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Abstract 

Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this 
resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect 
it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators 
for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemo‑
therapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized 
the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor’s immunosuppressive and hard-to-
reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer 
and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified 
T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell 
therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strate‑
gies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main 
challenges ahead of pancreatic cancer immunotherapy.
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Introduction
Pancreatic cancer comprises mostly pancreatic ductal 
adenocarcinoma (PDAC), a persistent and recalcitrant 
disease [1], and is responsible for an estimated 50,550 
deaths in the United States of America in 2023 [2]. Diag-
nosis in the early stages of metastasis or late-stage is 
common since symptoms are often vague. The current 
approach for treating PDAC is standard cytotoxic chem-
otherapy, but it only extends overall survival (OS) by a 
few months [3–5].

PDAC carcinogenesis like all the solid tumors is medi-
ated by the gradual build-up of driver mutations, such 
as the oncogene KRAS (G12D mutation) [6–9] and the 
tumor suppressor gene TP53 [10, 11]. These molecular 
modifications are accompanied by corresponding his-
tological alterations during different stages of PDAC 
development [12]. The morphological progression ini-
tiates with the formation of precursor lesions known as 
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pancreatic intraepithelial neoplasia (PanIN) [13], which 
then advance to invasive adenocarcinoma. Changes in 
the surrounding tissue stroma occur as cancer continues 
to advance. The non-transformed tissue stroma, com-
posed of components such as immunological, vascular, 
and connective tissue, plays a vital role in maintaining 
homeostasis in response to damage. However, cancer 
exploits these physiological responses to create a favora-
ble tumor microenvironment (TME) for its efficient 
growth [12, 14]. Indeed, cancer resembles "persistent 
wounds", and alterations in the stroma are the outcome 
of "abnormal wound healing" [15].

Immunotherapeutic strategies possess a significant 
capability in inducing strong immune responses against 
tumors. Immunomodulators, immune checkpoint 
blockade (ICB), and adoptive cell transfer therapy could 
potentially offer hopeful strategies [16–18]. Remarkable 
outcomes have been achieved from 2010 to the present 
through clinical research that utilizes various immuno-
therapeutic approaches to treat patients with different 
types of cancer [19–22]. The immune responses specifi-
cally targeting cancer cells, triggered by immunotherapy, 
differ from those stimulated by tumor-directed therapies. 
Furthermore, these responses can endure for a prolonged 
period even after the treatment is discontinued [23, 24]. 
However, the application of immunotherapy yields insuf-
ficient results for the vast majority of PDACs. This is pre-
dominantly attributed to the characteristics of its TME, 
which is deficient in effector T cells that have previously 
been exposed to antigens [25].

Tumor immunotherapy has revolutionized the treat-
ment of various solid tumors. Nevertheless, current 
immunotherapies have had limited success in improving 
survival for patients with PDAC [26, 27]. The immuno-
logical resistance of PDAC to immunotherapies can be 
attributed to its low mutational burden and the hostile 
TME characterized by fibrosis, hypoxia, and immuno-
suppression [28–30]. However, a meta-analysis suggested 
that targeted immunotherapy is more effective than 
standard treatments in increasing survival and enhanc-
ing immune responses in pancreatic cancer patients [31]. 
Moreover, combining chemotherapy and surgery with 
other immunotherapies may synergistically improve 
outcomes. Various cytotoxic drugs and adjuvant thera-
pies have been shown to sensitize the TME to immuno-
therapy by inducing immunogenic cell death, modifying 
evasive immune processes, and reducing immune sup-
pression [32, 33].

Immunotherapy is presently emerging as a focal point 
in the treatment of pancreatic cancer. This persistent 
tumor primarily escapes immune detection through 
various means, including the secretion of immunosup-
pressive factors like transforming growth factor-beta 

(TGF-β), the creation of an immunosuppressive envi-
ronment lacking T lymphocytes, and the expression of 
immune checkpoints such as programmed death-ligand 
1 (PD-L1) and PD-L2 [4, 34]. Furthermore, research is 
being conducted on ICB to activate T-cell function in 
pancreatic cancer [35–37]. The pancreatic cancer micro-
environment is characterized by extensive desmoplasia, a 
scarcity of effector T lymphocytes, and an immunophe-
notype dominated by T helper 2 (TH2) cells, all of which 
facilitate the evasion of cancer cells from immune sur-
veillance [38–40]. Consequently, monoclonal antibodies 
(mAbs) targeting programmed cell death protein 1 (PD-
1) and PD-L1 have shown limited efficacy [4]. Moreover, 
immunotherapies like PD-1 inhibition may benefit only a 
small percentage of cancer patients (3%) who have hyper-
mutation and microsatellite instability [41].

This article delves headfirst into a comprehensive anal-
ysis of the immunosuppressive microenvironment in 
pancreatic cancer. In the context of contemporary knowl-
edge and future trends, the article elaborates on a wide 
range of immunotherapies, such as oncolytic virus ther-
apy (OVT), adoptive cell transfer therapy including T-cell 
receptor (TCR)-engineered T cells therapy, chimeric 
antigen receptor (CAR) T-cell therapy, CAR natural killer 
(NK) cell therapy, and cytokine-induced killer cells. Addi-
tionally, it examines immune checkpoint inhibitors (ICIs) 
and immunomodulators, cancer vaccines, and immuno-
therapeutic approaches that target myeloid cells. Lastly, 
the article highlights the effects of the gut microbiome 
in modulating response to ICIs and the emerging role of 
CRISPR/Cas9 gene-editing technology in pancreatic can-
cer immunotherapy. Finally, it discusses the main chal-
lenges ahead of pancreatic cancer immunotherapy.

Exploring the tumor microenvironment (TME) 
of pancreatic cancer
The complicated interaction between tumor cells and 
their adjacent microenvironment significantly impacts 
the development of solid tumors. Determining the out-
come of cancer, whether it progresses or regresses, heav-
ily relies on the immune environment present in tumors. 
This environment is made up of various cell types such 
as adaptive immune cells, macrophages, dendritic cells 
(DCs), NK cells, and other innate immune cells [42]. 
PDAC serves as a prime example of the various types of 
communication that can occur between tumors and sur-
rounding tissue. PDAC demonstrates strong resistance to 
new immunotherapies due to the exclusive collaboration 
between different immune cells, resulting in the creation 
of a highly immunosuppressive setting that aids tumor 
advancement [12, 43–46]. The "cold" TME is a distinct 
feature of a pancreatic tumor wherein a considerable 
infiltration of myeloid cells is observed, and CD8+ T cells 
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are usually absent, resulting in immunological character-
istics [47]. Given the heterogeneous nature of pancreatic 
TME, components may have dual, contradicting roles 
(Table 1). In this section, we outline the involvement of 
immune cells and non-immune cells in the TME of pan-
creatic cancer and cross-talk between these cells (Figs. 1 
and 2).

The role of immune cells
The TME comprises various immune cells, each with dis-
tinct roles and significance. This section will elucidate the 
functions of these immune cells within the TME.

Role of T lymphocytes in TME
The immunological diversity among tumors in patients 
with PDAC is wide-ranging, characterized by varying 
densities of infiltrating T-cells and the composition of 
T-cell subpopulations [48–51]. The presence of desmo-
plastic elements might not influence the accumulation 
of T cells, thus revealing a separate spatial arrangement 
of T cells in PDAC [50]. This challenges the idea that the 
inhibitory environment shaped by fibroblasts and desmo-
plastic stroma suppresses the infiltration of T cells [52, 
53]. In pancreatic tumors, the extravasation of T cells is 
constrained by the desmoplastic stroma [54], leading to 
immune exclusion, the induction of immunosuppression, 
and the inefficacy of anti-cancer therapies [55].

The presence of more CD8+ cytotoxic T lymphocytes 
(CTLs) encircling cancerous cells is associated with a 
boost in the survival rates of patients [50]. According to 
the study, in patients who had a better survival, tumor 
samples exhibited a greater percentage of CD8+ T cells, 
but a lesser percentage of CD4+ T cells compared to 
tumor samples from patients with a short survival [51]. 
These results highlight the complexity of the immune 

response in PDAC and raise questions about the role of 
the TME in shaping immune profiles. Further investiga-
tion is needed to fully understand these findings and their 
implications for future treatments. In the subsequent dis-
course, we explicate the pivotal contribution of T cells in 
the TME according to distinct T cell phenotypes.

Cytotoxic T lymphocytes (CTLs)  The principal partici-
pants in the battle against cancer cells are the CTLs that 
produce IFN-γ, TNF, perforin, and granzymes. These 
CTLs are responsible for generating durable memory 
cells that grant protection against cancer cells in the times 
to come. CTLs can recognize and kill tumor cells that 
express cognate tumor antigens. This specific recognition 
is achieved through the interaction between the TCR on 
CTLs and the peptide-major histocompatibility complex 
(MHC) on the tumor cell surface. Once the recognition 
occurs, CTLs induce the death of the target cell through 
apoptosis [56].

Previous research has demonstrated that the prognosis 
of individuals diagnosed with pancreatic cancer is influ-
enced by the distribution of CD8+ TILs [57]. Increased 
survival in pancreatic cancer is associated with an eleva-
tion in the quantity of CD8+ T lymphocytes found within 
the tumor tissue [35, 50, 51]. Furthermore, in prior inves-
tigations involving surgically removed samples from 
pancreatic cancer cases, it has been observed that the 
quantity of CD8+ T cells located in the TME exhibited 
a positive association with the survival rate of patients 
[57–60]. Early mortality related to pancreatic cancer was 
correlated with the percentage of CD8+ T cells in the 
peripheral region [61].

The dysfunction and exhaustion of CD8+ CTLs 
within tumors is characterized by both a decline in 

Table 1  Dual role of key components of pancreatic tumor microenvironment

CAF: Cancer-associated fibroblast, ECM: Extracellular matrix, PanIN: Pancreatic intraepithelial neoplasia, PDAC: Pancreatic ductal adenocarcinoma, TAMs: Tumor-
associated macrophages, TILs: Tumor-infiltrating lymphocytes

Component Pro-tumor effects Anti-tumor/limiting effects

T lymphocytes CD4+ T cell supported cancer progression by secreting IL-17 
and IL-27 [551, 552]

Cytotoxic TILs induced tumor regression [553, 554]

Regulatory T 
lymphocytes 
(Tregs)

Treg suppressed immunity against early stage pancreatic 
intraepithelial neoplasms [555]

Treg depletion led to accelerated tumor progression [104]

B lymphocytes B cells supported tumor progression/proliferation by secreting 
IL-35 and activating immunosuppressive TAMs [556, 557]

Insufficient data

Myeloid cells CD11b+ myeloid cells are required for oncogenic Kras-driven 
PanIN formation [165, 166, 558]

Reinvigorating dysregulated myeloid cells in therapeutic settings 
(e.g., using CD40 agonist) [130, 407, 431, 559]

CAF Regulating tumor metabolism for cancer cell proliferation 
and suppressing anti-tumor immunity [35, 560–563]

Increased matrix deposition and forming a dense and stiff matrix 
around early PDAC cells [242, 564, 565]

ECM Supporting cancer cell proliferation and migration [566, 567] Cancer-cell-derived fibrillar collagen and type I collagen restrains 
tumor growth [568, 569]
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their ability to perform their intended functions and 
the presence of inhibitory receptors like PD-1, T-cell 
immunoglobulin and mucin domain 3 (TIM-3), and 
lymphocyte-activation gene 3 (LAG-3), which hin-
der their activity. Additionally, there are changes to 
their gene expression patterns. According to a model 
studying pancreatic cancer, the signaling of the IL-18 
receptor is responsible for regulating the exhaustion of 
tumor-targeting CD8+ T lymphocytes. This occurs by 
activating the IL-2/STAT5/mTOR pathway [62]. Neo-
adjuvant chemotherapy exhibits a reduction in the pop-
ulation of CD8+ T cells with functional exhaustion in 
patients affected by PDAC [63].

T helper (TH) cells: TH1, TH2, and  TH17  Type 1 T 
helper (TH1) TH1 cells, designated as a subgroup among 
TH cells, emerge from the activation of naïve CD4+ T cells 
by antigen-presenting cells (APCs) under the influence of 
IL-12. TH1 cells strengthen the immune response of type 
I immune cells by promoting the activation, proliferation, 
and mobilization of CTLs, M1 macrophages, and NK 
cells. This immune reaction aids in defending the body 
against intracellular infections and tumor cells. These cells 
express the T-box transcription factor TBX21 (T-bet) and 
are responsible for generating anti-cancer elements such 
as IFN-γ, IL-2, and TNF-α [64]. Nonetheless, in the case 
of PDAC patients, the impact of TH1 cells remains uncer-

Fig. 1  Tumor microenvironment (TME) in pancreatic cancer. ADCC: Antibody-dependent cellular cytotoxicity; APC: Antigen-presenting cell; CAF: 
Cancer-associated fibroblast; CTL: Cytotoxic T lymphocyte; DC: Dendritic cell; DLL: Delta like canonical notch ligand; ECM: Extracellular matrix; 
GM-CSF: Granulocyte–macrophage colony-stimulating factor; HGF: Hepatocyte growth factor; IDO: Indoleamine 2,3-dioxygenase; IFNs-I: Type I 
interferons; IFN-γ: Interferon-gamma; IL-2: Interleukin 2; MDSC: Myeloid-derived suppressor cell; MMP: Matrix metalloproteinase; MQ: Macrophage; 
MSC: Mesenchymal stromal cell; NK: Natural killer; NO: Nitric oxide; PCSC: Pancreatic cancer stem cell; PDAC: Pancreatic ductal adenocarcinoma; 
PDGF: Platelet-derived growth factor; PSC: Pancreatic stellate cell; STING: Stimulator of interferon genes; TAM: Tumor-associated macrophage; TAN: 
Tumor-associated neutrophil; TGF-β: Transforming growth factor beta; Th1: Type 1 T helper; TNF-α: Tumor necrosis factor alpha; Treg: Regulatory T 
cell; VEGF: Vascular endothelial growth factor
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tain due to the possibility that IFN-γ could induce pro-
tumorigenic consequences [65]. This is because IFN-γ has 
the potential to elevate the expression of PD-L1 in cancer 
cells, thereby hindering the effectiveness of anti-tumor 
immunity [66]. Murine models of PDAC demonstrate that 
TH1 cells play a crucial role in providing defense against 
tumors, while in human cases, these cells are linked with 
extended survival [67].

Microbial dysbiosis and the disruption of epithelial 
barrier function are considered inducing factors in the 
neoplastic transformation [68, 69]. In this regard, the 

contribution of the microbiome to the development of 
pancreatic cancer and drug resistance of PDAC has been 
recognized [70, 71]. Bacterial ablation is associated with 
immunogenic reprogramming of the TME, promoting 
TH1 differentiation of CD4+ T cells [70].

Type 2 T helper (TH2) GATA binding protein 3 
(GATA3) is responsible for defining specialized TH2 
cells, known for their proficiency in combating helminths 
and their involvement in allergies and asthma. These dif-
ferentiated cells secrete interleukin IL-4, IL-5, and IL-13. 
Interestingly, the differentiation of TH1 cells is hindered 

Fig. 2  Crosstalk between pancreatic ductal adenocarcinoma (PDAC) cells and key components of tumor microenvironment (TME). Arg1: Arginase 
1; BMPs: Bone morphogenetic proteins; Breg: Regulatory B cell; BTK: Bruton’s tyrosine kinase; CAFs: Cancer-associated fibroblast; CSF1: Colony 
stimulating factor 1; CTGF: Connective tissue growth factor; DC: Dendritic cell; FAP: Fibroblast activation protein; HIF: Hypoxia-inducible factor; IDO: 
Indoleamine 2,3-dioxygenase; iNOS: Inducible nitric oxide synthase; LIF: Leukemia inhibitory factor; M-CSF: Macrophage colony-stimulating factor; 
MDSC: Myeloid-derived suppressor cell; MHC: Major histocompatibility complex; MSCs: Mesenchymal stem/stromal cells; NK: Natural killer; Pin1: 
Peptidylpropyl isomerase; ROS: Reactive oxygen species; SPP-1: Osteopontin/secreted phosphoprotein 1; TAM: Tumor-associated macrophage; TAN: 
Tumor-associated neutrophil; TCR: T cell receptor; TGF-β: Transforming growth factor beta; TIGIT: T cell immunoreceptor with Ig and ITIM domains; 
TNF: Tumor necrosis factor; Treg: Regulatory T cell; VEGF: Vascular endothelial growth factor
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by TH2 cells, and vice versa. There has been an associa-
tion made between the activation of DCs and the induc-
tion of TH2 responses, and it is specifically linked to the 
thymic stromal lymphopoietin (TSLP), which is classi-
fied as a cytokine similar to IL-7 [64]. The prevalence of 
GATA3+ TH2 cell infiltration surpasses the occurrence 
of T-bet+ TH1 cell infiltration in pancreatic cancer. The 
development of the disease is associated with a higher 
ratio of GATA3+/T-bet+ tumor-infiltrating lymphocytes 
(TILs) [72, 73]. IL-4 enhances the growth of pancreatic 
cancer cells in humans [74]. Additionally, a worse OS rate 
is observed in patients suffering from PDAC character-
ized by a higher concentration of TH2 cytokines in their 
bloodstream [74]. Likewise, poor survival is linked with 
TH2-induced inflammation in individuals suffering from 
pancreatic cancer [75]. However, a study reported that 
the inhibition of pancreas cancer growth occurs when 
TH2 cells enhance the anti-tumorigenic responses of 
macrophages and eosinophils [76].

Given the fact that ligation of Toll-like receptor 4 
(TLR4) could potentially heighten inflammation in the 
pancreas, it can be postulated that the activation of TLR4 
may play a pivotal role in the onset of pancreatic cancer. 
An investigation demonstrated that DCs evoke CD4+ 
TH2 cells for pancreatic antigens, thereby advancing 
the transition from pancreatitis to cancer. Moreover, the 
restraint of MyD88 is accountable for inducing these out-
comes [77].

Type 17 T helper (TH17) The commitment to the 
TH17 cell lineage begins with the action of TGF-β and 
IL-6, and this lineage is sustained by IL-23 while being 
strengthened by the autocrine production of IL-21. The 
crucial factors RORγt and STAT3 are necessary for the 
development of TH17 cells and the expression of IL-17 
cytokines. TH17 cells play an important role in main-
taining mucosal barriers and contributing to pathogen 
clearance at mucosal surfaces [64]. Elevated quantities of 
TH17 lymphocytes have been observed in multiple types 
of human malignancies, such as ovarian, pancreatic, kid-
ney, and gastric cancer [78–80]. According to several 
investigations, the existence of augmented levels of TH17 
cells in tumor tissues or peripheral blood is linked to the 
progression of cancer [81, 82]. The aggressive form of 
the disease was found to be associated with a significant 
increase in the quantity of IL-17 produced by CD4+ TILs 
[83]. Conversely, alternative studies propose contrast-
ing results and indicate that TH17 cells might possess a 
strong anti-tumor impact, as they are present in individ-
uals with restricted disease or those who have survived 
for an extensive period of time [84, 85]. Indeed, there is 
an ongoing debate regarding the involvement of CD4+ 
TH17 cells in cancer [86].

IL-17A plays a significant role in PDAC by assisting 
in the early stages of cancer development [87, 88], con-
trolling the characteristics of PDAC cancer stem cells 
(CSCs) [89], advancing tumor growth [83, 88, 90], and 
causing resistance to checkpoint inhibitors through the 
formation of NETs [91]. Additionally, recent studies have 
revealed that IL-17A affects the transcriptome of can-
cer-associated fibroblasts (CAFs) [92]. Prominently, the 
induction of CAFs that are inflammatory is promoted by 
T cells that produce IL-17A, thus contributing to the pro-
gression of PDAC [93]. The promotion of tumorigenesis 
is facilitated by the upregulation of B7-H4 through IL-17/
IL-17 receptor signaling in the pancreatic epithelium 
[94]. These findings accentuate the role of TH17 cells in 
favor of pancreatic cancer progression.

Contrary to the aforementioned findings, there exist 
findings demonstrating that TH17 cells act against tumor 
cells. Enhancing survival in a murine model of pancre-
atic cancer is observed through the promotion of TH17 
cell development within the TME [95]. All in all, the role 
of TH17 and IL-17A in pancreatic cancer is not yet fully 
understood, with evidence suggesting both pro-tumo-
rigenic and anti-tumorigenic effects. Further research 
is needed to elucidate the mechanisms through which 
IL-17A influences pancreatic cancer progression and to 
determine the potential therapeutic implications of tar-
geting IL-17A in this disease.

