed 20 key genes as 
genetic signature for recurrent HCC, with IL6 standing 
out as the most significant signature, overlapping with 
both the crucial bridge genes and the top ten hub genes. 
IL6 is one of the well-characterized pro-tumorigenic 
cytokines associated with tumour-associated inflamma-
tion and tumorigenesis in HCC [42, 43]. Furthermore, 
IL6 has been reported as a pivotal player in the activa-
tion of the PI3K/Akt/mTOR signaling and serves as a 
prognostic biomarker in HCC [44, 45]. IL6 also plays an 
important role in proliferation, migration, invasion, and 
malignant progression by activating the mTOR signaling 
in HCC [46].

Our deep learning approach adopts a pathway-centric 
perspective, integrating prior knowledge of systems-
level biology through biological functions and GO 
terms, while also considering interdependencies among 
genes that dictate biological processes. Dysregulated 
pathways are indicative of disease onset or progression, 
and often implicated in cancer progression. Therefore, 
identifying patient-specific pathway dysregulation can 
inform personalized treatment strategies. In contrast, 
traditional statistical methods for differential expression 
analysis, such as fold change, typically treat features in 
isolation and may not capture the complex interdepen-
dencies between them. We chose convolution neural 
network (CNN) to learn relative differences rather than 
absolute expression thresholds across pairs of patients 
within groups of functionally related genes. This choice 
mitigates bias and effectively addresses challenges asso-
ciated with normalizing variations arising from differ-
ent measurement techniques and individual biological 
differences. Our method was designed to capture both 
similarities and dissimilarities between patient pairs 
(primary-primary and primary-recurrent), ensuring 
robustness against variations. By contrasting the simi-
larities within primary-primary pairs and dissimilarities 
between primary-recurrent pairs, our models can effec-
tively discern the unique signaling patterns and dysregu-
lations characteristic of recurrent tissues. Consequently, 
when our analysis highlights IL6 as an important gene, 
as determined by SHAP analysis, it signifies that IL6 has 
played a significant role within the intricate set of features 
learned by the models, formed through non-linear com-
binations of multiple genes. Our methodology augments 
primary tissue data from TCGA, enhancing the diversity 
of patient samples and improving the generalizability. 
This approach allows using deep learning algorithms to 
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discern the subtle distinctions even with limited sam-
ples. We generated 20-gene signatures for HCC recur-
rence. Among these signatures, IL6 [47, 48], IGF1R [48, 
49], NANOG [50], NCF1 [5], POU5F1 [52], TERT [53], 
SHH [54], CCR1 [55], SRC [56] and CXCL11 [57] have 
been reported to have clinical associations with the risk 
of HCC recurrence. Future investigations into the clinical 
diagnostic and prognostic utility of these 20-gene signa-
tures should be conducted.

Overall, our results provide valuable insights that PI3K/
Akt signaling potentially upregulated tumor immune-
escape genes and mediated cytokine secretion to affect 
immune cell infiltration pattern during the disease pro-
gression of HCC recurrence. Our study was constrained 
by a small sample size and the utilization of a NanoString 
panel with a limited gene coverage. Unlike Next Gen-
eration Sequencing (NGS), this approach restricted our 
ability to identify novel genes and pathways associated 
with HCC recurrence. To address this limitation, in the 
future, large-scale genome-wide association studies using 
NGS should be prioritized to further investigate HCC 
recurrence. Moreover, the understanding of how liver 
cancer modulates immune responses through tumor-
intrinsic mechanisms remains limited. Further mechanis-
tic research is needed to fully explore this potential and 
advance our knowledge of liver cancer immunology.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s40246-024-00624-6.

Supplementary Material 1

Acknowledgements
Not applicable.

Author contributions
Jeffrey To and Soumita Ghosh analyzed the data and wrote the manuscript. 
Xun Zhao, Elisa Pasini, Sandra Fischer, Gonzalo Sapisochin, Anand Ghanekar, 
Elmar Jaeckel and Mamatha Bhat performed critical reviews and edits of the 
manuscript. All authors contributed to the conceptualization of the study 
and provided final approval to the manuscript submitted for publication 
consideration.

Funding
This study was supported in part by grants from the Nanostring, the Canadian 
Liver Foundation, the Terry Fox Research Institute, and the Toronto General 
and Western Hospital Foundation. This work was also supported by the 
University of Toronto’s Eric and Wendy Schmidt AI in Science Postdoctoral 
Fellowship, a program of Schmidt Futures, granted to Soumita Ghosh.