Regulatory T cells (Tregs)  Tregs express CD4, CD25, 
and a chief transcription factor, called forkhead box P3 
(FOXP3). The prevention of autoimmune disorders, the 
limitation of chronic inflammatory diseases, and the 
maintenance of peripheral tolerance all hinge upon Tregs. 
Furthermore, Tregs play a crucial role in the tumor envi-
ronment, influencing cancer progression and immune 
responses [96]. Tregs can exert their suppressive effects 
through various mechanisms, whether by direct contact 
or independently. These mechanisms include: The pro-
duction of suppressive cytokines such as TGF-β, IL-10, 
and IL-35. The engagement of inhibitory immune check-
points and enzymes, such as cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), PD-1, LAG-3, TIM-3, T 
cell immunoreceptor with Ig and ITIM domains (TIGIT), 
CD39, CD73, and IDO. The induction of direct cytotoxic-
ity through the release of perforin/granzyme. The disrup-
tion of T effector cell activity through metabolic altera-
tions, specifically IL-2 consumption. The initiation of a 
tolerogenic environment by inducing tolerogenic DCs, 
which then facilitates T cell exhaustion [97–99].

In the peripheral blood and TME, individuals suf-
fering from pancreatic cancer exhibit an increased 
frequency of Tregs [100, 101]. Tregs play a part in con-
trolling the immune response as PDAC advances from 
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a premalignant state to a cancerous stage. The presence 
of elevated Tregs is linked to a more unfavorable prog-
nosis in PDAC [102]. Tregs possess the ability to restrict 
the proliferation and immunogenicity of DCs in pancre-
atic cancer. Additionally, the stimulation of anti-tumor 
immunity in pancreatic cancer is achieved by diminishing 
Tregs in a manner that relies on CD8+ -activated T-cells 
[103]. Contrariwise, the depletion of Tregs shapes the 
TME, leading to an acceleration of pancreatic carcino-
genesis [104]. There is an expansion of pro-inflammatory 
and immunosuppressive Tregs which simultaneously 
express RORγt and FOXP3 [105]. The underlying ration-
ale for this dual functionality can be elucidated as follows: 
the presence of plasticity within the pancreatic cancer 
microenvironment enables the Tregs to exhibit the char-
acteristic phenotype of TH17 cells.

Role of NK cells in TME
NK cells, which are a distinct type of immune cell found 
in the innate immune system, are believed to play a role 
in monitoring and controlling tumor growth and tumor 
immunosurveillance [106, 107]. Both preclinical and clin-
ical studies have demonstrated a link between decreased 
NK cell activity and an increased susceptibility to cancer 
as well as a higher chance of cancer spread and metasta-
sis [108–110]. Researchers have identified several media-
tors, including indoleamine 2, 3-dioxygenase (IDO), 
matrix metalloproteinases (MMPs), TGF-β, and IL-10, 
that contribute to immune suppression in pancreatic 
cancer, impeding the ability of NK cells to recognize and 
eliminate tumor cells [28].

The survival of individuals with PDAC was found to 
be positively correlated with the relative frequency of 
NK cells in their blood. However, PDAC-associated NK 
cells demonstrated lower cytotoxicity compared to those 
of healthy participants [111]. Patients with PDAC were 
observed to have diminished expression of NKG2D, 
NKp46, and NKp30 on their peripheral NK cells, which 
was connected to the patient’s stage and histological 
grade [112]. Furthermore, the decreased expression of 
CD96 and CD226 (key regulators of NK cell function) 
on NK cells was linked to the development of cancer in 
PDAC patients [113]. Additionally, the evasion of NK 
cells in human pancreatic cancer is associated with the 
expression of Igγ-1 chain C region (IGHG1). Mechanis-
tically, the presence of IGHG1 suppressed the cytotoxic 
activity of NK cells by inhibiting antibody-dependent 
cellular cytotoxicity (ADCC) [114]. Moreover, impaired 
localization resulting from the absence of CXCR2 and 
impaired tumor cytotoxicity contributed to NK cell 
immune evasion in patients with pancreatic cancer [115]. 
The function of NK cells is inhibited in the microenviron-
ment of human PDAC by activated pancreatic stellate 

cells [116]. In pancreatic cancer, the orchestration of 
anti-tumor immune responses through CXCL8 (IL-8) by 
radiotherapy is reliant on NK cells. In xenografted mice, 
the use of high-dose radiotherapy in conjunction with 
adoptive NK cell transfer resulted in enhanced tumor 
control compared to using either treatment alone, indi-
cating that combining NK cells with radiotherapy is a 
logical approach for cancer therapy [117]. Inhibiting the 
protein growth arrest specific 6 (Gas6), which is gener-
ated by tumor-associated macrophages (TAMs) and 
CAFs within the TME of PDAC, reverses the process of 
epithelial-mesenchymal transition (EMT) and enhances 
the activation of NK cells [118].

Role of DCs in TME
DCs, which are crucial for effective anti-tumor T cell 
responses, are scarce in the pancreatic tumor environ-
ment and are usually found at the tumor edges [119]. An 
increased presence of type-1 conventional DCs (cDC1s) 
within the entire tumor area and the tumor stroma was 
notably linked to improved disease-free survival (DFS). 
Furthermore, a rise in the number of cDC2s infiltrating 
the tumor’s epithelial layer was associated with enhanced 
DFS and OS [120]. Furthermore, patients with pancre-
atic cancer have been shown to have lower levels of DCs 
in their blood [121]. Interestingly, higher levels of cir-
culating DCs are linked to better survival rates in these 
patients [121, 122]. Additionally, the surgical removal 
of the pancreatic tumor has been found to enhance the 
function of blood DCs, suggesting that the tumor itself 
may influence immune function [123, 124].

Cytokines originating from tumors, including TGF-
β, IL-10, and IL-6, have been identified as factors that 
inhibit the survival and growth of DCs [125]. MDSCs 
generate nitric oxide (NO) and obstruct the activation 
of DCs [126]. In pancreatic tumors, T-cell dysfunction 
is common, and improving DC-mediated T-cell activa-
tion could be key for treatment. Dysfunction of cDC1s in 
PDACs leads to unresponsiveness to checkpoint immu-
notherapy. A study of 106 samples from PDAC patients 
showed decreased levels of circulating cDC2s, which was 
linked to poor prognosis. Elevated levels of IL-6 in PDAC 
patients were found to negatively impact DC numbers 
and differentiation. This suggests that inflammatory 
cytokines suppress DCs, impairing antitumor immunity 
[127].

DCs control T cells via cross-priming (cross-presen-
tation). It is an open question in PDAC whether boost-
ing the cross-priming capacity of DCs can enhance the 
T cells’ anti-tumor activity and remodel the TME. In the 
process of cross-priming, foreign antigens are absorbed 
by APCs, processed, and then displayed on MHC-I. This 
sequence of events ultimately triggers the activation of 
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CD8+ T-cell responses [128]. Research has shown that 
the cross-priming of cDC1 is not only necessary for start-
ing CD8+ T-cell responses as tumors progress, but it also 
has a pivotal role in the reactivation of tumor-specific 
CD8+ T cells through immunotherapy, leading to tumor 
shrinkage [129]. However, during the development of 
pancreatic cancer, the maturation of cDC1 is increasingly 
and universally hindered [130], impairing cross-presenta-
tion machinery. As a first proof of concept, a study tested 
whether cross-presentation by DCs could activate pan-
creatic tumor-specific CD8+ T cells in vaccinated pancre-
atic cancer patients. The process of in vivo cross-priming 
leads to the activation of mesothelin (MSLN)-specific 
CD8+ T cells in patients who received a vaccine for allo-
geneic pancreatic tumors. Also, the vaccine recruits DCs 
that cross-prime and generate MSLN-specific CD8+ T 
cells, which are capable of destroying tumor cells express-
ing MSLN [131]. All in all, the immunosuppressive pan-
creatic TME leads to the disruption of the cross-priming 
ability of DCs. Thus, finding solutions to reinvigorate 
the DCs to cross-prime tumor antigens paves the way 
for developing novel therapies that boost the anti-tumor 
immune response mediated by CD8+ T cells.

Role of macrophages in TME
Monocytes in circulation are drawn towards the TME 
and transform into macrophages, called TAMs, when 
exposed to cytokines, chemokines, and various stimuli, 
including high levels of concentration of hypoxia and 
lactic acid [132–134]. Several studies revealed that the 
CCL2/CCR2 and CXCL17/CXCR8 axes are involved 
in recruiting monocytes into the site of inflammation 
and tumor [135, 136]. TAMs display diverse polariza-
tion states called functional states. A wide range of TAM 
subpopulations has been discovered and is continuously 
growing. They are commonly classified as “M1” and “M2” 
macrophages. M1 macrophages, as typically described, 
generate pro-inflammatory cytokines with mainly anti-
neoplastic impacts, whereas M2 macrophages produce 
anti-inflammatory signals that potentially accelerate 
tumor development [137–140]. The presence of tissue-
resident macrophages in PDAC is a result of their origin 
from embryonic hematopoiesis, and these macrophages 
play a crucial role in advancing the progression of tumors 
[141].

A range of scientific investigations on various tumor 
types, including pancreatic cancer, have demonstrated 
a contrary association between the invasion of TAMs 
and the prognosis of patients [133, 142–144]. Multiple 
research groups have confirmed that TAMs are respon-
sible for fostering immunosuppression, angiogenesis, 

and the growth of tumors in mouse models of PDAC. 
Their mechanism involves the release of growth fac-
tors like vascular endothelial growth factor (VEGF), 
cytokines, and proteases [145–149]. Within the PDAC 
microenvironment, the presence of granulocyte–mac-
rophage colony-stimulating factor (GM-CSF) and 
lactate plays a crucial function in the polarization of 
TAMs, which are molecules discharged from cancer 
cells in a manner reliant on a mutant KRAS. A study 
has shown that TAM gene expression and metabo-
lism are adversely affected by GM-CSF, disrupting 
their regulation through PI3K-AKT pathway signaling 
[150]. Collagen turnover in pancreatic cancer causes 
metabolic reprogramming of TAMs, leading to the 
promotion of fibrosis and extracellular matrix (ECM) 
remodeling [151].

The effectiveness of treatment in PDAC can be sig-
nificantly reduced by TAMs. TAMs impact the func-
tion of cytidine deaminase, which is a critical enzyme 
in the metabolism of gemcitabine. This, in turn, leads to 
resistance to gemcitabine-based treatments in animal 
models of PDAC [152]. In mice models of PDAC, the 
suppression of C–C chemokine receptor type 2 (CCR2) 
promotes T-cell infiltration, enhances the efficacy of 
radiotherapy and chemotherapy, and diminishes metas-
tasis by preventing the migration of monocytes to the 
TME [153–155]. Also, the combination of CCR2 and 
CXCR2 inhibitors can interrupt the accumulation of 
CCR2+ TAMs and CXCR2+ tumor-associated neutro-
phils (TANs) in the TME and enhance the effectiveness 
of chemotherapy in treating PDAC [147]. Moreover, 
the expression of CXCR2 is also reported on TAMs 
[156, 157]. For example, in Pten-null prostate tumors, 
CXCR2+ TAMs are abundant. Activating CXCR2 shifts 
these macrophages to an anti-inflammatory state, but 
blocking CXCR2 with a selective antagonist repro-
grams them to a pro-inflammatory state [156]. Also, 
in pancreatic cancer mouse models, CXCR2+CD68+ 
macrophages (M2 phenotype) are recruited to the TME 
by tumor-derived CXCL8, where they contribute to 
local immunosuppression, thereby reducing the effec-
tiveness of PD-1 blockade therapy [157]. Thus, block-
ing the CXCR2 pathway offers a therapeutic option 
for enhancing cancer immunotherapy in PDAC. In a 
study, the tumor burden, M2 macrophage polarization, 
and migration are reduced, and the response to immu-
notherapy with anti-PD-1 is enhanced by ladarixin, a 
CXCR1/2 dual-inhibitor [158]. In pancreatic cancer 
models, the reprogramming of TAMs through colony-
stimulating factor 1 (CSF1)/colony-stimulating factor 1 
receptor (CSF-1R) blockade enhances the response to 
T-cell checkpoint immunotherapy [159].
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Role of myeloid‑derived suppressor cells (MDSCs) in TME
MDSCs, a diverse group of immature myeloid cells, 
are commonly categorized into two types: monocytic 
(M-MDSC) and granulocytic (polymorphonuclear 
[PMN]-MDSC). M-MDSCs closely resemble monocytes 
in terms of their phenotype and physical characteris-
tics, while PMN-MDSCs are equivalent to neutrophils. 
MDSCs play a paramount role in cancer progression 
by promoting immunosuppression, shaping the TME, 
and facilitating the formation of pre-metastatic niches. 
Within the microenvironment of human tumors, MDSCs 
are abundant, and typically, PMN-MDSCs make up more 
than 80% of all MDSCs associated with tumors [160, 
161]. Furthermore, in the circulation of the portal vein, 
the survival and immunoresistance of PDAC circulating 
tumor cells are supported by influencing the differentia-
tion of MDSCs [162].

The levels of MDSCs in human PDAC are associated 
with the stage of cancer [143, 163, 164]. GM-CSF, pro-
duced by tumor cells at the early stages of cancer, plays 
a crucial role in the recruitment and differentiation of 
MDSCs, as confirmed by studies on genetically modified 
mice [165, 166]. CD73 causes the acceleration of pan-
creatic cancer pathogenesis by inducing T cell suppres-
sion through GM-CSF/MDSC [167]. Additionally, the 
receptor for advanced glycation end products (RAGE) 
facilitates the accumulation of MDSCs and promotes 
pancreatic carcinogenesis [168]. High expression levels of 
Yes-associated protein (YAP) or MDSC-associated genes 
indicate poor survival in PDAC patients. YAP expression 
levels are significantly correlated with a gene signature 
associated with MDSCs in primary human PDAC [169]. 
Following the mutation of KRAS, the transcription reg-
ulator YAP, as a downstream molecule of the oncogenic 
KRAS, plays a crucial role in the neoplastic development 
leading to PDAC [170]. The interaction between YAP/
TAZ (downstream effectors of the Hippo pathway) and 
TEAD proteins facilitates the cancer-promoting func-
tions of YAP. Thus, small-molecule inhibitors like GNE-
7883 and IAG933, which block the interactions between 
YAP/TAZ and TEAD, can disrupt oncogenic YAP/TAZ 
signaling in RAS-altered tumors like PDAC [171, 172]. 
Within the PDAC microenvironment, CD200, a regula-
tor of myeloid cell function, is upregulated. Moreover, 
MDSCs from PDAC patients show increased expression 
of the CD200 receptor. CD200 expression may regulate 
the development of MDSCs in the microenvironment of 
PDAC [173].

MDSCs control the inhibition of tumor activity in 
CD4+ and CD8+ T lymphocytes. T-cell activation is 
repressed by PD-L1, which is upregulated by MDSCs 
through the PD-L1/PD-1 interaction [174]. Furthermore, 
in an interleukin-10 (IL-10)-dependent manner, MDSCs 

can limit T-cell activity by promoting the growth of 
immune-suppressive regulatory T cells (Tregs) through 
the release of TGF-β and interferon-gamma (IFN-γ) [175, 
176]. MDSCs play a significant role in both primary and 
acquired resistance to cancer immunotherapy [177]. In 
PDAC, reducing MDSCs enhances the accumulation 
of stimulated CD8+ T lymphocytes within the tumor, 
leading to cell death in tumor epithelial cells and remod-
eling of the tumor stroma [178]. Strategic MDSC target-
ing has been observed to effectively revitalize cytotoxic 
anti-tumor responses in PDAC cases. This mechanism 
induces the repolarization of TAMs and instigates the 
activation of the inflammasome machinery, thereby lead-
ing to the production of IL-18. The subsequent upregula-
tion of IL-18 notably amplifies the functional capabilities 
of T-cells and NK cells within the TME [179]. In conclu-
sion, targeting MDSCs presents a promising approach 
to the treatment of PDAC, and it has shown positive 
effects in revitalizing cytotoxic anti-tumor responses and 
enhancing the functional capabilities of T cells and NK 
cells. Therefore, further research into MDSC targeting 
could potentially lead to more effective therapeutic strat-
egies for PDAC.

Role of neutrophils in TME
Neutrophils act as the first line of protection in the body 
against infection and respond to a broad range of pro-
inflammatory signals and alarmins, such as cancer cells. 
These cells possess adaptability or plasticity, allowing 
them to adjust their actions when faced with different 
inflammatory triggers [180]. Because of the inflamma-
tory state of the TME in PDAC, tumor cells secrete pro-
inflammatory substances like tumor necrosis factor-alpha 
(TNF-α) and IL-12, causing the recruitment of neutro-
phils to the location of the tumor [181]. Factors secreted 
by tumor cells can attract neutrophils. Neutrophils can 
be drawn in by IL-1, CD200, CXCR2 ligands (like CXCL1 
[in human and mouse], CXCL2 [in human and mouse], 
CXCL5 [in human], and CXCL8 [in human]) [182], GM-
CSF (in human), granulocyte colony-stimulating fac-
tor (G-CSF; in human and mouse), and various other 
substances. These factors are released by tumor cells to 
attract neutrophils [182–184]. There exists a notable cor-
relation between shortened survival and worse prognosis 
in patients with PDAC and increased quantities of neu-
trophils infiltrating the TME [60, 185].

The roles of neutrophils in the TME vary depending on 
their polarization states, either promoting or suppressing 
cancer growth. TME attracts TANs through the action 
of cytokines and chemokines. TANs can be categorized 
based on their activation and cytokine profile, which 
determines their impact on the growth of tumor cells. 
N1 TANs exhibit a beneficial effect on tumor suppression 
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either through direct cytotoxicity or indirect means. N2 
TANs, on the other hand, promote immunosuppres-
sion, tumor expansion, angiogenesis, and metastasis 
by causing DNA instability and releasing cytokines and 
chemokines [186]. Recently, a new type of TANs called 
T3 neutrophils has been discovered. These T3 neutro-
phils stimulate angiogenesis, thus improving the abil-
ity of pancreatic tumors to survive in low-oxygen and 
nutrient-deficient environments [187]. Identifying the 
plasticity of N1/N2 neutrophils has been deemed a criti-
cal prognostic marker, potentially demonstrating TME 
and immune evasion in PDAC patients [188]. Neutro-
phils with anti-tumor properties can directly eliminate 
tumor cells through the production of reactive oxygen 
and nitrogen species. Additionally, they have the ability 
to activate T cells and attract pro-inflammatory M1 mac-
rophages. Conversely, neutrophils that aid tumor devel-
opment secrete MMP-9, facilitating the growth of new 
blood vessels and the dissemination of tumor cells. These 
neutrophils can also hinder the function of NK cells 
while recruiting anti-inflammatory M2 macrophages 
and Tregs. Further, suppressor neutrophils, referred to as 
PMN-MDSCs, as well as other pro-tumoral neutrophils, 
impede the activity of CD8+ T cells [24, 180]. The growth 
of pancreatic cancer is reduced and the effectiveness of 
ICB treatment with anti-PD-1 is enhanced through the 
inhibition of TANs by lorlatinib [189]. The metastasis 
of pancreatic cancer is facilitated by neutrophils that 
infiltrate as a result of chemotherapy. This is achieved 
through the activation of the Gas6/AXL signaling path-
way [184].

Neutrophils differentiate themselves from other 
immune cells by producing neutrophil extracellular 
traps (NETs), consisting of DNA fibers and proteolytic 
enzymes released to counteract infections [190]. Never-
theless, recent studies have suggested that NETs might 
contribute to cancer metastasis. By examining a PDAC 
mouse model, researchers investigated the effects of 
DNase I, a NET inhibitor, and observed a reduction in 
liver metastasis [191]. In the PDAC milieu, neutrophil 
recruitment and NETosis are triggered by IL-17 [91]. The 
activation of the IL-1β/epidermal growth factor receptor 
(EGFR)/extracellular-signal-regulated kinase (ERK) path-
way is prompted by NETs, resulting in the promotion of 
migration, invasion, and EMT of pancreatic cancer cells 
[192].

Role of B lymphocytes in TME
A study found that a high density of B cells within ter-
tiary lymphoid tissues of human PDAC is associated with 
longer survival rates, germinal center immune signature, 
and CD8+ TILs infiltration [193]. In the TME of PDAC, 
the predominant B cells are plasma cells and memory 

B cells, which exhibit high levels of CD27 expression. 
However, numerous studies have discovered that the 
upregulation of CXCL13, triggered by IL-1β and type I 
interferons (IFNs-I), leads to an increased influx of regu-
latory B cells (Bregs) that perform immunosuppressive 
activities [194–196]. Bregs can activate STAT3 signaling 
within themselves and CD8+ T cells via IL-35. This acti-
vation leads to two distinct effects: firstly, the transcrip-
tional regulator BCL-6 experiences an increase in naive 
B cells, which interferes with the transformation of B 
cells into plasma cells; secondly, the operational capac-
ity of CTLs is suppressed [197, 198]. Recent research 
discovered that the resistance to the stimulator of inter-
feron genes (STING) agonists in PDAC is attributed to 
the induction of IL-35+ B cell proliferation. The systemic 
application of anti-IL-35 and STING agonist (cyclic 
guanosine monophosphate-adenosine monophosphate 
[cGAMP]) can work together to suppress the amplifi-
cation of Bregs and boost the effectiveness of NK cells 
[199]. A clinical trial showed that ibrutinib (a Bruton 
tyrosine kinase inhibitor) plus nab-paclitaxel/gemcit-
abine did not improve OS or progression-free survival 
(PFS) for patients with PDAC [200].

The role of non‑immune cells
Within the microenvironment of pancreatic tumors, 
there exists a variety of non-immune cells. This section 
delves into a discussion about the most significant among 
them.

Pancreatic cancer stem cells (PCSCs)
PCSCs are a subset of cancer cells that exhibit stem cell-
like characteristics, including the ability to self-renew 
and initiate tumorigenesis. They are believed to contrib-
ute to the initiation, metastasis, and recurrence of PDAC, 
and are also responsible for resistance to chemotherapy 
and radiation. PCSCs express several markers, including 
CD133, CD24, CD44, microtubule-associated double-
cortin-like kinase 1 (DCLK1), CXCR4, epithelial-specific 
antigen (ESA), OCT4, nestin, and ABCB1 [201, 202]. In 
PDAC, stem cells display unusual activation of multiple 
signaling pathways that are generally active in embryonic 
growth. This irregular signaling via mechanisms such as 
Hedgehog, Wnt, Notch, JAK-STAT, Nodal/Activin, and 
Hippo enables PCSCs to preserve their self-renewal abil-
ity, develop resistance to chemotherapy and radiation, 
enhance their capacity to induce tumors, and spread to 
other parts of the body [202]. A specific subpopulation of 
CSCs, identified by CD133 and CXCR4 markers, is cru-
cial for tumor metastasis in human pancreatic cancer. 
Depleting this subpopulation can significantly reduce 
metastasis. Modulating the CXCL12/CXCR4 axis could 
be a potential strategy to inhibit CSC metastasis [203]. 
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The E2F1/4-pRb/RBL2 axis, which undergoes deregu-
lation following a KRAS mutation, is instrumental in 
maintaining equilibrium among signaling pathways con-
trolling stem cell-like characteristics of CSCs. This axis 
governs the production of Wnt ligands, thereby manag-
ing the self-renewal, resistance to chemotherapy, and 
invasive nature of PCSCs, along with the proliferation of 
fibroblasts [204]. This axis might be a therapeutic target 
for eradicating PCSCs.

Mesenchymal stem/stromal cells (MSCs)
MSCs are a heterogeneous group of progenitor cells that 
transform into tumor-associated mesenchymal stem 
cells (TA-MSCs) within TME, influencing tumor growth, 
metastasis, angiogenesis, and treatment responses 
through the secretion of various factors, and their immu-
nosuppressive properties could be targeted to enhance 
anti-tumor immunity [205]. First of all, TA-MSCs can 
release CCL2, CCl7, and CCL12 to recruit monocytes, 
macrophages, MDSCs, and neutrophils [206]. They also 
produce CXCL9 [207], CXCL10 [207], CXCL11 [207], 
inducible nitric oxide synthase (iNOS) [207], and IDO 
[208], resulting in the inhibition of effector T cells. Mech-
anistically, TA-MSCs produce large amounts of pro-
metastatic and pro-tumor factors such as neuregulin-1 
[209], VEGF [210], bone morphogenetic proteins [211], 
TGF-β [212], CCL5 [213], CXCL10 [214], CXCL12 [215], 
CD81-positive exosomes [216], and MMPs [217]. Also, 
they can adjust tumor cell’s response to chemotherapy by 
generating factors like polyunsaturated fatty acids [218], 
PDGF [219], hepatocyte growth factor [220], NO [221], 
and exosomes carrying these factors and microRNAs 
[222, 223]. In patients with pancreatic cancer, the pres-
ence of MSCs in the peripheral blood is notable as they 
are thought to migrate to the tumor mass [224]. Evidence 
suggests that a significant portion of CAFs may originate 
from MSCs, which can differentiate and express CAF 
markers, such as vimentin and FAP when exposed to 
conditioned media from various human cancer cell cul-
tures like pancreatic cancer [225]. In a pancreatic cancer 
tumor model, VEGF is secreted by bone marrow mesen-
chymal stem cells (BM-MSCs) that are co-injected with 
tumor cells, which aids in the promotion of tumor angio-
genesis [210]. TA-MSCs can produce NO, which induces 
resistance to etoposide in pancreatic tumor cells and 
forms a positive feedback loop with IL-1β, contributing 
to chemotherapy resistance [221].

Cancer‑associated fibroblasts (CAFs)
CAFs are a hodgepodge and heterogeneous group of 
stromal cells that produce ECM proteins. These cells, 
typically spindle-shaped, express activated fibroblast 
markers like fibroblast activation protein (FAP) and 

α-smooth muscle actin. They are associated with vari-
ous tumor-promoting activities, including tumorigen-
esis, angiogenesis, immunosuppression, and metastasis 
[226, 227]. CAFs in PDAC can originate from diverse 
cells like adipocytes, pericytes, bone marrow-derived 
macrophages, endothelial/epithelial cells, mesothelial 
cells, MSCs, resident tissue fibroblasts, and pancreatic 
stellate cells (PSCs) [228]. In PDAC stroma, CAFs inter-
act with cancer cells through both direct cell-to-cell 
and paracrine mechanisms. CAFs are heterogeneous 
and include three subtypes: myofibroblastic, inflamma-
tory, and antigen-presenting. Myofibroblastic CAFs are 
induced by cancer cells through TGF-β, and they create 
a mechanical barrier that can both promote and inhibit 
tumor growth. Inflammatory CAFs, located away from 
the tumor cells, are reprogrammed by IL-1 to gener-
ate cytokines and chemokines (like IL-6), which fur-
ther stimulate cancer growth. Lastly, antigen-presenting 
CAFs express MHC class II molecules and modulate the 
immune cells in the stroma. These diverse interactions 
contribute to the complex dynamics of the PDAC stroma 
[12]. In the pancreatic environment, CAFs play a signifi-
cant role in creating an immune-suppressive milieu by 
releasing substances like prostaglandin E2 (PGE2), IL-1, 
IL-6, CXCL2, CXCL12, and CXCL8 [35, 229–231]. Not 
only do these fibroblasts attract and control immune-
suppressing cells, but they also hinder the anti-cancer 
activities of CD8+ T cells by increasing the expression of 
inhibitory immune checkpoints [230]. Recently, a study 
identified three distinct metastasis-associated fibroblasts 
(MAFs) populations, with the generation of pro-meta-
static myofibroblastic-MAFs (myMAFs) being critically 
dependent on macrophages. These myMAFs are induced 
through a STAT3-dependent mechanism and in turn 
promote an immunosuppressive macrophage phenotype, 
inhibiting cytotoxic T-cell functions. Blocking STAT3 
pharmacologically or depleting it in myMAFs restores 
an anti-tumor immune response and reduces metastasis, 
providing potential targets to inhibit PDAC liver metas-
tasis [232].

Pancreatic stellate cells (PSCs)
Approximately 7% of pancreatic cells are made up of 
PSCs, which are located in both the exocrine and endo-
crine regions of the pancreatic tissue. The interaction 
between PSCs and pancreatic cancer cells promotes 
tumor progression. Mechanistically, PSCs release several 
growth factors/mediators (such as insulin-like growth 
factor 1 [IGF-1], basal fibroblast growth factor [bFGF], 
platelet-derived growth factor [PDGF], stromal cell-
derived factor 1 [SDF-1], and ECM proteins) and MMPs, 
which provoke the proliferation, migration, and invasion 
of pancreatic tumor cells. In response, pancreatic cancer 
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cells produce TGF-β1, PDGF, and VEGF, which in turn 
stimulate PSCs to increase the migration and prolif-
eration of CAFs and the production of ECM [233, 234]. 
Indeed, a key characteristic of PDAC is a desmoplastic 
reaction, seen in both primary and metastatic tumors. 
This reaction is caused by the activation of PSCs, by 
cancer cells, leading to fibrosis around the tumor [235, 
236]. This fibrosis (also known as desmoplasia) forms 
a mechanical barrier around the tumor cells, hinder-
ing proper vascularization, limiting the effectiveness of 
chemotherapy, and resulting in poor immune cell infiltra-
tion [237]. PSCs serve as a significant source of MMP-2 
and they hasten the advancement of the tumor in a 
murine xenograft model [238]. Also, TGF-β1 secreted by 
PSCs promotes stemness and tumourigenicity in pancre-
atic cancer cells through L1CAM downregulation [239]. 
Overall, PSCs are linked to ECM production and remod-
eling, intra-tumoral hypoxia, resistance/barrier to chem-
otherapy, proliferation, invasion, migration, reduced 
apoptosis, angiogenesis, immune suppression, and pain 
factors [234].

Endothelial cells
PDAC often has abnormal blood and lymphatic vessels, 
leading to a hostile microenvironment characterized by 
high acidity, hypoxia, aberrant metabolism, and immune 
evasion. In response, tumors stimulate angiogenesis, pro-
moting tumor growth and metastasis [46, 240]. Studies 
reveal that high expression of the endothelial cell marker 
CD31 and genes involved in vascular stability correlate 
with better prognosis and improved survival in PDAC 
[241, 242]. This suggests that a subset of patients with 
highly vascular PDAC may benefit from antiangiogenic 
therapies [242].

Inadequate vasculature in tumors restricts nutrient, 
oxygen, and leukocyte delivery, leading to hypoxia in 
PDAC. Hypoxia-inducible factor 1α (HIF-1α) is stabi-
lized in poorly vascularized PDAC tumors [243], acti-
vating genes crucial for metabolism, angiogenesis, cell 
survival, and inflammation [244]. Elevated HIF-1α lev-
els are linked to poor prognosis in many cancers [244]. 
However, in PDAC, HIF-1α deletion accelerates tumor 
growth, facilitated by infiltrating B cells, demonstrating 
PDAC’s resilience and complex redundancies that sup-
port disease progression [245].

Lymphatics, in addition to blood vessels, play a cru-
cial role in the progression of PDAC. They serve as a 
major pathway for leukocytes to transport tumor anti-
gens to lymph nodes and for cancer cells to spread, often 
resulting in worse survival outcomes [46, 246, 247]. 
Chemokines play a role in lymphangiogenesis and cell 
migration, with lymphatic endothelial cells secreting 
CCL21 to attract DCs and tumor cells expressing CCR7 

potentially using this mechanism for dissemination [248]. 
Likewise, CXCL12 produced in lymph nodes may attract 
cancer cells or leukocytes expressing CXCR4 [249].

Immunotherapeutic approaches in pancreatic 
cancer treatment
Pancreatic cancer is classified as non-immunogenic and 
immunologically cold since it does not effectively react 
to commonly employed ICIs such as anti-PD-1 and anti-
CTLA-4. This resistance is partly caused by the immu-
nosuppressive circumstances within the TME. In other 
words, although ICB has achieved explosive success, 
PDAC has shown limited response to ICB treatment 
alone. Research on using ICB alone or in combination 
with anti-PD-1 and anti-CTLA-4 antibodies has yielded 
overall response rates (ORRs) of 0% and 3%, respectively 
[250]. In this part, we will delineate immunotherapeutic 
strategies such as OVT, adoptive cell transfer therapy, 
ICB, cancer vaccine, and immunotherapies targeting 
myeloid cells (Fig. 3).

Oncolytic virus therapy (OVT)
OVT represents an innovative form of immunotherapy 
where an oncolytic virus, upon infiltrating and lysing a 
cancerous cell, initiates an immune reaction within the 
patient by discharging tumor antigens into the circula-
tory system [251]. Oncolytic viruses possess desirable 
qualities and specificity that make them an attractive 
strategy for treatment. Research is currently underway, 
exploring and utilizing diverse oncolytic DNA and RNA 
viruses for the treatment of different cancer forms. Their 
ability to invade cancer cells is made possible by the 
genetic composition of these viruses [252].

Talimogene laherparepvec (T-VEC or OncoVEXGM-
CSF), a Herpes simplex virus (HSV), has become the 
inaugural oncolytic virus approved by the US Food and 
Drug Administration (FDA) for the treatment of mela-
noma. The T-VEC virus harbors the genetic integra-
tion of the GM-CSF gene. T-VEC exhibited remarkable 
lytic properties when tested against various tumor cell 
lines, encompassing pancreatic cancer cells [253, 254]. 
Furthermore, both NV1020 (r7020) and G207, two dis-
tinct herpes simplex oncolytic viruses, effectively invade 
and annihilate human pancreatic cancer cells in  vitro 
and in  vivo [255]. HF10 is a virus that has originated 
from HSV-1 and has experienced an unexpected muta-
tion. This particular virus has the ability to substantially 
combat tumors without causing any damage to healthy 
tissue. The treatment of locally advanced pancreatic 
cancer involves the secure administration of HF10 
through direct injection, alongside erlotinib and gemcit-
abine [256]. The anti-tumor response and apoptosis are 
enhanced in pancreatic cancer when an H-1 oncolytic 
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parvovirus is combined with a hypoxia-inducible factor 
(HIF)-1α inhibitor, resulting in increased effectiveness 
[257].

VCN-01, a type of oncolytic adenovirus, has been 
specifically designed to reproduce within cancer cells 
that possess a faulty RB1 pathway. Moreover, it has 
the ability to generate hyaluronidase, which serves 
to expedite the spread of the virus within the tumor. 
Additionally, it facilitates the migration of both chemo-
therapy medications and immune cells into the tumor. 
VCN-01 exhibited augmented anti-cancer properties 
when administered in conjunction with chemotherapy 

to animals with PDAC. Remarkably, the hyaluronidase 
produced by VCN-01 effectively obliterated the tumor 
stroma, thereby bolstering the transport of various 
therapeutic drugs such as chemotherapy and therapeu-
tic antibodies [258]. A clinical experiment exhibited 
that it is feasible to administer VCN-01 through an 
intravenous route for the treatment of patients suf-
fering from PDAC and this administration method is 
associated with adverse events (AEs) that can be pre-
dicted and controlled. Intravenous VCN-01 has exhib-
ited a positive tolerability profile [259]. These results 
establish a helpful bedrock for the future use of OVT in 

Fig. 3  Immunotherapeutic strategies in pancreatic cancer treatment. The immune response to pancreatic ductal adenocarcinoma (PDAC) 
is guided by antigen-presenting machinery involving dendritic cells (DCs), inflammatory macrophages, and CD4+ helper T cells, leading 
to the activation of CD8+ cytotoxic T cells to eliminate the cancer. However, regulatory T cells (Tregs) and suppressor cells can inhibit this response, 
creating an immunosuppressive tumor microenvironment. Various strategies have been suggested to counteract these inhibitory pathways. 
CAF: Cancer-associated fibroblast; CAR: Chimeric antigen receptor; CSF-1R: Colony-stimulating factor 1 receptor; CTLA4: Cytotoxic T-lymphocyte 
associated protein 4; DLL: Delta-like ligand; MDSC: Myeloid-derived suppressor cell; MHC: Major histocompatibility complex; MQ: Macrophage; PD-1: 
Programmed cell death protein 1; PD-L1: Programmed death-ligand 1; TCR: T cell receptor
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pancreatic cancer immunotherapy. Furthermore, sev-
eral clinical trials are underway to evaluate the efficacy 
of various oncolytic virus-oriented therapies in pan-
creatic cancer. A phase I/II trial demonstrated that the 
combination of intratumoral injections of LOAd703, 
an oncolytic adenovirus with transgenes encoding tri-
merized, membrane-bound (TMZ)-CD40L and 4-1BB 
ligand, with standard nab-paclitaxel/gemcitabine 
chemotherapy was both safe and feasible for patients 
with unresectable or metastatic PDAC. The treatment 
met the target response rate at the highest dose level, 
with an ORR of 44% and a disease control rate of 94% 
(NCT02705196) [260]. Moreover, a study found that 
the combination of pelareorep and pembrolizumab 
showed modest efficacy in unselected patients, with 
a clinical benefit rate of 42% among the 12 patients. 
Notably, the treatment led to significant immunologi-
cal changes, including a decrease in VDAC1 expression 
in peripheral CD8+ T cells and on-treatment periph-
eral CD4+ Treg levels in patients who responded to the 
treatment (NCT03723915) [261]. The efficacy of tali-
mogene laherparepvec (T-VEC), administered endo-
scopically, will be assessed in a clinical trial for the 
treatment of locally advanced or metastatic pancreatic 
cancer that is refractory to at least one chemotherapy 
regimen (NCT03086642).

A study demonstrates promising findings for a new 
technology called ONCOTECH, which combines onco-
lytic adenoviruses (OAs) with T cells to enhance the 
delivery of viruses to tumors. The engineered OAs target 
the immune checkpoint protein PD-L1. In mouse models 
of PDAC, ONCOTECH displayed a notable increase in 
OAs within tumor cells, resulting in a significant decrease 
in PD-L1 expression and better survival rates. In sum-
mary, ONCOTECH has the potential to be a successful 
approach in combining virotherapy and cell therapy for 
cancer treatment [262].

Adoptive cell transfer therapy
Adoptive cellular therapy, which is a type of immuno-
therapy, holds promise for cancer patients. By utilizing 
the patient’s immune cells, such as T cells, this technique 
endeavors to combat the disease. These immune cells 
are frequently obtained, replicated, and altered to aug-
ment their efficiency in directing their focus on cancer. 
The progress made by the FDA in granting approval to 
CAR T-cell therapy for certain blood cancers has greatly 
propelled this area of medical research. Modified T cells 
possess the ability to discern tumor cells through their 
unique molecular features [263]. In the subsequent dis-
cussion, we shall elucidate and analyze these various 
immunotherapeutic approaches.

Tumor‑infiltrating lymphocyte (TIL) therapy
TILs, which are mononuclear cells naturally infiltrat-
ing the TME, can also be known as immune cells pre-
sent at the tumor site. TIL therapy remains a hopeful 
treatment approach whereby the patient’s TILs are uti-
lized following the surgical extraction of the cancerous 
growth, followed by the cultivation of these cells out-
side the body and subsequent reinfusion back into the 
patient [264–266]. Successful techniques for increas-
ing the production and reactivity of TILs encompass 
inhibiting the PD-1 receptor, stimulating the CD137 
receptor (4-1BB), and augmenting CD8+ T cell levels 
[267]. According to a study, it was found that func-
tional expanded TILs from tumors in the pancreas pos-
sess the capability to identify antigens associated with 
pancreatic cancer [267]. Based on a meta-analysis, 
the long-term oncological prognosis of patients with 
PDAC is significantly associated with specific catego-
ries of TILs, specifically CD8+ T cells [57]. At the pre-
sent moment, two ongoing clinical trials are currently 
in the process of recruiting participants. These trials 
will aim to implement TIL therapy on individuals who 
are affected by metastatic PDAC (NCT03935893 and 
NCT01174121). The former trial will assess the efficacy 
of the adoptive transfer of autologous TILs in combina-
tion with fludarabine and cyclophosphamide, while the 
latter trial will investigate the efficacy of young TILs in 
combination with aldesleukin (a recombinant analog of 
IL-2), pembrolizumab, cyclophosphamide, and fludara-
bine. To further explain, the young-TIL approach 
involves minimal in  vitro culturing of TILs and does 
not select for tumor recognition before they are rapidly 
expanded and infused into the patients. This method 
has achieved objective response rates similar to those 
of used TILs screened for tumor recognition, without 
introducing any additional toxicities [268].

Genetically modified T cells therapy
TCR‑engineered T‑cell therapy  The production of TCR-
engineered T cells involves modifying T cells outside the 
body to express TCRs that recognize tumor antigens. 
TCRs have the capacity to detect peptides displayed by 
both MHC class I and II [269]. Investigating the safety 
and effectiveness of autologous MSLN-specific TCR T 
cells in patients with stage IV pancreatic cancer is the 
objective of a phase I clinical trial (NCT04809766). In this 
trial, autologous MSLN-specific TCR-T Cells were used 
in combination with bendamustine, cyclophosphamide, 
and fludarabine. Patients received three infusions of TCR-
TMSLN cells every 21 days following leukapheresis. The 
main focus was on safety and dose-limiting toxicities, but 
the study also looked at ORR, PFS, and OS. The goal is to 
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achieve a significant ORR of 20% among the 15 partici-
pants [270].

The patient with metastatic PDAC received autologous 
TCR-engineered T cells as treatment. These modified 
T cells express two allogeneic human leukocyte antigen 
(HLA)-C*08:02-restricted KRAS G12D in a clonal man-
ner. Remarkably, the patient’s visceral metastasis showed 
regression, with an overall partial response of 72%. Fur-
thermore, the therapeutic effect persisted for a duration 
of 6 months. Moreover, after six months of the T-cell 
transfer, the modified T cells accounted for more than 
2% of all circulating T cells in the peripheral circulation 
[271].