Data availability
GSE249913 is the accession number for our NanoString data.

Declarations

Ethics approval and consent to participate
The present study protocols conformed to the ethical guidelines of the 
Declaration of Helsinki and were approved by The University Health Network 

(UHN) Research Ethics Board (REB#15- 9989). Written informed consent was 
obtained from all the included patients.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1Ajmera Transplant Centre, University Health Network, Toronto, ON, 
Canada
2Division of Gastroenterology & Hepatology, University of Toronto, 
Toronto, ON, Canada
3Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
4Toronto General Hospital Research Institute, University Health Network, 
Toronto, ON, Canada
5Princess Margaret Cancer Centre, University Health Network, Toronto, 
ON, Canada
6Department of Medicine, University of Toronto, Toronto, ON, Canada

Received: 17 January 2024 / Accepted: 23 May 2024

References
1.	 Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular Carcinoma Lancet. 

2022;400:1345–62.
2.	 Mittal S, Sada YH, El-Serag HB, et al. Temporal trends of nonalcoholic fatty liver 

disease-related hepatocellular carcinoma in the veteran affairs population. 
Clin Gastroenterol Hepatol. 2015;13:594–601. e1.

3.	 Global Burden of Disease, Cancer C, Fitzmaurice C, Allen C, et al. Global, 
Regional, and National Cancer incidence, mortality, years of Life Lost, Years 
lived with disability, and disability-adjusted life-years for 32 Cancer groups, 
1990 to 2015: a systematic analysis for the global burden of Disease Study. 
JAMA Oncol. 2017;3:524–48.

4.	 Yang JD, Larson JJ, Watt KD, et al. Hepatocellular Carcinoma is the most com-
mon indication for Liver Transplantation and Placement on the Waitlist in the 
United States. Clin Gastroenterol Hepatol. 2017;15:767–75. e3.

5.	 Stras WA, Wasiak D, Lagiewska B, et al. Recurrence of Hepatocellular Carci-
noma after Liver Transplantation: risk factors and predictive models. Ann 
Transpl. 2022;27:e934924.

6.	 Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 
2012;379:1245–55.

7.	 Xu XF, Xing H, Han J, et al. Risk factors, patterns, and outcomes of late recur-
rence after liver resection for Hepatocellular Carcinoma: a Multicenter Study 
from China. JAMA Surg. 2019;154:209–17.

8.	 Singal AG, Llovet JM, Yarchoan M et al. AASLD practice guidance on preven-
tion, diagnosis, and treatment of hepatocellular carcinoma. Hepatology. 
2023.

9.	 Agopian VG, Harlander-Locke M, Zarrinpar A, et al. A novel prognostic nomo-
gram accurately predicts hepatocellular carcinoma recurrence after liver 
transplantation: analysis of 865 consecutive liver transplant recipients. J Am 
Coll Surg. 2015;220:416–27.

10.	 Ding X, He M, Chan AWH, et al. Genomic and epigenomic features of primary 
and recurrent Hepatocellular Carcinomas. Gastroenterology. 2019;157:1630–
45. e6.

11.	 Xue R, Li R, Guo H, et al. Variable Intra-tumor genomic heterogeneity of 
multiple lesions in patients with Hepatocellular Carcinoma. Gastroenterology. 
2016;150:998–1008.

12.	 Liu T, Shi Q, Yang L, et al. Long non-coding RNAs HERH-1 and HERH-4 facili-
tate cyclin A2 expression and accelerate cell cycle progression in advanced 
hepatocellular carcinoma. BMC Cancer. 2021;21:957.

13.	 Zou J, Huss M, Abid A, et al. A primer on deep learning in genomics. Nat 
Genet. 2019;51:12–8.

14.	 Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-
time quantitative RT-PCR data by geometric averaging of multiple internal 
control genes. Genome Biol. 2002;3:RESEARCH0034.

15.	 Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc 
Natl Acad Sci U S A. 2003;100:9440–5.

https://doi.org/10.1186/s40246-024-00624-6
https://doi.org/10.1186/s40246-024-00624-6


Page 12 of 12To et al. Human Genomics           (2024) 18:58 

16.	 Storey JD. The positive false discovery rate: a bayesian interpretation and the 
< i > q-value. Annals Stat. 2003;31:2013–35. 23.