CAR​ T‑cell therapy  CAR T cells can be compared to the 
administration of a living drug to patients. At, the CAR 
T-cell therapies that are accessible are tailored according 
to each patient’s needs. These therapies are created by 
gathering T cells from the patient and modifying them in 
the lab to generate CARs on the cell surface. The specific 
CARs possess the ability to detect and attach themselves 
to particular proteins, known as tumor antigens, located 
on the outer surface of cancer cells. Despite its impressive 
clinical outcomes in the treatment of specific subgroups 
of B-cell leukemia or lymphoma, CAR T-cell therapy 
encounters numerous impediments that impede its wide-
spread application in the treatment of solid tumors and 
hematological malignancies. Impediments such as life-
threatening toxicities, cytokine release syndrome (CRS), 
inadequate anti-tumor efficacy, antigen escape, and lim-
ited trafficking all pose obstacles to the successful imple-
mentation of CAR T-cell treatment [272, 273]. Tables  2 
and 3 provide a comprehensive overview of data regard-
ing CAR T-cell therapy in both preclinical and clinical 
trial settings.

A crucial obstacle to the effective use of cellular immu-
notherapy for treating PDAC, specifically CAR T-cell 
therapy, is the lack of suitable tumor-specific antigens. In 
their research, Schäfer et al. pinpointed CD318, TSPAN8, 
and CD66c as potential target molecules for CAR T-cell-
based immunotherapy in PDAC, among a pool of 371 
antigens [274]. Highlighted in the subsequent text are the 

appropriate therapeutic targets for the CAR T-cell ther-
apy of pancreatic cancer (Fig. 4).

B7H3 (CD276) B7H3, a molecule found on the surface 
of cells, acts as an immune checkpoint and hinders the 
activation of T-cells and the ability of NK cells to kill. 
The promise of targeting B7H3 for CAR T-cell therapy 
arises from its high expression in numerous cancer types 
while being minimally expressed in healthy tissues [275]. 
Survival was achieved in mice following treatment with 
B7H3 CAR T cells, and there were no observed AEs 
[276]. The outcome of studies conducted in vitro revealed 
that these cells exhibited a potent ability to suppress the 
growth of cancer cells in the pancreas [276, 277].

Fibroblast activation protein (FAP) FAP is a type-II 
transmembrane serine protease expressed almost exclu-
sively on CAFs. In mouse models of solid tumors, the 
growth of tumors can be effectively suppressed by FAP-
expressing stromal cells being targeted by CAR T cells 
designed specifically for FAP [278, 279]. When FAP-spe-
cific CAR T cells are administered along with anti-PD-1 
treatment, the combination leads to a synergistic reduc-
tion in pancreatic tumor growth and significantly elon-
gated survival in mouse models compared to alternative 
treatment combinations [54].

Human epidermal growth factor receptor 2 (HER2) 
HER2, a glycoprotein located on the cell membrane, 
performs a function in promoting cell division and dis-
tinction during various stages, including embryonic 
and adult periods. HER2 contributes to tumor progres-
sion, growth, and spread by obstructing cell death, trig-
gering the formation of new blood vessels, and boosting 
cell movement [275]. The expression of the HER2 in 
pancreatic cancer is controversial [280]. However, it has 
been detected in 20–60% of PDACs according to cer-
tain research studies [281, 282]. Also, HER2 might be a 
potential target in immunotherapy for a small subset of 
patients with pancreatic cancer, since a report explains 
nearly 50% of PDAC cases have a total HER2 expression 
of 2 + or above [283, 284].

The combination treatment of oncolytic adeno-
immunotherapy and HER2-specific CAR-T cells shows 
promising results in eradicating metastatic PDAC. 

Table 2  Evidence from clinical studies supporting the use of CAR T-cell therapy for pancreatic cancer treatment

EGFR: Epidermal growth factor receptor, HER2: Human epidermal growth factor receptor 2, MSLN: Mesothelin, N/A: Not applicable, ScFv: Single-chain variable 
fragment, PR: Partial response, SD: Stable disease, PD: Progressive disease

Target CAR’s molecular structure Combination therapy Clinical outcomes 
(= number of patients)

References

CD133 Anti-CD133 ScFv + Human CD137 + CD3ζ Nab-paclitaxel + Cyclophosphamide PR = 2, SD = 3, PD = 2 [307]/NCT02541370

EGFR Anti-EGFR ScFv + CD8α + CD137 + CD3ζ Nab-paclitaxel + Cyclophosphamide PR = 4, SD = 8, PD = 2 [290]/NCT01869166

HER2 Anti-HER2 ScFv + CD8α + CD137 + CD3ζ Nab-paclitaxel + Cyclophosphamide PR = 0, SD = 0, PD = 2 [286]/NCT01935843

MSLN Anti-MSLN ScFv + 4- 1BB + CD3ζ N/A SD = 2, PD = 1 [301]/NCT01897415
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This combinational therapy enhances the migration 
of CAR-T cells to the tumor site, while also stimulat-
ing systemic host immune responses that improve the 
overall anti-tumor activity [285]. The clinical effect of 
anti-HER2 CAR T cells was assessed in a study involv-
ing 11 patients, two of whom had metastatic pancreatic 
cancer. The optimal overall outcome for both patients 
was disease stability, with a PFS of 5.3 and 8.3 months, 
respectively [286]. The potential clinical outcomes of 
the treatment should be proven in clinical trials with a 
larger sample size including patients with PDAC.

All in all, in different studies, the expression of HER2 
in pancreatic cancer is controversial and varies from 
high-level expression [287] to low-level expression 
[288], making it a potential target for personalized 
immunotherapy of PDAC. Thus, it is reasonable that 

HER2 should not be ignored in such a heterogeneous 
disease with limited treatment options.

Epidermal growth factor receptor (EGFR) The EGFR 
protein, which spans across the membrane, has the capa-
bility of binding to various proteins from the EGF family 
that are located outside the cell. Around 90% of patients 
diagnosed with PDAC exhibit an identifiable amount of 
EGFR [289]. For individuals diagnosed with metastatic 
pancreatic cancer, the safety and effectiveness of the 
treatment were demonstrated by a median overall sur-
vival (mOS) of 4.9 months among the entire group of 14 
patients who received anti-EGFR CAR T cells [290].

Sialic acid-binding immunoglobulin-type lectin (Siglec) 
Cell-surface proteins known as Siglecs exhibit the abil-
ity to attach themselves to sialic acid. These proteins are 
predominantly present in immune cells, belonging to a 

Fig. 4  An overview of chimeric antigen receptor (CAR) T cell therapy concept. CAR T cell therapy is a treatment approach, whereby T cells 
from an individual are modified in a laboratory setting to possess the ability to identify specific antigens found on cancer cells, leading to their 
elimination. (1) This process involves removing autologous T cells from the patient’s blood. (2) Subsequently, the T cells are manipulated 
by introducing a gene encoding a specialized receptor, known as a CAR, into their genetic makeup through viral vectors. (3) This genetic 
alteration results in the expression of the CAR protein on the surface of the patient’s T cells, thereby creating CAR T cells. These CAR T cells are then 
multiplied and expanded in laboratory conditions, producing millions of them. (4) Eventually, these CAR T cells are administered to the patient 
through intravenous infusion. (5) The CAR T cells attach themselves to the cancer cells by binding to the antigens present on their surface 
and proceed to eradicate the cancer cells. EGFR: Epidermal growth factor receptor; FAP: Fibroblast activation protein; MSLN: Mesothelin; PDAC: 
Pancreatic ductal adenocarcinoma; ScFv: Single-chain variable fragment; TAA: Tumor-associated antigen; TSA: Tumor-specific antigen
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specific group within the I-type lectins. Targeting sialic 
acids on tumor cells can be accomplished through direct 
means as well. A new advancement comprises the devel-
opment of CAR T cells based on Siglec-7/9, which specif-
ically target tumor cells that express sialic acid, causing a 
delay in the growth of tumors within a melanoma model 
[291]. According to a study, Siglec-7 and Siglec-9 ligands 
are specifically expressed by PDAC cells, indicating 
the potential effectiveness of CAR T cells in combating 
PDAC [292]. Furthermore, enhancing the effectiveness of 
solid tumor cellular immunotherapy is greatly facilitated 
by the cancer cell desialylation approach that reverses the 
state of immune evasion. By eliminating the Siglec-5 and 
Siglec-10 genes, it became possible to make a CAR mac-
rophage that exhibits enhanced anti-cancer activity as a 
result of blocking the glycoimmune checkpoint [293].

Carcinoembryonic antigen (CEA) In order to evaluate 
the efficacy of CEA-specific CAR T cells in combina-
tion with recombinant human IL-12 for the treatment 
of various solid tumors, an experiment was conducted. 
The findings illustrated that the incorporation of rhIL-12 
alongside anti-CEA CAR T cells notably augmented their 
capacity to suppress the proliferation of pancreatic tumor 
cells when compared to solely utilizing CEA CAR T-cell 
treatment [294]. Regarding the central role of IL-12 in 
CAR T cells, a study has proven that membrane-bound 
IL-12 in CAR T cells targeting TAG72 promotes anti-
tumor responses against human ovarian cancer xeno-
graft models [295]. However, there is a need to apply this 
approach in PDAC that has not been met.

Additionally, CEACAM7 (CGM2), which is a part 
of the CEA protein family, may serve as a potential tar-
get for PDAC and is specifically present exclusively in 
the colon and the pancreas. The remission of xenograft 
tumors occurs as a result of the targeted destruction of 
pancreatic cancer cells expressing the specific antigen by 
CAR T cells designed to recognize CEACAM7 [296].

Mesothelin (MSLN) CAR T cells have the ability to be 
altered in a way that enables them to identify a cell surface 
antigen called MSLN. This antigen is associated with the 
invasion of tumors and is present in mesothelial tissues, 
albeit in small amounts. However, it is highly expressed 
in PDAC [275]. A potent anti-MSLN hYP218 CAR T 
cells possess improved abilities to infiltrate and remain 
in tumors, enhancing their effectiveness in combating 
pancreatic cancer in vitro and in vivo [297]. CAR T cell 
therapy, which targets both MSLN and CD19 simulta-
neously, proved to be a safe and well-tolerated approach 
in treating individuals suffering from metastatic PDAC 
[298]. In orthotopic animal models of human pancreatic 
cancer, it was demonstrated that MSLN-specific CAR T 
cells are efficient [299]. Mice with extremely aggressive 
PDAC experience tumor shrinkage when subjected to a 

mixture of MSLN-redirected CAR T cells and TNF-α/IL-
2-armed oncolytic adenoviruses [300]. In a phase 1 trial, 
T cells engineered to express a CAR specific for MSLN 
were tested in six patients with chemotherapy-refractory 
metastatic PDAC. The treatment was well tolerated, with 
no serious toxicities. Disease stabilized in two patients, 
and one patient showed a significant reduction in tumor 
metabolic activity, providing evidence of the potential 
anti-tumor activity of these engineered T cells [301].

Disialoganglioside (GD2) GD2, present on the exter-
nal cellular membrane, is integral to the immunological 
characteristics of mammalian cells; however, it rarely 
elicits an immune reaction. Due to the prevalence of GD2 
in embryonal malignancies such as brain tumors and its 
infrequent manifestation in healthy cells, it is viable to 
target GD2 molecules using CAR T cells specific to this 
molecule [275].

Natural killer group 2D (NKG2D) The NKG2D receptor 
shows potential as a target for immunotherapy of malig-
nant neoplasms. CAR T cells specific to NKG2D have 
been employed in the treatment of patients with hema-
tologic and solid tumors. An evaluation was conducted 
by researchers to determine the practicality and safety 
of NKG2D-specific CAR T cells, resulting in the discov-
ery that their capacity to multiply and endure within the 
body was restricted. Gao and colleagues have success-
fully suppressed the 4.1R gene in NKG2D-specific CAR 
T cells, thereby augmenting the efficacy of CAR T cells in 
combatting pancreatic carcinoma [302].

Epithelial cell adhesion molecule (EpCAM) EpCAM is a 
transmembrane glycoprotein of type I that is excessively 
expressed in various carcinomas, for instance, colon, 
stomach, PDAC, and endometrial malignancies. Its con-
nection to the Wnt/β-catenin signaling pathway has 
been observed, which is believed to trigger inadequate 
infiltration of T-cells in different human malignancies 
[275]. A number of clinical trials have been registered 
to utilize EpCAM-specific CAR T cells in individuals 
suffering from pancreatic cancer (NCT04151186 and 
NCT03013712). In these trials, outcomes like toxic-
ity profile, survival time and persistence of CAR T cells 
in vivo, and anti-tumor efficacy will be measured.

Mucin-1 (MUC-1; CD227) At the apical surface of 
epithelial cells, the transmembrane mucin glycoprotein 
MUC-1 shows a high level of expression. In more than 
80% of human PDAC, MUC-1 is excessively expressed. 
This excessive expression of MUC-1 is associated with 
a grim prognosis and increased metastasis. Moreover, 
through the upregulation of multidrug resistance genes, 
MUC-1 boosts chemo-resistance in pancreatic cancer 
cells [303]. In xenograft models of pancreatic cancer, 
there was successful inhibition of tumor growth by anti-
MUC-1 CAR T cells, which exhibited effective targeting 
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capabilities and induced cytotoxicity [304]. To investi-
gate the effectiveness of MUC-1-specific CAR T cells on 
individuals suffering from pancreatic cancer, two clini-
cal trials have been officially registered under the codes 
NCT05239143 and NCT04025216. The former clinical 
trials demonstrated three patients with different types of 
cancer have been treated with anti-MUC-1 CAR T cells, 
showing good tolerance and no observed toxicities [305]. 
Latter clinical trial showed safety and preliminary efficacy 
in treating various solid tumors, with no dose-limiting 
toxicities observed in the six treated patients and prelimi-
nary results indicating stable disease in all patients [306].

CD133 Both hematopoietic cells and epithelial cells 
exhibit the pentaspan transmembrane glycoprotein 
CD133. CD133 has been identified not only in pancreatic 
cancer CSCs but also in different tumors like hepatocel-
lular and gastric carcinomas, emphasizing its widespread 
presence in malignancies. In 50% of cases involving pan-
creatic cancer, the expression of CD133 was observed 
to be significantly high [289]. CD133-specific CAR T 
cells were administered to 7 individuals who suffer from 
PDAC during a phase 1 clinical trial. Before the infusion 
of CAR T cells, the patients were treated with cyclophos-
phamide and nab-paclitaxel. The outcomes of the trial 
exhibited 3 instances of disease stabilization, 2 instances 
of partial remission, and 2 instances of disease progres-
sion [307].

Prostate stem cell antigen (PSCA) Initially, PSCA was 
identified as a surface glycoprotein that consists of 123 
amino acids and is linked to glycophosphatidylinosi-
tol. Its function remained unknown, although it showed 
significant presence in prostate cancers while exhibit-
ing minimal levels in the prostate epithelium, urinary 
bladder, kidney, esophagus, stomach, and placenta. Fur-
ther investigations confirmed its amplified expression 
in various human cancers, such as pancreatic cancer, 
while being absent in a healthy pancreas. By employing 
a humanized mouse model for pancreatic cancer, it was 
observed that CAR T cells specifically targeting PSCA 
were able to prompt the eradication of tumors [308].

CD47 CD47, an immunoglobulin superfamily mem-
ber, frequently exhibits heightened expression in various 
hematological and solid cancer tumors. Its crucial func-
tion involves the inhibition of phagocytosis, leading to 
enhanced tumor survival, metastasis, and angiogenesis. 
CD47 is recognized as a "don’t eat me" since it bonds with 
signaling regulatory protein alpha (SIRP-α) and obstructs 
the phagocytosis of cancer cells [309]. The blocking of 
pancreatic xenograft tumor growth is efficiently accom-
plished and cancer cells are effectively killed by CD47-
specific CAR-T cells [310]. A significant challenge in 
using CD47-CAR-T cells could be the potential detri-
mental effects on red blood cells and platelets due to 

the expression of CD47 on these cells. However, in this 
study, CD47-CAR-T cells were administered intratumor-
ally, which may prevent the induction of toxic effects on 
other cells. Therefore, the clearing of blood cells during 
systemic injection of this treatment should be considered 
as a potential AE.

Claudin18.2 (CLDN18.2) The protein known as 
CLDN18.2 is an isoform-specific to the stomach of the 
CLDN18 tight junction protein. This protein is found in 
high levels in various types of cancer, particularly those 
affecting the digestive system like pancreatic cancer. 
Therefore, it could be a promising candidate for can-
cer treatment strategies [311–313]. Studies indicated a 
positive response rate for CT041, which are autologous 
T cells that have been genetically modified to express 
a CAR targeting CLDN18.2, in cases of digestive sys-
tem malignancies [311, 314–316]. Two patients with 
metastatic pancreatic cancer were treated with anti-
CLDN18.2 CAR T cell therapy (CT041) after standard 
treatments failed. Both patients experienced CRS, which 
was managed with tocilizumab. The first patient showed 
a partial response with a significant reduction in lung 
metastasis, while the second patient achieved a complete 
response. Both cases experienced an increase in CD8+ 
T cells and Treg cells, a decrease in CD4+ T cells and B 
cells, an increase in IL-8, and a decrease in TGF-β1. The 
tumors were well-controlled at the last follow-up [312].

CAR​‑NK cell therapy  CAR NK cell therapy is a prom-
ising strategy in cancer treatment that seeks to enhance 
the cancer-fighting power of NK cells. CAR-NK cells 
are engineered to express CARs that recognize specific 
antigens in cancer cells, which allows them to target 
and kill cancer cells more effectively [106, 317]. Table 4 
provides a comprehensive comparison between CAR T 
cells and CAR NK cells. Compared to CAR T cells, CAR 
NK cells possess multiple benefits. Their limited lifes-
pan implies a decreased likelihood of unintended harm 
to healthy cells (referred to as on-target/off-tumor tox-
icity). The unique set of cytokines they release signifies 
a reduced potential for CRS and neurotoxicity. Further-
more, their lower propensity for alloreactivity facilitates 
the production of off-the-shelf allogeneic CAR NK cells 
derived from NK cell lines [318]. However, they may 
have several negative points, which restrict their broad 
application in clinical contexts. First of all, difficulties in 
proper antigen selection, antigen heterogeneity, donor 
selection, challenges in designing an effective CAR, and 
difficulties in producing and storing CAR NK cells are 
fundamental hurdles in this type of treatment modality 
[106, 319]. Secondly, issues such as NK cell infiltration 
into tumor sites and the short half-life of NK cells must 
be considered [319]. This short lifespan can necessitate 
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Table 4  A comprehensive comparison between CAR T cell and CAR NK cell therapies

ADCC: Antibody-dependent cellular cytotoxicity, CAR: Chimeric antigen receptor, CRS: Cytokine release syndrome, FDA: The U.S. food and Drug Administration, GSK3i: 
Glycogen synthase kinase-3 inhibitor, GVHD: Graft-versus-host disease, HLA: Human leukocyte antigen, HPSCs: Hematopoietic stem and progenitor cells, iPSCs: 
Induced pluripotent stem cells, KIR: Killer-cell immunoglobulin-like receptor, NK: Natural killer, PBMC: Peripheral blood mononuclear cell, PD-1: Programmed cell 
death protein 1, TCR: T cell receptor, TME: Tumor microenvironment

Difference CAR T cell CAR NK cell References

Key markers TCR, CD3 CD16, CD56 [572]

Receptor activated NKG2D, NKG2C, NKp44, KIR [572]

CAR generations Five generations Four generations [106, 573–576]

Intracellular and co-stimulatory signaling 
domains

CD3ζ, CD28, 4-1BB (CD137), CD27, CD40, 
OX40 (CD134)

CD3ζ, DAP10, DAP12, 2B4 (CD244), 4-1BB, 
CD28

[318, 576–578]

Production of memory cells  +  +  +   +  [106, 579, 580]

Off-the-shelf products  + (HLA-matched allogeneic CAR T cells)  + (non-HLA-matched allogeneic and NK 
cell lines like NK-92 cells)

[318, 581]

Time for manufacturing 1 to 2 weeks
Rapid manufacturing in 24 h 
is also reported

Exact timeline can vary (typically 2 to 4 
weeks)

[582, 583]

Redosing Not limited by cell number
Risk of alloimmunization

Not limited by cell number [319]

In vitro expansion during manufacturing  + (Autologous or allogeneic T cells can be 
expanded after CAR transduction.)

 + (autologous NK cell, iPSCs, and NK-92 
cells can be pre-expanded before CAR 
transduction.)

[318, 584]

In vivo persistence Relative long-term persistence of func‑
tional CAR T cells (armored CAR T cells)
Intermediate (weeks to months)
In some patients with leukemia, CAR-T 
cells can be identified several years 
after being infused

Low and limited persistence 
in the absence of cytokine
Short-term lifespan without IL-15
Cord blood-derived CAR NK cells can 
persist for at least 12 months (Liu et al.)

[572, 585, 586]

Immune cell sources Autologous PBMCs
PBMCs from well-matched donor

Peripheral blood
Umbilical cord blood and cord blood 
HPSCs
Differentiated pluripotent stem cells (e.g., 
iPSCs)
NK-92 cell line (an immortalized NK lym‑
phoma cell line)

[106, 572, 584]

Cytotoxicity mechanisms In a CAR-dependent manner
Perforin and granzyme
Inducing apoptotic signaling pathways 
in tumor cells

In both CAR-dependent and -independ‑
ent manners
Perforin and granzyme
ADCC through CD16
Inducing apoptosis

[318, 572]

Risks and toxicities  +  +  + (CRS, neurotoxicity, and GVHD)
Risk of malignancy after treatment (low 
risk)

 + (less common)
A protocol for freezing and thawing 
needs to be developed and clinically 
evaluated for a ready-to-use product

[319, 572, 587, 588]

Infiltration to TME Poor (particularly in cold tumors) Usually poor [318, 589]

Combination therapies Chemotherapy (like cyclophosphamide)
Radiotherapy
Immune checkpoint inhibitors (like anti-
PD-1)
Oncolytic viruses
Cancer vaccines
Immunomodulatory agents
Allogeneic hematopoietic cell transplan‑
tation
Metabolic inhibitors

Immune checkpoint inhibitors (anti-
NKG2A antibody, monalizumab, lirilumab, 
and so on)
Immunomodulatory drugs (lenalidomide)
Epigenetic modulators (vorinostat)
Oncolytic viruses (adenoviruses)
Small-molecule inhibitors (GSK3i)

[106, 590]

Clinical trials Extensive clinical trials
Proven effectiveness (at least 6 FDA-
approved CAR T cell therapies)

Limited clinical trials
No FDA-approved CAR NK cell therapies 
yet
Clinical efficacy reported in some studies

[106, 318, 576]
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repeated administrations to achieve a durable response. 
Furthermore, the need for continuous immune surveil-
lance and prevention of cancer recurrence requires 
the reprogramming of CAR NK cells with memory cell 
properties and long-term survival in  vivo [320, 321]. 
Lastly, NK cells have several inhibitory killer-cell immu-
noglobulin-like receptors (KIRs) on their surface, which 
are cognate with their ligands, HLA molecules. Thus, 
the universally expressed HLA molecules on nucleated 
cells can inhibit CAR NK cell function [318]. Thus, the 
translation of CAR NK cell therapy from bench to bed-
side requires addressing the aforementioned challenges 
properly.

When ROBO1 is targeted, CAR-NK immunotherapy 
accompanied by radiation therapy proves to be more 
effective in treating human PDAC in an orthotopic 
mouse model [322]. A study demonstrates the effective-
ness of a novel human NK cell-based immunotherapy 
targeting PSCA. It found that these cells effectively sup-
pressed PSCA+ pancreatic cancer in  vitro and in  vivo. 
The therapy showed promising results without caus-
ing systemic toxicity [323]. Furthermore, the inhibi-
tion of tumor growth and enhancement of survival were 
observed in a mouse model of pancreatic cancer when 
utilizing a fusion of CAR-NK cells that targeted MSLN, 
along with cGAMP, an agonist for STING [324]. There 
are two clinical trials that have been registered for the 
implementation of ROBO1 and MUC-1-specific CAR 
NK cells in the existing clinical scenario of immunothera-
peutic methods, specifically for patients diagnosed with 
pancreatic cancer (NCT03941457 and NCT02839954). 
Outcome measurements include an examination of the 
safety profile and ORR.

In the realm of immunotherapy for pancreatic cancer, 
PSCA has recently gained acclaim as a promising con-
tender. Research findings highlight that CAR-NK cells 
designed to target PSCA demonstrate notable efficacy in 
combating advanced PDAC in humans, all while ensur-
ing the absence of any harmful effects at a systemic level 
[323]. These positive outcomes provide a rigorous ration-
ale for the future progression of clinical trials.

Induced pluripotent stem cells (iPSCs) provide a 
convenient supply of lymphocytes for immunotherapy. 
These NK cells, derived from iPSCs, express essential 
NK-defining markers such as CD56 and CD16. They 
demonstrate cytotoxicity through cytokine secretion 
and ADCC, showing potential for cancer treatment 
[325, 326]. The first-in-class, off-the-shelf iPSC-derived 
NK cell therapy called FT500 is currently being evalu-
ated in a phase I clinical trial. This trial aims to treat 
advanced solid tumors, including pancreatic cancer. 
FT500 is administered both as a monotherapy and 
in combination with checkpoint inhibitor therapy 

(nivolumab, pembrolizumab, Atezolizumab), IL-2, 
cyclophosphamide, and fludarabine (NCT03841110).

Cytokine‑induced killer (CIK) cell therapy  CIK cells 
form a diverse group of CD8+ T cells that were produced 
from lymphocytes extracted from human peripheral 
blood and simply expanded ex vivo through incubation 
with an anti-CD3 antibody, IFN-γ, and IL-2. Through 
FasL and perforin, they have the ability to eliminate can-
cer cells. Depending on the existence of the cell surface 
molecule CD56, CIK cells are additionally categorized 
into two primary subsets: T cells that are positive for 
CD3 and CD56, and T cells that are positive for CD3 but 
negative for CD56 [327]. Adopting CIK cells and trans-
ferring them has proven to be highly effective and safe 
in cancer treatment, as demonstrated by the increased 
survival of individuals affected by different types of 
tumors. When utilized alongside chemotherapy, CIK 
cell therapy exhibits enhanced efficiency in thwarting 
cancer relapse and enhancing patients’ prognosis [24].

Researchers have investigated the application of CIK 
cells as a potential second-line treatment for advanced 
pancreatic cancer, which has yielded encouraging out-
comes in both standalone usage and when combined 
with other therapeutic methods. In a phase II clinical 
investigation, the inclusion of CIK cells alongside gem-
citabine-refractory advanced pancreatic cancer dem-
onstrated a mOS of 6.2 months among patients [328]. 
In advanced pancreatic cancer, gemcitabine-resistant 
patients who underwent CIK cell therapy in combina-
tion with S-1, an oral fluoropyrimidine derivative, dem-
onstrated a mOS of 6.6 months, surpassing the mOS 
of patients solely treated with S-1 alone (6.1 months) 
[329]. Following CIK cell therapy, individuals diag-
nosed with advanced pancreatic cancer exhibit notable 
enhancements in the OS [330].

Immune checkpoint‑oriented immunotherapy
Immunotherapy has become a leading pillar of can-
cer treatment, thanks to the triumph of an effective 
ICB method, mainly exemplified by the approval of 
ipilimumab in 2011. By inhibiting specific inhibi-
tory immune checkpoints like CTLA-4, PD-1, and 
PD-L1, ICB actively halts or reverses the development 
of acquired peripheral tolerance to cancer antigens, 
consequently restoring T-cell activation [331]. Table  5 
presents a comprehensive overview of clinical trials 
investigating the potential of ICIs and immunomodula-
tory agents in the treatment of pancreatic cancer. In the 
subsequent discourse, we elucidate the pivotal signifi-
cance of immune checkpoints in the therapeutic inter-
vention of pancreatic cancer.
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Inhibitory immune checkpoints
PD‑1/PD‑L1 axis  The PD-1/PD-L1 axis has been stud-
ied in relation to immune checkpoint molecules in pan-
creatic cancer following the successful use of anti-PD-1/
PD-L1 treatment in melanoma. PD-1 is a member of 
the B7-CD28 protein family and its expression is asso-
ciated with T-cell exhaustion. PD-1 ligands (PD-L1 and 
PD-L2) are expressed by tumor cells, MDSCs, TAMs, 
and tumor-infiltrating DCs. Engagement between PD-1 
and PD-L1 leads to T-cell exhaustion by blocking T-cell 
activation [332, 333]. Certain malignancies have demon-
strated promising results when treated solely with PD-1/
PD-L1 inhibitors [334, 335]. PD-L1 inhibitors elicit differ-
ent reactions in individuals, as evidenced by some PD-L1 
positive patients exhibiting unfavorable responses while 
some PD-L1 negative patients responding favorably. This 
implies the potential involvement of other PD-1 ligands, 
like PD-L2, in impacting the efficacy of PD-1 axis immu-
notherapy in specific cancers. A body of research accen-
tuates the notion that PD-L2 influences the anti-PD-1 
axis immunotherapy, particularly in PDAC [336, 337]. 
Chemotherapy-induced senescent cancer cells modify 
the TME, promoting immunosuppression and pancreatic 
tumor growth. PD-L2 is highly upregulated in senescent 
cancer cells, helping them evade the immune system and 
persist within tumors. Blocking PD-L2 in combination 
with chemotherapy leads to tumor regression and remis-
sion in mice [338], offering a promising therapeutic strat-
egy targeting senescence-induced vulnerabilities.

Combination immunotherapy targeting PD-L1 and 
CCL5 has shown benefits in PDAC by decreasing Treg 
and TAM infiltration, inducing CD8+ T-cell activa-
tion, promoting tumor regression, and improving OS 
[339]. Tumor regression, improved OS, and the genera-
tion of anti-tumor memory cells were achieved by the 
joint action of anti-tumor necrosis factor receptor 2 
(TNFR2) and PD-L1 monoclonal antibodies, by reduc-
ing the infiltration of Tregs and TAMs while activating 
CD8+ T-cells in PDAC microenvironment [340]. ADH-
503, an agonist of CD11b, exerts an agonistic influence 
on innate immune responses, leading to a reprogram-
ming effect. This reprogramming enhances the 
response of innate immune responses towards immu-
notherapies, specifically anti-PD-L1 antagonists and 
anti-4-1BB agonists, thereby facilitating a more effec-
tive therapeutic outcome in the treatment of pancre-
atic cancer [341]. A bispecific immunocytokine (PD-1/
IL-2 complex) targeting of PD-1 and IL-2Rβγ enhances 
tumor-antigen-specific T-cell activation while reducing 
Treg-mediated suppression. The use of this immuno-
cytokine, combined with radiotherapy, attenuates the 
progression of pancreatic cancer and impedes its meta-
static potential [342].

CTLA‑4 (CD152)  CTLA-4 is predominantly found in 
Tregs and its expression increases when T-cells are acti-
vated. CTLA-4 works intrinsically by suppressing the 
co-stimulatory signal within the cell, inhibiting T-cell 
activation. It also acts externally by removing CD80 and 
CD86 from APCs, which reduces the response of effec-
tor T cells [332]. Controlling the pathway of CTLA-4/
CD80 regulates the entry of T cells into the microenviron-
ment of pancreatic cancer. By interrupting the interaction 
between CTLA-4 and CD80, one can induce the infiltra-
tion of CD4+ and CD8+ T-cells into the microenviron-
ment of PDAC [343]. Pancreatic tumors can be regressed 
by inhibiting both IL-6 and CTLA-4, and this regression 
occurs through a T cell and CXCR3-dependent mecha-
nism [344].

LAG‑3  Cancer cells utilize the LAG-3 signaling path-
way to escape the immune system’s detection. Through 
interaction with Galectin-3, activated T cells experience 
decreased functionality. Moreover, the activity of plasma-
cytoid DCs, responsible for initiating the growth of naïve 
T cells, is hindered by LAG-3. Additionally, LAG-3 has 
the capacity to regulate T-cell proliferation, reduce mem-
ory and effector T-cell immune responses, and heighten 
immunosuppression through the suppression mediated 
by Tregs [332]. Pancreatic cancer patients with TILs that 
express LAG-3 exhibit lower rates of DFS [345]. Anti-
tumor immunity and enduring response in pancreatic 
cancer can be achieved by directing attention towards T 
cell checkpoints 4-1BB and LAG-3, alongside myeloid cell 
CXCR1/CXCR2 [346].

TIGIT  The expression of TIGIT occurs on the surface 
of immune cells and results in the inhibition of T-cell 
stimulation. By attaching to CD155 and CD112, TIGIT 
generates signals that suppress the activation of T-cells. 
Additionally, TIGIT can competitively bind to CD226 
or CD96 along with CD155 and CD112 in order to sup-
press the active signal received by T-cells [347]. Increased 
PD-1 and TIGIT expression were evident in intratumoral 
T cells [348]. Thus, to optimize the responses of CD8+ T 
cells against tumors, it is necessary to co-block the TIGIT 
and PD-1 inhibitory pathways due to their mechanistic 
convergence [349]. The co-blockade of PD-1 and TIGIT 
on tissue-resident memory T cells in PDAC revitalizes 
them [350]. In pancreatic cancer, the CD155/TIGIT axis 
plays a significant role in boosting and sustaining immune 
evasion [351]. Combining TIGIT and PD-1 blockade 
enhances the efficacy of vaccinations in a model of pan-
creatic cancer [352]. The reinvigoration of T lymphocytes 
specific to pancreatic tumor cells occurred as a result 
of the co-blockade of TIGIT/PD-1 and the stimulation 
of CD40 agonist [351]. A research study uncovered that 
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interactions in samples of human PDAC decrease follow-
ing chemotherapy, specifically between TIGIT on CD8+ T 
cells and its receptor on cancer cells. TIGIT was identi-
fied as the primary inhibitory checkpoint molecule of 
CD8+ T cells, revealing that chemotherapy greatly affects 
the PDAC TME and potentially enhances resistance to 
immunotherapy [353].

V‑domain Ig‑containing suppressor of  T‑cell activation 
(VISTA)  VISTA is an original member of the B7 fam-
ily checkpoint molecules. It exerts a distinctive influence 
on cancer immune evasion through its distinct expres-
sion patterns and functions. In contrast to checkpoints 
that mainly control T-cell effector function and exhaus-
tion, VISTA has various roles. It aids in the functioning of 
MDSCs, governs the activation of NK cells, promotes the 
survival of Tregs, restricts antigen presentation on APCs, 
and also maintains T cells in a state of rest [354–356]. The 
expression of VISTA is associated with a more favorable 
prognosis in cases of pancreatic cancer [357]. Pancreatic 
cancer exhibits an increased expression of the immuno-
logical checkpoint VISTA. It has been shown that the acti-
vation of VISTA hinders the production of cytokines by T 
cells that are obtained from metastatic pancreatic cancers 
[358]. Given this, monoclonal antibodies against VISTA 
could potentially function as a beneficial immunothera-
peutic approach for individuals diagnosed with pancreatic 
cancer [357, 358].

CD39/CD73 axis  Extracellular adenosine is a metabolite 
that suppresses the immune system and affects adversely 
both innate and adaptive immune responses. It is accu-
mulated through the actions of two ectonucleotidases, 
CD39 and CD73. Adenosine exerts its immunosuppres-
sive effects by binding to A2A receptors on lymphoid and 
myeloid cells, as well as A2B receptors on myeloid cells. 
These A2B receptors are frequently overexpressed in can-
cer cells and have been found to promote tumor growth, 
spread, and resistance to chemotherapy [359, 360]. In 
PDAC, the levels of CD73 are notably elevated com-
pared to other types of cancer. This correlation is associ-
ated with negative clinical results [361]. The findings of 
a study highlight the significant role of CD39 and CD73 
in promoting PDAC progression. The expression of these 
ectonucleotidases was associated with worse survival 
outcomes in human PDAC samples and disrupted the 
positive impact of tumor-infiltrating CD8+ T cells. Fur-
thermore, targeting both CD39 and CD73 demonstrated 
superior anti-tumor activity compared to individual inhi-
bition, emphasizing the potential of these molecules as 
therapeutic targets in PDAC [362]. Several anti-CD73/
CD39 antibody-oriented clinical trials are underway, 
which will assess the effectiveness of agents like ole-

clumab or MEDI9447 (anti-CD73; NCT02503774), TTX-
030 (anti-CD39; NCT03884556), and CPI-006 or mup-
adolimab (anti-CD73; NCT03454451) [363] alone or in 
combination with other ICIs. Regarding NCT02503774, 
the study involved the treatment of 192 patients with ole-
clumab and durvalumab (anti-PD-L1), with no instances 
of dose-limiting toxicities during the escalation phase. 
The most frequently observed side effects were fatigue, 
diarrhea, and rash. While the escalation phase showed no 
objective response, the expansion cohorts demonstrated 
some positive response rates [364].

Bispecific antibodies (BsAbs)
BsAbs have been engineered to effectively engage two 
specific antigens at the same time. These specialized 
antibodies effectively modulate the immune response by 
redirecting and stimulating immune cells, blocking the 
co-inhibitory receptors on these cells, activating mole-
cules that enhance the immune response, interfering with 
specific signaling pathways, and employing a strategy of 
simultaneously targeting multiple cancer antigens [365]. 
BsAbs have been developed for pancreatic cancer treat-
ment, with examples such as anti-EGFR × HER2 [366], 
anti-CD3 × CEA [367], MCLA-128 (anti-HER2 × HER3 
BsAb; zenocutuzumab) [368], anti-CD3 × EGFR 
BsAb [369], anti-CD3 (Vγ9TCR) × HER2/Neu [370], 
XmAb22841 (anti-LAG-3 × CTLA-4; NCT03849469), 
XmAb23104 (anti-PD-1 × inducible co-stimulatory mol-
ecule [ICOS]) [371], ATOR-1015 (anti-CTLA-4 × OX40) 
[372], and KN046 (anti-CTLA-4 × PD-L1) [373]. BsAb 
targeting CD3 and EGFR-armed activated T cells have 
the ability to target and kill drug-resistant pancreatic 
cancer cells. Furthermore, the "priming" of these resist-
ant cells with BsAb-armed activated T cells enhances 
their responsiveness to chemotherapeutic drugs through 
modulation of ABC transporter expression [369]. These 
findings provide insight into the use of BsAbs for immu-
notherapy against PDAC. A trial tests XmAb23104’s effi-
cacy and safety in treating advanced solid tumors, both 
alone and with ipilimumab (NCT03752398). The study 
showed that XmAb23104 was generally well tolerated 
at doses up to 15 mg/kg in subjects with advanced solid 
tumors. Clinical activity was observed, including partial 
responses in three subjects and stable disease for over 12 
months in two subjects [371].

Cancer vaccines
There are several types of cancer vaccines, includ-
ing whole tumor cell vaccines, DC vaccines, peptide 
vaccines, DNA vaccines, and mRNA vaccines. While 
conventional immunotherapies may demonstrate effi-
cacy against cancers featuring identifiable surface anti-
gens specific to tumors, cancer vaccines possess the 



Page 30 of 66Farhangnia et al. Journal of Hematology & Oncology           (2024) 17:40 

capability to also encompass a wider range of intracel-
lular antigens for targeting purposes. Up to this point, 
the FDA has granted approval to a solitary therapeu-
tic vaccine for cancer treatment, namely sipuleucel-T 
(PROVENGE). This particular vaccine solely enhances 
patient survival in prostate cancer cases by a mere 4 
months [374].

Vaccination is being examined to activate or enhance 
pre-existing immune responses using agents like 
GVAX (pancreatic cell lines modified with GM-CSF) 
or CRS207 (live attenuated Listeria monocytogenes 
expressing MSLN), either alone or in combination with 
a mAb targeting the CD40 molecule to activate APCs 
[41]. In this section, we provide an overview of various 
types of cancer vaccines and underscore the significant 
studies conducted with these vaccines (Tables 6, 7).

Whole tumor cell vaccines
Utilizing a tumor cell vaccination is a simple and straight-
forward approach to tumor immunotherapy. The tumor 
cell vaccination contains both CD4+ helper T-cell and 
CTL epitopes. Algenpantucel-L (NLG0205) is an example 
of such a vaccine. Results from a phase II study demon-
strated that the combination of Algenpantucel-L with the 
adjuvants gemcitabine and 5-fluoruracil yielded an 86% 
survival rate at one year, a 51% survival rate at two years, 
and a 42% survival rate at three years [375]. Nevertheless, 
a study demonstrated that Algenpantucel immunother-
apy did not yield advantages for patients suffering from 
advanced PDAC, despite following the standard of care, 
neo-adjuvant chemotherapy, and chemoradiation [376].