17.	 Harris MA, Clark J, Ireland A, et al. The Gene Ontology (GO) database and 
informatics resource. Nucleic Acids Res. 2004;32:D258–61.

18.	 Slenter DN, Kutmon M, Hanspers K, et al. WikiPathways: a multifaceted path-
way database bridging metabolomics to other omics research. Nucleic Acids 
Res. 2018;46:D661–7.

19.	 Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive 
gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 
2016;44:W90–7.

20.	 Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein associa-
tion networks with increased coverage, supporting functional discovery in 
genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.

21.	 Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment 
for integrated models of biomolecular interaction networks. Genome Res. 
2003;13:2498–504.

22.	 Chin CH, Chen SH, Wu HH, et al. cytoHubba: identifying hub objects and sub-
networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):S11.

23.	 Chicco D, Jurman G. The advantages of the Matthews correlation coefficient 
(MCC) over F1 score and accuracy in binary classification evaluation. BMC 
Genomics. 2020;21:6.

24.	 Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets 
from tissue expression profiles. Nat Methods. 2015;12:453–7.

25.	 Steen CB, Liu CL, Alizadeh AA, et al. Profiling cell type abundance and expres-
sion in bulk tissues with CIBERSORTx. Methods Mol Biol. 2020;2117:135–57.

26.	 Newman AM, Steen CB, Liu CL, et al. Determining cell type abundance 
and expression from bulk tissues with digital cytometry. Nat Biotechnol. 
2019;37:773–82.

27.	 Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, et al. The Can-
cer Genome Atlas Pan-cancer analysis project. Nat Genet. 2013;45:1113–20.

28.	 Nair V, Hinton G. Rectified Linear Units Improve Restricted Boltzmann 
Machines Vinod Nair, 2010.

29.	 Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning 
and stochastic optimization. J Mach Learn Res. 2011;12:2121–59.

30.	 Bruni D, Angell HK, Galon J. The immune contexture and immunoscore in 
cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 2020;20:662–80.

31.	 Giraldo NA, Sanchez-Salas R, Peske JD, et al. The clinical role of the TME in 
solid cancer. Br J Cancer. 2019;120:45–53.

32.	 Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev 
Cancer. 2021;21:345–59.

33.	 Yang L, Li A, Lei Q, et al. Tumor-intrinsic signaling pathways: key roles in the 
regulation of the immunosuppressive tumor microenvironment. J Hematol 
Oncol. 2019;12:125.

34.	 Altorki NK, Markowitz GJ, Gao D, et al. The lung microenvironment: an 
important regulator of tumour growth and metastasis. Nat Rev Cancer. 
2019;19:9–31.

35.	 Wang D, Yang L, Yue D, et al. Macrophage-derived CCL22 promotes an 
immunosuppressive tumor microenvironment via IL-8 in malignant pleural 
effusion. Cancer Lett. 2019;452:244–53.

36.	 Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J 
Exp Clin Cancer Res. 2019;38:255.

37.	 Sato T, Takagi K, Higuchi M, et al. Immunolocalization of CD80 and CD86 in 
Non-small Cell Lung Carcinoma: CD80 as a potent prognostic factor. Acta 
Histochem Cytochem. 2022;55:25–35.

38.	 Geissler EK, Schnitzbauer AA, Zulke C, et al. Sirolimus Use in Liver Transplant 
recipients with Hepatocellular Carcinoma: a Randomized, Multicenter, open-
label phase 3 trial. Transplantation. 2016;100:116–25.

39.	 Grizzi F, Franceschini B, Chiriva-Internati M, et al. Mast cells and human hepa-
tocellular carcinoma. World J Gastroenterol. 2003;9:1469–73.

40.	 Lin ZX, Ruan DY, Li Y, et al. Lymphocyte-to-monocyte ratio predicts survival 
of patients with hepatocellular carcinoma after curative resection. World J 
Gastroenterol. 2015;21:10898–906.

41.	 Albini A, Bruno A, Noonan DM, et al. Contribution to Tumor Angiogenesis 
from Innate Immune cells within the Tumor Microenvironment: implications 
for Immunotherapy. Front Immunol. 2018;9:527.

42.	 He G, Dhar D, Nakagawa H, et al. Identification of liver cancer progenitors 
whose malignant progression depends on autocrine IL-6 signaling. Cell. 
2013;155:384–96.