To elicit T-cell immune responses against various 
tumor antigens, scientists manufactured a pancreatic 

Table 6  Categorization of cancer vaccines in the context of pancreatic cancer therapy

CEA: Carcinoembryonic antigen, DC: Dendritic cell, ENO1: α-Enolase, FAPα: Fibroblast activation protein alpha, HSP: Heat-shock protein, iPSC: Induced pluripotent 
stem cell, LAK: Lymphokine-activated killer, MSLN: Mesothelin, MUC1: Mucin-1, TAA: Tumor-associated antigen, TSA: Tumor-specific antigen, VEGFR: Vascular 
endothelial growth factor receptor, VNTRn: Variable number tandem repeat, WT1: Wilms’ tumor 1

Type Mechanism of action Cancer vaccine References

Whole tumor cell vaccine Irradiated tumor cells elicit an immune 
response targeting TSAs or TAAs, which are 
proteins expressed by tumor cells

Algenpantucel-L (NLG0205) [375]

Photothermal nanoparticle-loaded tumor 
cells

[607]

GVAX [41, 381, 608]

DC vaccine DCs are pulsed with TAAs or TSAs, presenting 
them to effector T cells, resulting in specific 
immune responses against tumor cells 
expressing corresponding tumor antigens

MUC1-pulsed DCs [383]

WT1-pulsed DCs [388]

α-Galactosylceramide-pulsed DCs [392]

MAGE-A3-pulsed DCs [609]

Mesothelioma lysate-pulsed DCs [390]

DC vaccine plus LAK cells [391]

DCs loaded with mRNA encoding CEA [610]

Peptide vaccine Epitope, peptide, or protein expressed 
by pancreatic tumor cells elicits robust 
immune responses

RAS oncogene-based vaccine: GI-4000, TG01 [611–614]

HSP-peptide complex-based vaccines: 
HSPPC-96

[615]

Survivin-based vaccine: AYACNTSTL [616]

VEGFR-based vaccine: VXM01 [404, 617, 618]

Gastrin-based vaccine: G17DT [619, 620]

Telomerase-based vaccine: GV1001 [393, 394]

DNA vaccine Transferring a DNA into an organism’s system 
with the aim of producing an antigen, which 
in turn triggers a safeguarding immune 
response

ENO1 DNA vaccine [397, 398]

MUC1-VNTRn [399]

Chimeric DNA encoding FAPα and survivin [400]

mRNA vaccine The mRNA encoding TSAs, TAAs, and tumor 
neo-antigens induce a robust immune 
response

RO7198457 (Autogene Cevumeran) [401]/NCT04161755

Viral/bacterial vector-based vaccine This type of vaccine use an immunogenic 
viral or bacterial vectors to deliver the mRNA 
encoding TAAs or TSAs

Heat-killed whole cell vaccine of Mycobacte-
rium Obuense: IMM101

[621, 622]

Live-attenuated Listeria Monocytogenes 
encoding MSLN: CRS-207

[41]

Intracellular delivering Salmonella [403]

Stem cell-based vaccine Induction of anti-tumor immunity 
by oncofetal antigens

iPSC-based cancer vaccine, comprised 
of autologous iPSCs and CpG

[406]
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cancer vaccine called GVAX. This particular vaccine, 
classified as allogeneic, consists of human GM-CSF-
secreting whole tumor cells [377–380]. A study’s findings 
reveal that neo-adjuvant and adjuvant GVAX, with or 
without nivolumab (an anti-PD-1 monoclonal antibody) 
and urelumab (an anti-CD137 agonist), are safe. Fur-
thermore, treating with GVAX alongside nivolumab and 
urelumab leads to a remarkable increase in tumor-infil-
trating activated effector T cells. This combination also 
demonstrates efficacy by substantially enhancing DFS in 
comparison to GVAX with or without nivolumab [381].

DC vaccines
DCs that were isolated from the patient’s peripheral blood 
were loaded with tumor-associated antigens (TAAs) or 
tumor-derived mRNA. After the administration of these 
vaccines, the modified DCs proceed to the lymph nodes, 
where they transmit antigens to T lymphocytes and con-
currently induce co-stimulatory signals [382]. In a study, 
DCs were gathered from 7 patients who had stage III/IV 
pancreatic cancer through the employment of apheresis. 
Afterwards, these collected DCs underwent the pro-
cess of being pulsed with MUC-1 peptide. The injection 
of MUC-1-pulsed DCs in these patients exhibited both 
safety and efficacy, successfully triggering an immune 
response towards the MUC-1 [383].

Many pancreatic cancer cells exhibit overexpression of 
the Wilms’ tumor 1 (WT1). Several studies assessed the 
effectiveness of using DCs pulsed with WT1 peptides 
and chemotherapy in treating advanced pancreatic can-
cer [384–388]. A retrospective multicenter analysis was 
conducted on 255 patients with pancreatic cancer. These 
patients were receiving standard chemotherapy and a DC 
vaccine. This study showed that in patients with pancre-
atic cancer who received a DC vaccine, a positive ery-
thema reaction at the site of DC vaccine injection was 
linked to better survival [389].

The impact of using mesothelioma lysate-loaded DCs 
in combination with FGK45 (a CD40 agonist) was exam-
ined in PDAC mice models. This innovative technique 
provoked a remarkable alteration in the transcriptome of 
the tumor, involving the suppressive indicators on CD8+ 
T cells, and resulted in a considerable improvement in 
survival [390]. The administration of lymphokine-acti-
vated killer (LAK) cell therapy significantly extended the 
survival of patients with advanced pancreatic cancer who 
underwent DC vaccine-based immunotherapy along with 
gemcitabine. Nevertheless, the use of immunotherapy on 
its own enhanced the quantity of cancer antigen–target-
ing CTLs while decreasing the presence of Tregs [391]. 
In  vivo, the induction of anti-tumor immunity against 
pancreatic cancer is achieved through DC vaccines that 
have been pulsed with alpha-galactosylceramide [392].

Peptide vaccines
The peptide vaccine candidate GV1001 possesses cer-
tain noteworthy cell-penetrating peptide character-
istics. GV1001 is generated from a peptide derived 
from a reverse-transcriptase portion of telomerase, 
or hTERT. In a phase II study, a significant immune 
response was observed in a majority of patients with 
advanced pancreatic cancer who received GV1001, 
and these immune responders had a notably improved 
median survival compared to non-responders [393]. 
However, a subsequent phase III clinical trial combin-
ing chemotherapy with the GV1001 vaccine did not 
yield a significant improvement in OS [394]. Another 
peptide cancer vaccine, KIF20A-66, was also examined 
in a phase I/II trial and found to be well-tolerated. The 
mOS and median progression-free survival (mPFS) 
were reported as 142 days and 56 days, respectively 
[395]. Recently, the phase 1 study of ELI-002 2P in 
patients with KRAS-mutated pancreatic cancer dem-
onstrated promising results. ELI-002 2P is a cancer 
vaccine that specifically targets lymph nodes and con-
sists of three components. These components include 
modified G12D and G12R mKRAS long peptides, 
which have been modified with amphiphiles, and an 
amphiphile-modified TLR9 agonistic CpG-7909 DNA. 
The therapy was well-tolerated, induced significant 
T-cell responses, and resulted in biomarker clearance 
and improved relapse-free survival. These findings sug-
gest that ELI-002 2P has the potential to be an effective 
treatment option for patients with immunotherapy-
recalcitrant KRAS-mutated tumors [396].

DNA vaccines
Several studies have shown that DNA vaccines target-
ing TAAs can effectively prolong survival in mice with 
PDAC. Targeting α-Enolase (ENO1) with a DNA vac-
cine has been particularly effective [397]. In addition, 
combining this DNA vaccine with chemotherapy using 
gemcitabine has shown improved efficacy against mul-
tiple TAAs, including ENO1, glyceraldeheyde-3-phos-
phate dehydrogenase (G3P), keratin, type II cytoskeletal 
8 (K2C8), and far upstream binding protein 1 (FUBP1) 
[398]. Another DNA vaccine targeting mucin 1-vari-
able number tandem repeat (MUC1-VNTRn) has dem-
onstrated strong cytotoxic effects in both in  vivo and 
in  vitro experiments [399]. Furthermore, a chimeric 
DNA vaccine that targets human fibroblast activation 
protein alpha (FAPα) and survivin has been shown to 
reduce immunosuppressive cells and increase TILs, 
thereby creating a more favorable TME for immune 
responses against pancreatic tumors [400].
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RNA vaccines
Personalized cancer vaccines made of mRNA include 
mRNA that encodes specific tumor-specific antigens 
(TSAs) and TAAs. Subsequently, APCs take in the 
mRNA and exhibit the matching peptide antigens, which 
prompts immune responses encompassing CTLs and 
memory T cells. RO7198457, also known as BNT122, 
represents an mRNA-based cancer vaccine that aims 
to elicit T-cell-triggered immune reactions against 
tumor neo-antigens. Various clinical studies are sched-
uled to be conducted among individuals diagnosed 
with diverse types of cancer, such as pancreatic can-
cer (NCT04161755 and NCT05968326), solid tumors 
(NCT03289962), melanoma (NCT03815058), and colon 
cancer (NCT04486378). However, many of these trials’ 
results have not been released yet. Next, the outcomes of 
the clinical trial NCT04161755 are explained.

An mRNA vaccine called autogene cevumeran was 
generated using uridine mRNA-lipoplex nanoparticles. 
After the surgical procedure, a combination therapy 
that included atezolizumab, the mRNA vaccine (with a 
maximum of 20 neo-antigens per patient), and chemo-
therapy was conducted. The results indicated that vac-
cine-enhanced T cells, which accounted for as much 
as 10% of the total T cells in the bloodstream, experi-
enced re-expansion through a vaccine booster. These re-
expanded cells consisted of durable, polyfunctional CD8+ 
T cells that targeted pancreatic cancer neo-antigens. 
After a median follow-up period of 18 months, patients 
who exhibited vaccine-enhanced T cells demonstrated a 
significantly prolonged median recurrence-free survival 
when compared to the control group [401].

Viral/bacterial vector‑based vaccines
These cancer vaccines use modified viruses or bacteria 
as vectors to deliver genetic code for tumor antigens into 
human cells. The infected cells then produce tumor anti-
gens, which trigger an immune response in the host. The 
bacterial vector can be used to treat castration-resistant 
prostate cancer, and the bacterial-based cancer vaccine 
has shown promising anti-tumor effects in clinical tri-
als [402]. One of the widely recognized cancer vaccines 
of this kind is CRS207, which is a live attenuated strain 
of Listeria monocytogenes engineered to express MSLN. 
The utilization of the CRS207 vaccine in individuals 
diagnosed with metastatic pancreatic cancer has demon-
strated promising outcomes in terms of prolonged sur-
vival rates while causing minimal detrimental effects to 
patients [41]. The utilization of an exogenous immuniza-
tion antigen, administered via Salmonella bacteria acting 
as a vector, effectively redirects the attention of CD8+ T 
cells towards cancer cells within the cytoplasm of tumor 
cells. Consequently, this approach leads to the complete 

eradication of pancreatic tumors, the enhancement of 
anti-tumor immunity, and a significant extension in sur-
vival duration, as demonstrated in PDAC mouse models 
[403]. Moreover, VEGFR-2, a target for anti-angiogenic 
intervention, is expressed on tumor vasculature. VXM01, 
an oral tumor vaccine using attenuated Salmonella with 
a VEGFR-2 expression plasmid, was tested in a phase I 
trial with advanced pancreatic cancer patients. The study 
found that VXM01 was well tolerated, with no dose-
limiting toxicities and significant increases in VEGFR2-
specific T effector responses. Vaccinated patients showed 
reduced tumor perfusion and elevated serum biomarkers 
indicative of anti-angiogenic activity, which correlated 
with preexisting VEGFR2-specific T-cell levels [404].

Stem cell‑based vaccines
The fact that cancer cells and embryonic tissues have 
several similar cellular and molecular characteristics sug-
gests that we can potentially utilize iPSCs to stimulate 
anti-tumor responses within cancer vaccines. Indeed, 
iPSCs share gene expression profiles with tumor cells. 
The prevention of tumor growth in murine breast can-
cer, mesothelioma, and melanoma models is achieved by 
iPSC vaccines. Acting as an adjuvant, the iPSC vaccine 
effectively hinders the reoccurrence of melanoma and 
decreases the spread of tumors [405]. Research demon-
strates that a cancer vaccine derived from iPSCs stimu-
lates a defensive immune response in a PDAC mouse 
model. Furthermore, this immune response is linked to 
heightened CD8+ effector and memory T cell reactions 
against tumor cells, the generation of antibodies specifi-
cally targeting cancer cells, and a reduction in immuno-
suppressive Tregs composed of CD4+ T cells [406].

Strategies based on targeting myeloid cells and CAFs
In this section, our primary objective is to elucidate the 
therapeutic potential associated with specifically tar-
geting myeloid cells in the context of pancreatic cancer 
(Table 8).

Targeting macrophages
Therapies that retrain macrophages to engulf and destroy 
tumor cells may provide a new approach to treating 
cancer. Antibodies that stimulate the phagocytic pro-
gram in macrophages were initially found in pancreatic 
cancer patients treated with anti-CD40 agonistic anti-
bodies [407]. It was believed that these antibodies only 
affected macrophages, but further research showed they 
also improved the function of DCs and T-cell priming 
[408, 409]. However, a phase II trial found that an anti-
CD40 antibody called APX005M (sotigalimab) did not 
improve clinical outcomes in pancreatic cancer patients, 
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suggesting that its mechanism of action may be different 
in humans [410]. As mentioned earlier, CD47 is a pro-
tein found on cancer cells that prevents them from being 
engulfed by macrophages. However, blocking CD47 
alone does not have a significant effect on some types 
of solid tumors [411]. Macrophages can be stimulated 
to have anti-cancer properties, including engulfing can-
cer cells expressing CD47, by using a specific molecule, 
CpG oligodeoxynucleotide (an agonist for the TLR9) 
[412]. The utilization of a specific TLR9 ligand known 
as K3-SPG for in  situ vaccination prompts a durable 
immune response and enhances the effects of both local 
and systemic immunotherapy in preclinical models [413], 
which may be associated with overcoming T-cell exhaus-
tion [414]. Moreover, signal transduction by the CSF-1R 
in macrophages could be a useful target for improving 
the immune response in pancreatic tumors and enhanc-
ing the effectiveness of immunotherapy. Blocking the 
CSF1/CSF-1R pathway eliminates TAMs from tumors 
and reprograms remaining macrophages to enhance 
anti-tumor immunity. This blockage improves interferon 
responses, increases infiltration of CTLs, and prevents 
tumor growth [159]. In a trial investigating the safety 
and immunologic impact of GVAX in combination with 
cyclophosphamide, pembrolizumab, and IMC-CS4 (a 
CSF-1R inhibitor), nine patients were enrolled, with two 
experiencing severe immune-related side effects (diar-
rhea and rash). The study reported a median DFS of 
12.6 months and OS of 20.4 months, with 78% achieving 
major pathological response post-surgery. The primary 
immunologic endpoint was met, with 75% of patients 
showing a significant increase in CD8+ T cells and gran-
zyme B+ CD8+ T cells following triple therapy. No sig-
nificant change in myeloid cell density was observed, 
suggesting macrophages were reprogrammed rather than 
depleted (NCT03153410) [415].

PDAC is a type of cancer that spreads to the liver with 
the help of macrophages. The process of macrophages 
engulfing dead cells, known as efferocytosis, promotes 
liver metastasis by changing the macrophages. A protein 
called progranulin in macrophages affects their ability to 
break down cells, leading to a change in the macrophages 
and an increase in arginase 1 levels. Blocking efferocy-
tosis or reducing progranulin levels can decrease liver 
metastasis and enhance the function of CD8+ T cells 
[416]. Targeting these mechanisms may prevent the 
spread of PDAC to the liver.

Targeting CAFs
Although previous attempts to target CAFs in PDAC have 
failed, there is renewed interest in targeting subgroups 
of fibroblasts or their secreted products. Schwann cells 
provoke CAFs in the microenvironment of PDAC [417]. 

Suppressing stromal TGF-βR2 leads to a decrease in IL-6 
production from CAFs, which in turn results in dimin-
ished STAT3 activation in tumor cells and a reversal of 
the immunosuppressive environment [418]. Also, In vivo 
neutralization of TGF-β remodels CAF dynamics, reduc-
ing myofibroblasts and promoting interferon-responsive 
fibroblasts. This enhances anti-tumor immunity and the 
effectiveness of PD-1 immunotherapy [419].

It is suggested that vitamin D might play a role in 
inducing a state of rest or inactivity in fibroblasts. A study 
indicates that the stroma of human pancreatic tumors 
contains the vitamin D receptor (VDR). Using calcipo-
triol, a ligand of VDR, as a treatment significantly reduces 
inflammation and fibrosis in both pancreatitis and tumor 
stroma. The study demonstrates that VDR plays a crucial 
role as a transcriptional regulator of PSCs, aiding them to 
revert to a dormant state. This results in stromal altera-
tions, enhanced intratumoral delivery of the chemother-
apy drug gemcitabine, a decrease in tumor size, and a 
survival rate increase of 57% compared to chemotherapy 
alone [420]. In light of this finding, two phase II clinical 
trials are currently in progress for patients with PDAC. 
The first trial (NCT03520790) aims to combine paricalci-
tol with gemcitabine and nab-paclitaxel, while the second 
trial (NCT02754726) seeks to combine nivolumab with 
gemcitabine, paclitaxel, and cisplatin. These trials are 
actively recruiting participants to further investigate the 
potential benefits of these treatment approaches.

IL-1β has multiple effects on the TME, including pro-
moting the development of CAFs. These CAFs, in turn, 
produce IL-6, which creates an environment that helps 
tumors evade the immune system and allows tumor cells 
to survive for longer [231, 421]. Not only immune cells, 
but PDAC tumor cells themselves can also produce IL-1β. 
In preclinical studies, blocking IL-1β has shown promis-
ing results when combined with blocking PD-1 [422]. A 
phase I clinical trial (NCT04581343) evaluated the effi-
cacy of combining gemcitabine and nab-paclitaxel with 
two antibodies—one that blocks IL-1β (canakinumab) 
and another that blocks PD-1 (spartalizumab). The most 
common severe AEs (Grade 3/4) included neutropenia 
(60%) and anemia (50%), with no fatalities. One patient 
discontinued spartalizumab due to grade 3 pneumonitis. 
There were 3 confirmed partial responses, 5 patients with 
stable disease, and 2 patients with disease progression as 
their best response (n = 10), and a 1-year OS rate of 60% 
was reported. Both patients who responded and those 
who did not showed CD8+ T cell activation in periph-
eral blood and increased serum levels of IFN-induced 
chemokines CXCL9/10 [423].

CAFs have elevated levels of the protein PIN1. PIN1 
promotes several cancer-related pathways by affecting 
the structure of phosphorylated proteins. Blocking PIN1 
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with drugs has shown promise in treating cancer. Sev-
eral small molecule drugs, such as all-trans retinoic acid 
(ATRA), have been identified as PIN1 inhibitors and have 
been used to study their functions in cancer development 
[424, 425]. Clinical trials have shown positive results 
when combining ATRA with chemotherapy in patients 
with advanced pancreatic cancer [426]. PIN1 inhibi-
tion also reduces the formation of fibrous tissue within 
tumors and increases sensitivity to chemotherapy drugs. 
In addition, PIN1 inhibition may enhance the effective-
ness of immunotherapy [425, 427]. Animal models have 
demonstrated reduced tumor growth when treated with 
a combination of a PIN1 inhibitor AG17724, an antibody 
against FAPα, and DNA aptamers that recruit specific 
immune cells [424].

Placental growth factor (PlGF) is a protein expressed 
mainly in the placenta. Blocking PlGF in animal mod-
els of intrahepatic cholangiocarcinoma led to improved 
survival by decreasing desmoplasia and enriching qui-
escent CAFs [428]. PlGF also promotes liver fibrosis, 
tumor angiogenesis, and cancer cell metastasis [429]. In 
pancreatic cancer, PlGF is upregulated by chemotherapy, 
leading to the generation of extracellular matrix by CAFs. 
Combining atezolizumab (an anti-PD-L1 mAb) with 
PlGF/VEGF inhibition targeting CD141+ CAFs enhances 
the efficacy of chemotherapy [429].

Reprogramming DCs
The restoration of the expression of peptide-MHC com-
plexes and co-stimulatory molecules is achieved through 
DC reprogramming. This reprogramming enabled the 
display of tumor antigens originating within the context 
of MHC-I, ultimately enhancing the targeted elimina-
tion by CD8+ CTLs [430]. Studies in mice have demon-
strated that cDCs play a crucial role in initiating immune 
responses specific to tumors by CD8+ T lymphocytes. 
However, pancreatic cancer lacks an adequate presence of 
these cDCs [130, 431]. In comparison to lung adenocarci-
noma mouse models, models of PDAC displayed a nota-
ble scarcity of CD103+ cDCs. Following treatment with 
FMS-like tyrosine kinase 3 ligand (FLT3L), which aug-
ments the number of intratumoral cDCs, mouse models 
of PDAC showed renewed sensitivity to CD40 agonist 
antibody and radiation therapy [431]. Currently, a trial 
is being conducted to investigate the potential of com-
bining CDX-1140, a CD40 agonist antibody, with FLT3L 
(CDX-301) in patients with PDAC (NCT03329950).

The activation of DCs can be provoked by the death of 
tumor cells, and the subsequent ingestion of fragments 
from these tumor cells also triggers regulatory processes 
in DCs that hinder their interaction with T cells. By sub-
jecting DCs to microbial products that stimulate TLR 
signaling, such as pIpC or CpG DNA, which imitate viral 

nucleic acid, this regulatory function can be bypassed. 
Hence, innate immune adjuvants are incorporated into 
vaccination strategies. Additionally, targeted medications 
that affect the pathways of DNA replication and repair 
can activate the STING pathway, which subsequently 
stimulates the production of IFN-I and enhances the acti-
vation of DCs [432, 433]. As a result, in animal models of 
pancreatic cancer, the administration of STING agonists 
boosts inflammation in the surrounding immune envi-
ronment and reduces tumor load [434]. Moreover, using 
PtIV-MSA-2 conjugates containing cisplatin and a STING 
agonist is effective against pancreatic cancer, leading 
to increased immune cell infiltration and activation in 
tumor tissues [435].

The enforcement of expression of the transcription 
factors PU.1, IRF8, and BATF3 (PIB) is adequate to 
trigger the cDC1 phenotype. By this reprogramming 
through PIB, cancer cells are transformed into capable 
APCs, offering an approach to counteract the strate-
gies employed by tumors to evade immune surveillance. 
These reprogrammed DCs were capable of presenting 
endogenous tumor antigens on MHC-I and facilitating 
targeted killing by CD8+ T cells [430].

Targeting immunosuppressive MDSCs
There is significant synergy between PD-1 blockade and 
the CD11b agonist as it substantially decreases the accu-
mulation of the majority of myeloid cell types in PDAC 
mice models [436]. Furthermore, CD11b agonists like 
GB1275 cause reprogramming of the innate immune 
system, leading to an enhanced response of pancreatic 
cancer to immunotherapies [341]. Mice that were admin-
istered CCR2 inhibitors specifically aimed at circulating 
monocytes experienced a reduction in the PDAC tumor 
load [153]. A study found the ideal dose of the CCR2 
inhibitor PF-04136309 to be used alongside chemother-
apy in a clinical trial for pancreatic cancer patients. The 
combination therapy was found to be safe and well-tol-
erated by the patients. The study also discovered that the 
inhibitor caused monocytes to accumulate in the bone 
marrow of patients, leading to a decrease in circulating 
monocytes and M-MDSCs in the TME. This resulted in 
significant reductions in the size of the primary tumors 
[437]. Nevertheless, the combination of nab-paclitaxel/
gemcitabine along with PF-04136309 resulted in notable 
pulmonary toxicity and failed to demonstrate a favorable 
indication [438]. The signaling of CXCR2 is found to be 
increased in myeloid cells. The absence of CXCR2 leads 
to a decrease in metastasis and its inhibition extends the 
period of survival without tumors in mice. Also, the sup-
pression of CXCR2 improves the infiltration of T cells 
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and makes them more responsive to anti-PD-1 therapy 
[439].

Gut microbiome in modulating immune 
checkpoint blockade
Preclinical research on mice with sarcoma, mela-
noma, and colon cancer revealed that the most effective 
responses to anti-CTLA-4 and anti-PD-L1 treatments 
were reliant on the existence of certain species of gut 
bacteria. This underscores the connection between the 
gut microbiome and the success of immune checkpoint 
therapy [440–444]. The connection between certain gut 
bacteria and the immune response has also been noted in 
individuals with cancer. These bacteria impact the opera-
tion and maturation of immune cells in lymph nodes 
or within the TME, thus dictating the success of ICB 
[445]. Specific gut bacteria have been identified to affect 
immune responses in cancer. For instance, Bacteroides 
fragilis can trigger TH1 responses and assist in the devel-
opment of DCs in tumors, enhancing the effectiveness 
of anti-CTLA-4 treatment. Bifidobacterium can modify 
the activation of DCs and amplify the activity of CD8+ T 
cells that are specific to the tumor. Akkermansia mucin-
iphila can augment the penetration of particular CD4+ T 
cells into tumors and elevate the proportion of effector 
to regulatory CCR9+CXCR3+CD4+ T cells [22, 440, 441, 
446].

The fact that pancreatic cancer tissues contain a 
unique microbial fingerprint that aids in acquiring can-
cer characteristics and influences the long-term survival 
of patients has now been widely accepted and acknowl-
edged [447–449]. Pancreatic cancer progression and 
the effect of particular treatments have been linked to 
separated alterations observable in the microbiome of 
the gut and tumor [442, 450, 451]. For instance, a trypto-
phan metabolite derived from tryptophan by gut micro-
biota, known as indole-3-acetic acid (3-IAA), is linked 
to improved responses to treatment. Alterations in diet 
or the administration of 3-IAA enhanced the effective-
ness of chemotherapy in mouse models of PDAC. This 
effectiveness is associated with myeloperoxidase, which 
oxidizes 3-IAA, resulting in an increase in ROS and a 
decrease in autophagy in cancer cells, thereby inhibiting 
their proliferation [452]. In another study, the oncogenic 
mutation KRAS G12D boosts IL-33 production, pro-
moting type 2 immunity in PDAC. The tumor’s mycobi-
ome further increases IL-33 secretion. This IL-33 then 
recruits and activates TH2 cells and innate lymphoid cells 
2 (ILC2s) in the PDAC TME. Remarkably, either deleting 
IL-33 genetically or administering anti-fungal treatment 
leads to PDAC tumor regression [453]. This highlights 
the crucial roles of IL-33 and the tumor’s mycobiome in 
PDAC progression and potential treatment strategies.

Multiple studies conducted on murine models of 
PDAC have demonstrated that eliminating the gut 
microbiome with antimicrobial agents could poten-
tially amplify the susceptibility of tumors to ICIs and 
diminish the overall burden of tumors [70, 454, 455]. 
While the majority of the literature concentrates on the 
potential employment of microbiota-centered interven-
tions together with chemotherapy and ICB, it emerges 
as plausible that microbiome modulation may also be 
employed concurrently with CAR T cells, antibody–
drug conjugates, and immunotherapies that are yet to 
be established [456]. A multitude of current research 
and clinical trials are exploring the possibility of modi-
fying the microbiome to boost the efficacy of ICB. It has 
been demonstrated that fecal microbial transplantation 
can enhance ICB outcomes and reduce associated AEs 
in patients [457–459]. Furthermore, altering the diet is 
a potential approach to adjust the gut microbiome, and 
an increasing number of preclinical studies indicate its 
potential to enhance the response to ICB [460].

A study suggests that the composition of the tumor 
microbiome in resected pancreatic adenocarcinoma 
patients plays a significant role in long-term survival. 
The higher alpha-diversity in the tumor microbiome of 
long-term survivors and the identified microbiome sig-
nature predictive of long-term survivorship highlight 
the importance of the tumor microbiota in influenc-
ing the natural history of the disease. Furthermore, the 
findings from fecal microbiota transplantation experi-
ments demonstrate the ability to modulate the tumor 
microbiome and affect tumor growth and immune infil-
tration, indicating the potential for targeted interven-
tions to improve patient outcomes [459]. Moreover, in 
individuals with pancreatic cancers, a higher presence 
of Megasphaera within the tumor has been linked to 
improved survival rates following anti-PD-1 therapy 
[461]. Additionally, bacterial elimination in PDAC 
leads to immune changes, reducing MDSCs, promot-
ing CD8+ T-cell activation, and increasing differen-
tiation of TH1 cells and M1 macrophages. This also 
enhances immunotherapy effectiveness by increasing 
PD-1 expression. The PDAC microbiome induces TLRs 
driven-T cell anergy, suggesting the microbiome’s role 
in immune suppression and its potential as a therapeu-
tic target [70].

All in all, the association of pancreatic cancer with gut 
and tumor microbiome in the context of cancer immu-
notherapy is an interesting research area in treatment, 
prognosis, and predicting response to immunotherapy. 
Approaches like modulating the gut microbiome, fecal 
microbial transplantation, and dietary regimen-ori-
ented interventions might improve the clinical outcome 
in patients undergoing cancer immunotherapy.
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CRISPR/Cas9 and pancreatic cancer 
immunotherapy
CRISPR/Cas9, a precise gene editing tool, is revolution-
izing cancer research and treatment. The combination 
of CRISPR/Cas9 and cancer immunotherapy may fur-
ther broaden the application of immunotherapy to more 
cancer patients, and ongoing clinical trials are using the 
CRISPR/Cas9 system in immune cells to modify genomes 
in a target-specific manner. The CRISPR/Cas9 system’s 
ability to create site-specific, highly efficient gene knock-
out makes it a desirable tool to address long-standing 
challenges in cancer treatment, such as T cell exhaustion 
and TME immunosuppression [462, 463]. In the context 
of pancreatic cancer, there are numerous studies utilizing 
CRISPR/Cas9 for gene knockout (Fig. 5) [464–468]. The 
utilization of CRISPR/Cas9 methodology to disrupt the 
CD73 gene in both human and murine cellular models 
of pancreatic cancer demonstrated that CD73 inactiva-
tion impeded cellular proliferation and motility, leading 

to a halt in the G1 phase of the cell cycle. Additionally, it 
was observed that deletion of CD73 hindered the ERK/
STAT3 signaling pathway while stimulating the E-cad-
herin pathway [469]. A study found that mesenchymal-
like pancreatic cancer cells are more resistant to immune 
cell-mediated killing than the parental epithelial-like 
cells. In this study, the researchers used CRISPR-Cas9 
knockout screens to identify the genes involved in this 
resistance. They discovered several mesenchymal-specific 
regulators, such as Egfr and Mfge8, that were responsible 
for inhibiting immune cell function [470]. The applica-
tion of CRISPR/Cas9 technology to introduce targeted 
BRCA1/2 mutations enables the reinstatement of olapa-
rib responsiveness in pancreatic cancer cells [471]. Apart 
from potential challenges and limitations of CRISPR/
Cas9 such as off-target toxicity, Cas9-related immuno-
genicity, and off-target mutations, these studies highlight 
the useful application of this genome editing tool in the 
context of pancreatic cancer immunotherapy.

Fig. 5  The emerging role of genome editing technology CRISPR/Cas9 in pancreatic cancer treatment. Utilizing CRISPR/Cas9 technology, 
autologous T cells are genetically modified to eliminate or alter genes that contribute to T cell exhaustion or resistance to immunotherapy. Once 
modified, these cells are reinfused into the patient, effectively improving the eradication of pancreatic ductal adenocarcinoma (PDAC) cells. TAA: 
Tumor-associated antigen; TCR: T cell receptor; TSA: Tumor-specific antigen
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Potential strategies improving efficacy 
of pancreatic cancer immunotherapies
Combination therapy
Pancreatic cancer presents a range of mechanisms that 
resist immunotherapy. Therapies that target only one 
mechanism have not yielded successful results. The 
research proposes the optimization of the benefits of 
current agents through logical combinations. The sug-
gested approach for advanced immunotherapy for PDAC 
involves combinations that amplify immune activation, 
inhibit immune checkpoints, improve the TME, and are 
compatible with conventional cytotoxic therapy [472, 
473]. There are a plethora of combination therapies for 
cancer immunotherapy of PDAC (Tables  5, 7, 8, 9). For 
example, BMS-687681, which acts as a dual antagonist 
for CCR2/5, was used in conjunction with anti-PD-1 
and radiotherapy. The results indicated an increase in 
the infiltration of intratumoral effector and memory T 
cells, while simultaneously observing a decrease in the 
infiltration of Tregs, M2 TAMs, and MDSCs [474]. Over-
all, combination therapies could improve the efficacy of 
immunotherapies due to providing a potential for syner-
gistic effects.

Costimulatory molecule agonists
CD40 activation and using CD40 agonists are a novel 
clinical opportunity for cancer immunotherapy [407, 
475–478]. There are several agonistic anti-CD40 anti-
bodies, such as SGN-40, SEA-CD40, selicrelumab, 
APX005M, CDX-1140, and ADC1013, applicable in 
clinical trials [477]. In a phase I clinical trial, the com-
bination of an agonistic anti-CD40 antibody and gem-
citabine for treating PDAC was tested. The treatment 
showed only a slight effect, but its safety was confirmed 
[479]. The combination of the CD40 agonist and gem-
citabine could potentially overcome resistance to anti-
PD-1/CTLA-4 therapy by increasing the accumulation 
of CD8+ T cells that fight against tumors in PDAC [480]. 
A study found that selicrelumab (an agonist CD40 anti-
body) significantly altered the TME in PDAC patients. 
Selicrelumab-treated tumors were enriched with T cells 
(82%) compared to untreated (37%) and chemotherapy/
chemoradiation-treated tumors (23%). Additionally, 
selicrelumab reduced tumor fibrosis, decreased M2-like 
tumor-associated macrophages, and matured intratu-
moral DCs. The treatment had an acceptable toxicity 
profile and resulted in an overall survival of 23.4 months 
[475]. Moreover, a study demonstrates that using a nano-
fluidic drug-eluting seed (NDES) for sustained, low-dose 
intratumoral delivery of CD40 monoclonal antibody can 
alter the TME and reduce tumor size in mouse models 
of PDAC [478]. These findings elucidate the therapeutic 

mechanisms of CD40 targeting and modification of the 
TME in pancreatic cancer, aiming to enhance the effec-
tiveness of immunotherapies against cold tumors like 
PDAC.

Neutralizing tumor acidity
Acidosis plays a significant role as an immunosuppres-
sive mechanism that contributes to the proliferation of 
PDAC and immune escape [481]. A study investigates 
the application of L-DOS47, a urease immuno-conjugate, 
for the purpose of neutralizing the acidity of tumors and 
enhancing the response to immunotherapy. L-DOS47 
attaches to CEACAM6, a protein that is predominantly 
present in gastrointestinal cancers, and increases the 
local pH by breaking down urea into two NH4 + and one 
CO2. This was experimented on a model of pancreatic 
tumors in mice, and it was observed that L-DOS47 ele-
vated the extracellular pH of the tumor. When L-DOS47 
was used in conjunction with anti-PD-1, it significantly 
boosted the effectiveness of the monotherapy, leading 
to a reduction in tumor growth for a duration of up to 4 
weeks [482]. This study paves the way for using L-DOS47 
in future clinical trials.

Targeting desmoplastic barriers of TME
A significant obstacle to the effectiveness of cancer 
immunotherapies in PDAC is the presence of desmoplas-
tic barriers within the stromal ECM, such as hyaluronan. 
These mechanical barriers encapsulate the tumor cells, 
thereby restricting their exposure to immunotherapeutic 
agents. The targeted removal of hyaluronan in a mouse 
model of PDAC resulted in better vascular permeability 
and enhanced drug delivery. This led to increased effec-
tiveness of chemotherapy when combined with the cyto-
toxic chemotherapy drug, gemcitabine [483]. A study 
found that combining PEGPH20 (a PEGylated recom-
binant human hyaluronidase), focal adhesion kinase 
inhibitor, and anti-PD-1 antibody treatments improved 
survival in PDAC-bearing mice, increased T-cell infiltra-
tion, altered T-cell phenotype and metabolism, reduced 
granulocytes, and decreased CXCR4-expressing mye-
loid cells. Additionally, adding an anti-CXCR4 antibody 
significantly reduced metastatic rates in a PDAC liver 
metastasis model [484].

Innate immune activation
A useful strategy in combating pancreatic cancer involves 
the stimulation of the body’s innate immune system to 
bolster its anti-cancer defenses. This is accomplished 
by, for instance, utilizing a genetically altered version 
of Listeria monocytogenes, which is engineered to pro-
duce MSLN. Alongside this, a vaccine named GVAX 
is used. The synergistic effect of this combination has 



Page 41 of 66Farhangnia et al. Journal of Hematology & Oncology           (2024) 17:40 	

Ta
bl

e 
9 

Ke
y 

co
m

bi
na

tio
n 

th
er

ap
ie

s 
of

 P
D

A
C

Im
m

un
ot

he
ra

pe
ut

ic
 

st
ra

te
gy

Im
m

un
ot

he
ra

pe
ut

ic
 

ag
en

ts
Co

m
bi

na
tio

n 
th

er
ap

y
St

ud
y 

de
si

gn
Re

su
lts

Re
fe

re
nc

es

Ca
nc

er
 v

ac
ci

ne
 

an
d 

IC
B

G
VA

X 
ca

nc
er

 v
ac

ci
ne

 
an

d 
ni

vo
lu

m
ab

U
re

lu
m

ab
 (a

nt
i-C

D
13

7 
[4

-1
BB

] a
go

ni
st

)
M

ur
in

e 
sy

ng
en

ei
c 

m
od

el
 o

f m
et

as
ta

tic
 

PD
A

C
A

ct
iv

at
ed

, e
ffe

ct
or

 m
em

or
y 

T 
ce

lls
 ↑

Co
nv

er
si

on
 o

f T
 c

el
ls

 fr
om

 a
n 

ex
ha

us
te

d 
st

at
us

 to
 a

n 
ac

tiv
at

ed
 s

ta
tu

s 
↑

Ex
pr

es
si

on
 o

f c
os

tim
ul

at
or

y 
m

ol
ec

ul
es

 
C

D
13

7 
an

d 
O

X4
0 

on
 T

 c
el

ls
 ↑

Ex
pr

es
si

on
 o

f I
FN

-γ
 in

 E
O

M
ES

+
 e

xh
au

st
ed

 
TI

Ls
Su

rv
iv

al
 ↑

[6
26

]

IC
B

A
nt

i-P
D

-1
 a

nt
ib

od
y

A
z 

(a
 h

is
ta

m
in

e 
re

ce
pt

or
 H

1 
an

ta
go

ni
st

)
Pa

nc
re

at
ic

 c
an

ce
r c

el
l s

pe
ci

m
en

s 
fro

m
 P

D
A

C
 p

at
ie

nt
s

O
rt

ho
to

pi
c 

m
od

el
s

U
pr

eg
ul

at
io

n 
of

 M
H

C
-I 

ex
pr

es
si

on
 in

 tu
m

or
 

ce
lls

 v
ia

 c
ho

le
st

er
ol

 b
io

sy
nt

he
si

s 
si

gn
al

in
g 

↑ C
D

8+
 C

TL
s 

ce
ll 

pe
ne

tr
at

io
n 

an
d 

effi
ca

cy
 ↑

Re
si

st
an

ce
 to

 IC
B 
↓

[6
27

]

IC
B

A
nt

i-P
D

-1
 a

nt
ib

od
y

A
nt

i-I
L-

8 
an

tib
od

y
H

um
an

iz
ed

 m
ou

se
 m

od
el

 o
f P

D
A

C
A

nt
i-t

um
or

 a
ct

iv
ity

 o
f a

nt
i-P

D
-1

 ↑
N

um
be

r o
f i

nfi
ltr

at
in

g 
gr

an
ul

oc
yt

ic
 

m
ye

lo
id

 c
el

ls
 in

 T
M

E 
↑

Ty
pe

 I 
in

te
rf

er
on

 p
ro

du
ct

io
n 

by
 in

fil
tr

at
in

g 
gr

an
ul

oc
yt

ic
 m

ye
lo

id
 c

el
ls

 ↑

[6
28

]

IC
B

A
nt

i-P
D

-1
 a

nt
ib

od
y

Fo
ca

l a
dh

es
io

n 
ki

na
se

 in
hi

bi
to

r (
FA

Ki
), 

PE
G

yl
at

ed
 re

co
m

bi
na

nt
 h

um
an

 h
ya

lu
ro

ni
‑

da
se

 (P
EG

PH
20

), 
an

d 
an

ti-
C

XC
R4

 a
nt

ib
od

y

M
ur

in
e 

liv
er

 m
et

as
ta

si
s 

sy
ng

en
ei

c 
m

od
el

 
of

 P
D

A
C

Su
rv

iv
al

 ↑
T-

ce
ll 

in
fil

tr
at

io
n 
↑

N
um

be
r o

f e
ffe

ct
or

 m
em

or
y 

T 
ce

lls
 ↑

N
um

be
r o

f M
D

SC
s 
↓

N
um

be
r o

f C
XC

R4
-e

xp
re

ss
in

g 
m

ye
lo

id
 c

el
ls

 
(g

ra
nu

lo
cy

te
s)

 ↓
Li

ve
r m

et
as

ta
si

s 
↓

[4
84

]

IC
B

N
iv

ol
um

ab
G

VA
X 

ca
nc

er
 v

ac
ci

ne
, r

ad
io

th
er

ap
y,

 
an

d 
BM

S-
68

76
81

 (d
ua

l a
nt

ag
on

is
t o

f C
C

R2
 

an
d 

CC
R5

)

PD
A

C
 m

ou
se

 m
od

el
s

G
VA

X 
an

d 
ni

vo
lu

m
ab

-in
du

ce
d 

CC
R2

/C
C

R5
 

ex
pr

es
si

on
In

tr
at

um
or

al
 e

ffe
ct

or
 a

nd
 m

em
or

y 
T 

ce
ll 

in
fil

tr
at

io
n 
↑

Ex
pr

es
si

on
 o

f C
C

L1
7/

CC
L2

2 
ch

em
ok

in
es

 ↑
In

fil
tr

at
io

n 
of

 T
re

gs
, M

2-
lik

e 
TA

M
s, 

an
d 

m
on

oc
yt

ic
-M

D
SC

s 
↓

Ex
pr

es
si

on
 o

f i
m

m
un

os
up

pr
es

si
ve

 C
C

L2
/

CC
L5

 c
he

m
ok

in
es

 ↓
A

nt
i-t

um
or

 e
ffi

ca
cy

 a
nd

 s
ur

vi
va

l ↑
N

o 
im

pr
ov

em
en

t o
f a

nt
i-t

um
or

 a
ct

iv
ity

 
by

 a
dd

in
g 

G
VA

X

[4
74

]