43.	 Park EJ, Lee JH, Yu GY, et al. Dietary and genetic obesity promote liver 
inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 
2010;140:197–208.

44.	 Nenu I, Toadere TM, Topor I, et al. Interleukin-6 in Hepatocellular Carcinoma: a 
Dualistic Point of View. Biomedicines. 2023;11:2623.

45.	 Myojin Y, Kodama T, Sakamori R et al. Interleukin-6 is a circulating Prognostic 
Biomarker for Hepatocellular Carcinoma Patients Treated with combined 
immunotherapy. Cancers (Basel) 2022;14.

46.	 Liu F, Zhang W, Yang F, et al. Interleukin-6-stimulated progranulin expression 
contributes to the malignancy of hepatocellular carcinoma cells by activating 
mTOR signaling. Sci Rep. 2016;6:21260.

47.	 Paul C, Besch C, Artzner T, et al. Additional value of interleukin-6 level to 
predict histopathological features of hepatocellular carcinoma before liver 
transplantation. Cytokine. 2023;169:156286.

48.	 Chang TS, Wu YC, Chi CC, et al. Activation of IL6/IGFIR confers poor prognosis 
of HBV-related hepatocellular carcinoma through induction of OCT4/NANOG 
expression. Clin Cancer Res. 2015;21:201–10.

49.	 Ngo MT, Jeng HY, Kuo YC et al. The role of IGF/IGF-1R signaling in Hepatocel-
lular carcinomas: Stemness-Related properties and Drug Resistance. Int J Mol 
Sci 2021;22.

50.	 Lei Y, Wang X, Sun H, et al. Association of Preoperative NANOG-Positive circu-
lating tumor cell levels with recurrence of Hepatocellular Carcinoma. Front 
Oncol. 2021;11:601668.

51.	 Ng KT, Yeung OW, Lam YF, et al. Glutathione S-transferase A2 promotes hepa-
tocellular carcinoma recurrence after liver transplantation through modulat-
ing reactive oxygen species metabolism. Cell Death Discov. 2021;7:188.

52.	 He D, Zhang X, Tu J. Diagnostic significance and carcinogenic mechanism 
of pan-cancer gene POU5F1 in liver hepatocellular carcinoma. Cancer Med. 
2020;9:8782–800.

53.	 Yu JI, Choi C, Ha SY, et al. Clinical importance of TERT overexpression in hepa-
tocellular carcinoma treated with curative surgical resection in HBV endemic 
area. Sci Rep. 2017;7:12258.

54.	 Dugum M, Hanouneh I, McIntyre T, et al. Sonic hedgehog signaling in hepa-
tocellular carcinoma: a pilot study. Mol Clin Oncol. 2016;4:369–74.

55.	 Zhu Y, Gao XM, Yang J, et al. C-C chemokine receptor type 1 mediates 
osteopontin-promoted metastasis in hepatocellular carcinoma. Cancer Sci. 
2018;109:710–23.

56.	 Zhao R, Wu Y, Wang T, et al. Elevated src expression associated with hepa-
tocellular carcinoma metastasis in northern Chinese patients. Oncol Lett. 
2015;10:3026–34.

57.	 Wang J, Zhang C, Chen X, et al. Functions of CXC chemokines as biomarkers 
and potential therapeutic targets in the hepatocellular carcinoma microenvi-
ronment. Transl Cancer Res. 2021;10:2169–87.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 


	﻿Deep learning-based pathway-centric approach to characterize recurrent hepatocellular carcinoma after liver transplantation
	﻿Abstract
	﻿Introduction
	﻿Methods
	﻿Patient population
	﻿Nanostring nCounter tumor signaling 360 panel
	﻿Gene ontology and pathway enrichment analysis
	﻿Protein-protein interaction (PPI) network analysis
	﻿Cibersortx analysis
	﻿Deep learning-based analysis
	﻿Approach
	﻿Model architecture
	﻿Data normalization
	﻿Feature importance analysis


	﻿Results
	﻿Functional enrichment analysis of DEGs on HCC recurrence after liver transplantation
	﻿Identification of top 10 hub genes in PPI network
	﻿﻿Cibersortx analysis of estimation of immune infiltration on HCC recurrence﻿
	﻿Deep learning-based approach to discern combinations of genes whose expression levels can discriminate between primary and recurrent tumors

	﻿Discussion
	﻿References