IC
B

A
nt

i-P
D

-1
 a

nt
ib

od
y 

(c
lo

ne
 

RM
P1

-1
4)

G
em

ci
ta

bi
ne

-c
on

ju
ga

te
d 

po
ly

m
er

 (P
G

EM
; 

a 
ST

IN
G

 a
go

ni
st

) l
oa

de
d 

w
ith

 P
F-

63
09

 (a
 

CC
R2

 a
nt

ag
on

is
t)

Pa
nc

re
at

ic
 tu

m
or

 s
ph

er
oi

d 
m

od
el

 
an

d 
or

th
ot

op
ic

 tu
m

or
 m

od
el

Pa
nc

re
at

ic
 tu

m
or

 b
ur

de
n 
↓

Se
ns

iti
za

tio
n 

of
 P

D
A

C
 tu

m
or

s 
to

 a
nt

i-P
D

-1
 

th
er

ap
y 
↑

Pr
ov

id
in

g 
an

ti-
tu

m
or

 im
m

un
ity

 
th

ro
ug

h 
re

ve
rs

in
g 

th
e 

CC
L2

/C
C

L7
-m

ed
i‑

at
ed

 im
m

un
os

up
pr

es
si

on

[6
29

]



Page 42 of 66Farhangnia et al. Journal of Hematology & Oncology           (2024) 17:40 

C
TL

: C
yt

ot
ox

ic
 T

 ly
m

ph
oc

yt
e,

 C
TL

A
-4

: C
yt

ot
ox

ic
 T

-ly
m

ph
oc

yt
e 

as
so

ci
at

ed
 p

ro
te

in
 4

, I
CB

: I
m

m
un

e 
ch

ec
kp

oi
nt

 b
lo

ck
ad

e,
 M

D
SC

: M
ye

lo
id

-d
er

iv
ed

 s
up

pr
es

so
r c

el
l, 

PD
-1

: P
ro

gr
am

m
ed

 c
el

l d
ea

th
 p

ro
te

in
 1

, P
D

AC
: P

an
cr

ea
tic

 
du

ct
al

 a
de

no
ca

rc
in

om
a,

 S
TI

N
G

: S
tim

ul
at

or
 o

f i
nt

er
fe

ro
n 

ge
ne

s, 
TA

M
: T

um
or

-a
ss

oc
ia

te
d 

m
ac

ro
ph

ag
e,

 T
IL

: T
um

or
-in

fil
tr

at
in

g 
ly

m
ph

oc
yt

e,
 T

re
g:

 R
eg

ul
at

or
y 

T 
ce

ll,
 ↑

: I
nc

re
as

e,
 ↓

: D
ec

re
as

e

Ta
bl

e 
9 

(c
on

tin
ue

d)

Im
m

un
ot

he
ra

pe
ut

ic
 

st
ra

te
gy

Im
m

un
ot

he
ra

pe
ut

ic
 

ag
en

ts
Co

m
bi

na
tio

n 
th

er
ap

y
St

ud
y 

de
si

gn
Re

su
lts

Re
fe

re
nc

es

IC
B

A
nt

i-P
D

-1
 a

nd
 a

nt
i-

C
TL

A
-4

IA
C

S-
88

03
 (a

 S
TI

N
G

 a
go

ni
st

)
O

rt
ho

to
pi

c 
Kr

as
+

/G
12

D
 T

P5
3+

/R
17

2H
 P

dx
1-

C
re

 
(K

PC
) d

er
iv

ed
 m

od
el

s 
PD

A
C

In
fla

m
m

at
or

y 
re

m
od

el
in

g 
of

 th
e 

PD
A

C
 

st
ro

m
a 
↑

Su
rv

iv
al

 ↑
Se

ns
iti

vi
ty

 to
 IC

B 
↑

[4
95

]



Page 43 of 66Farhangnia et al. Journal of Hematology & Oncology           (2024) 17:40 	

been shown to enhance the survival rates of patients [41, 
378, 485]. This therapeutic approach transforms PDACs 
into a state that is more receptive to immune responses. 
This change is marked by a rise in T cell infiltration and 
the formation of tertiary lymphoid clusters within the 
tumors [380], likely converting the cold tumor into the 
hot tumor. Innate immune cells use cGAS to trigger 
inflammatory signals when they bind to the pathogen or 
damage-related molecular patterns (PAMPs/DAMPs). 
This process leads to the production of cGAMP and the 
activation of STING, a protein in the endoplasmic reticu-
lum, which then promotes cellular gene programs result-
ing in the production of IFN-I [486, 487]. IFNs-I (IFN-α 
and IFN-β) are essential for the development of CD8+ T 
cells that fight against tumors. Tumors that are inflamed 
with T cells, often referred to as “hot” tumors, have been 
linked to a transcriptional signature of type 1 interferon 
[488, 489]. The activation of STING, either systemically 
or within the tumor, through STING agonists, has been 
shown to reverse immune-suppression and cause tumor 
shrinkage in various preclinical cancer studies [434, 
490–494]. IACS-8803 (a STING agonist) increases sen-
sitivity to anti-PD-1 and anti-CTLA-4 immunotherapy 
in the orthotopic PDAC models [495]. Furthermore, 
a STING agonist called IMSA101 boosts CAR T cell 
function in a mouse pancreatic tumor model, which is 
facilitated through STING agonist-induced IL-18 secre-
tion [496]. All in all, the STING innate immune sensing 
pathway, when activated, could potentially transform 
tumors lacking T cell infiltrates into tumors with infiltrat-
ing T cells, and thus offers a promising target in PDAC 
immunotherapy.

TME‑modulating agents
A successful immunotherapy for PDAC usually requires 
combining different treatments to help T cells infiltrate 
and stay activated in the hostile TME. Current research 
is focused on developing strategies to improve the PDAC 
TME, boost the immune response, and enhance the 
effectiveness of T cell therapy [44, 497].

ADH-503 is a small molecule that binds to CD11b and 
enhances the adhesion of myeloid cells, inhibiting their 
migration into tissues [498]. It also shifts TAM polari-
zation to an anti-tumor phenotype, improves survival 
in PDAC-bearing mice, and sensitizes PDAC tumors to 
anti-PD-1/PD-L1 immunotherapy [341]. In clinical trials, 
ADH-503 was well tolerated with common side effects, 
but no clinical responses were observed in pancreatic 
cancer patients (NCT04060342) [499].

In PDAC, it is expected that targeting the CCL2/
CCR2 pathway would help to reduce the accumulation 
of TAMs in the TME. A CCR2 inhibitor, PF-04136309, 
was tested in combination with chemotherapy in patients 

with pancreatic cancer. A manageable level of safety was 
observed. Early correlational studies indicated a decrease 
in TAMs and an increase in TILs (NCT01413022) [437]. 
Another trial combining PF-04136309 with chemother-
apy in pancreatic cancer patients showed high rates of 
lung toxicity and no significant improvement in efficacy 
(NCT02732938) [438]. A study tested the CCR2 antag-
onist CCX872-B in combination with FOLFIRINOX 
for patients with advanced pancreatic cancer. Analysis 
showed an OS rate of 29% at 18 months with no safety 
concerns (NCT02345408) [500]. BMS-813160 is a dual 
antagonist for CCR2 and CCR5 that is being tested in 
combination with chemotherapy or immunotherapy in 
patients with advanced pancreatic or colorectal cancer, 
but no results from the study have been reported yet 
(NCT03184870) [501].

Several studies have shown that by inhibiting the 
CXCR4/CXCL12 axis, the PDAC TME can be modi-
fied. For example, when CXCR4 was knocked down, 
the invasion potential of pancreatic cancer cells in vitro 
was decreased. Treating fresh human PDAC slices with 
a combination of PD-1 and CXCR4 blockade resulted in 
enhanced tumor cell death and lymphocyte expansion 
into the juxtatumoral compartment [502]. In a mouse 
model of PDAC, administering the CXCR4 inhibitor 
AMD3100 (plerixafor) led to the accumulation of T cells 
among cancer cells, resulting in a synergistic tumoricidal 
effect when combined with anti-PD-L1 immunotherapy 
[35]. A trial tested AMD3100 in patients with colorec-
tal and pancreatic cancer, resulting in decreased tumor 
markers (circulating tumor DNA and IL-8) and changes 
in immune cells (reduced number of CAFs and increased 
number of effector TILs/NK cells) [503–505]. Motixa-
fortide (BL-8040; CXCR4 antagonist) is a synthetic pep-
tide that is administered subcutaneously and has shown 
promising results in combination with pembrolizumab 
in treating metastatic PDAC, increasing CD8+ T cell 
infiltration and decreasing MDSCs and circulating Tregs 
(NCT02826486) [506]. NOX-A12 (olaptesed pegol) is 
a PEGylated drug that inhibits CXCL12 and enhances 
the activity of anti-PD-1 therapy in pre-clinical models 
[507]. In a phase 1/2 study with advanced PDAC patients, 
NOX-A12 in combination with pembrolizumab led to 
induced TH1 cytokines, prolonged stable disease, and 
increased effector immune cells in tumor biopsy tissue 
(NCT03168139) [508].

Pharmacologic inhibition of the A2A adenosine recep-
tor enhances the effectiveness of anti-PD-1 therapy [509]. 
Several anti-CD73 therapeutics and adenosine recep-
tor inhibitors have been developed [510]. Oleclumab 
(MEDI9447), a monoclonal antibody that targets CD73, 
demonstrated positive outcomes in inhibiting tumor pro-
gression and promoting immune cell infiltration in colon 
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cancer models. When used in conjunction with anti-
PD-1 treatment, it resulted in the elimination of tumors 
in 60% of animal subjects [511]. Clinical studies of ole-
clumab, either alone or in combination with durvalumab, 
in patients who did not respond to anti-PD-L1 therapies 
like advanced pancreatic cancer revealed good tolerabil-
ity and some partial responses (22 and 28 months) in a 
small subset of patients (2/73; NCT02503774) [512]. A 
study evaluated the safety of quemliclustat (a small mol-
ecule inhibitor of CD73) in combination with standard 
treatment and zimberelimab in patients with metastatic 
PDAC. The safety profile is similar to single agents, 
with no new toxicities. Some patients showed partial 
responses with long-lasting effects (NCT04104672) 
[513].

Main challenges ahead of pancreatic cancer 
immunotherapy
Immunotherapy for pancreatic cancer is a significant 
therapeutic strategy. However, despite comprehensive 
studies, there are obstacles in translating research out-
comes and determining the best therapeutic combina-
tions. These challenges necessitate a joint effort from 
scientists and medical practitioners to deepen our com-
prehension of the interactions between cancer and the 
immune system and to enhance the treatment choices 
available to patients. In this part, we will explore in 
greater detail the chief hurdles facing immunotherapeu-
tic strategies for pancreatic cancer.

Low antigenic strength and number of neo‑antigens
During the process of tumor development, non-synon-
ymous gene mutations occur, leading to the generation 
of neo-antigens that are exclusively expressed by tumor 
cells. Pancreatic cancers carry a moderate load of these 
non-synonymous neo-antigenic mutations [497]. In 
essence, PDACs show a low load of neo-epitopes; there-
fore, the tumors are more likely to adapt to immune 
pressure and escape T cell-mediated killing through 
cancer immunoediting. In a study, T cell immunity 
was assessed in a mouse model of pancreatic cancer, 
revealing a low level of mutations, no anticipated neo-
epitopes resulting from these mutations, and resistance 
to respond to checkpoint immunotherapy [514]. Also, 
pancreatic tumors that have the greatest quantity of 
neo-antigens and the highest concentration of CD8+ 
T cell infiltrates are linked to the longest survival rates 
in patients. Moreover, enrichment of neo-antigens in 
the tumor antigen MUC16 (CA125) was observed in 
long-term survivors of pancreatic cancer [53]. Thus, the 
quality of neo-antigens as a biomarker for PDAC could 
potentially steer the use of immunotherapies [53, 515]. 
Additionally, the BCL2A1 neo-epitope is presented as 

a potential target for personalized immunotherapy, 
which stimulates CTLs to combat pancreatic cancer 
cells [516]. All in all, neo-antigens might broaden the 
horizon towards personalized immunotherapy of pan-
creatic cancer. A major challenge restricting their appli-
cability, however, is that a low number of neo-antigens 
is rarely shared among patients [497], making the use of 
relevant treatment approaches cumbersome and costly.

Primary, adaptive, and acquired resistance
In primary resistance, there can be instances where can-
cer does not respond to immunotherapy, potentially due 
to adaptive immune resistance mechanisms. Adaptive 
resistance pertains to a resistance strategy where the 
cancer, even though identified by the immune system, 
shields itself by adjusting to the immune attack. Lastly, 
acquired resistance refers to a situation where a cancer 
initially shows a response to immunotherapy, but after 
a certain period, it experiences a relapse and advances 
[517]. From a biological perspective, resistance to immu-
notherapy can be linked to both intrinsic factors in tumor 
cells and extrinsic factors associated with TME like 
ECM and stroma-derived factors, immune cells/factors, 
and intratumoral microbiota. Tumor cell-intrinsic fac-
tors include genetic/epigenetic defects, IFN-γ signaling, 
lack of neo-antigens, oncogenic signaling pathways, and 
epigenetic reprogramming [22]. FAP+ CAFs hinder the 
anti-tumor activity of T cells in pancreatic cancer. How-
ever, directing therapies towards these FAP+ subtypes 
improves the tumor’s response to anti-PD-L1 [35]. T-cell 
exclusion is a process that resists immune checkpoint 
therapy, and it’s particularly noticeable in ‘cold’ tumors 
like pancreatic cancer, which have a low presence of T 
cells in TME. Some cancer-causing pathways might allow 
tumors to use this method to avoid the immune system. 
For instance, the activation of Wnt/β-catenin within the 
tumor cells has been demonstrated to result in the exclu-
sion of T cells from the TME [518, 519]. Moreover, PTEN 
deficiency is linked to provoke PI3K-AKT pathway sign-
aling and is connected to decreased presence of CD8+ 
T cells and unfavorable clinical outcomes from immu-
notherapy [520]. A recent study found that the loss of 
interferon regulatory factor 6 (Irf6) leads to resistance to 
immunotherapy, and its re-expression improves immu-
notherapy responses to PDAC [521]. All in all, the resist-
ance to immunotherapy in pancreatic cancer is complex 
and influenced by both internal and external factors 
within the tumor. A sophisticated strategy of basic and 
translational/clinical research is needed to understand 
these mechanisms and identify tumor-specific resistance 
patterns.
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Immune‑related adverse events (irAEs)
The irAEs are diverse and can affect any organ. Different 
immunotherapy regimens have unique toxicity patterns 
like CRS and neurologic toxicities, making understand-
ing their mechanisms crucial [522–525]. However, a 
positive association exists between the occurrence of 
non-lethal irAEs and the response to ICB [526]. Mild 
(Grade 1–2) effects are observed in over 90% of patients, 
whereas severe (Grades 3–5) effects can occur in 20–60% 
of patients [527]. Studies highlight the role of certain 
immune cells such as CD8+ tissue-resident memory T 
cells and neutrophils, and cytokines like IFN-γ and IL-6 
in causing immunotherapy-induced colitis [528–530]. 
Other mechanisms like loss of self-tolerance, molecular 
mimicry, and inflammation also contribute to irAEs. For 
example, in myocarditis, autoreactive T cells targeting 
specific peptides are activated, a process worsened by the 
release of self-antigens from dying tumor cells [531]. This 
is known as epitope spreading. Glucocorticoids are the 
main treatment for non-endocrine irAEs, and hormo-
nal therapy is used for endocrine disorders. Intravenous 
immunoglobulins, plasma exchange, and monoclonal 
antibodies such as infliximab are employed for neuro-
logical, hematological, and persistent irAEs [22]. For 
ICB-induced colitis, fecal microbiota transplantation is 
utilized [532]. All in all, irAEs are life-threatening reac-
tions that deserve special attention. Thus, it is crucial to 
formulate personalized strategies for patient categoriza-
tion and potential biomarkers to investigate the dynamics 
and resolution timing of irAEs to identify.

Scarcity of robust predictive biomarkers of response 
and toxicity
Individual biomarkers have been utilized to forecast 
responses to cancer immunotherapy. Both Microsatellite 
Instability-High (MSI-H) and Tumor Mutational Burden 
(TMB) have been associated with enhanced responses to 
ICB [533, 534]. Nonetheless, the efficacy of TMB as the 
only biomarker is restricted, as a low TMB can still elicit 
effective responses, and a high TMB does not assure a 
response to ICB [22]. Although immune-related bio-
markers such as PD-L1, interferon signature, and TIL 
density have been found to have restrictions when used 
as the only biomarkers, it is important to note that even 
though there is an association between PD-L1 expression 
and improved outcomes in certain types of tumors, sub-
stantial responses can still be observed in tumors that do 
not express PD-L1 [535]. It has been proposed that CAFs, 
microbiomes, and exosomes derived from tumors could 
serve as potential biomarkers for tracking the response 
to immunotherapy in pancreatic cancer [536]. Further-
more, a study on pancreatic cancer patients who received 
PD-1 inhibitor-based therapies showed that a lower 

neutrophil-to-lymphocyte ratio predicted better tumor 
response [537]. Collectively, the progression of predictive 
biomarkers has been obstructed by the intricate inter-
play within the pancreatic tumor microenvironment. The 
field must comprehend these interactions and establish 
suitable assays for successful biomarker development 
and codifying combinatorial biomarker strategies. These 
approaches should be confirmed in upcoming clinical 
trials.

Lack of integrated regulatory endpoints for cancer 
immunotherapy
Conventional methodologies for evaluating the efficacy 
of cancer immunotherapies, such as pembrolizumab and 
nivolumab, have demonstrated considerable utility [538]. 
These methodologies encompass metrics such as ORR, 
PFS, and OS, which have been instrumental in assessing 
therapeutic outcomes. Nevertheless, these conventional 
metrics exhibit limitations when applied to the evalua-
tion of cancer immunotherapies. The primary objective 
of cancer immunotherapy is to induce a durable response 
and prolong survival, optimally quantified by examining 
the ‘tail’ of survival curves. However, the extant meth-
odologies for this measurement are deficient [539]. In 
circumstances where an immunotherapy’s impact takes 
time to manifest and the rate of successful outcomes is 
not high, conventional benchmarks such as mPFS and 
median OS can provide deceptive early indications [473]. 
This becomes evident in the case of patients with MSI-H 
PDAC who underwent treatment with pembrolizumab. 
Despite a relatively low ORR of 18% and a mPFS of just 
2.1 months, the responses proved to be quite durable, 
with a median response duration of 13.4 months [540]. 
All in all, continued collaboration and optimization of 
pancreatic cancer immunotherapy endpoints is needed 
to address the aforementioned issues.

Lack of proper preclinical animal models
Preclinical models are crucial in cancer drug discovery 
for prioritizing targets and studying various aspects of 
treatment. These models have contributed to significant 
discoveries in cancer treatment and immunotherapy, 
including the effects of CTLA-4 and PD-L1/PD-1 block-
ade [539]. Nevertheless, the models commonly utilized 
do not always accurately represent the immune biology 
of human cancers [541]. This can be attributed to inter-
tumoral and intra-tumoral heterogeneity, recapitula-
tion of TME, and serial passaging of tumor cells [542]. 
For instance, the intricate interplay between tumor and 
stroma, along with the diverse traits of stromal elements, 
present substantial obstacles in accurately reproducing 
the pancreatic cancer microenvironment. Furthermore, 
the weak immunogenicity and the immunosuppressive 
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characteristics of PDAC complicate preclinical mode-
ling [542]. A problem with frequently utilized preclinical 
models is their dependence on the inoculation of cancer 
cell lines. The tumors that develop following this inser-
tion often fail to accurately reproduce the immune con-
text of the tumor, which plays a crucial role in shaping 
the immune response in human cancers [543]. Moreover, 
cancer in humans is thought to have evolved over the 
years, shaping its interaction with the immune response. 
Genetically engineered mouse models, developed by 
altering genes and inducing mutations, best represent 
this disease [544]. However, these models do not mimic 
the gradual mutation accumulation seen in human can-
cers, resulting in stable cancers that do not respond well 
to cancer immunotherapy [539]. Also, a significant obsta-
cle in current attempts to comprehend the occurrence of 
irAEs is the absence of suitable preclinical animal mod-
els. There is a pressing need for the generation of ani-
mal models that accurately mimic irAEs, which would 
facilitate the detailed study of irAEs associated with pan-
creatic cancer immunotherapy [545]. Thus, there is an 
unmet need to further develop pancreatic cancer animal 
models with high-throughput techniques for better mim-
icking the human pancreas cancer features. It can pave 
the way for a rapid translation of preclinical findings into 
clinical settings.

Conclusion and future directions
In summary, the paradigm shift brought about by immu-
notherapy is fundamentally altering our understanding of 
cancer treatment. This groundbreaking approach is now 
being implemented in clinical settings for a variety of 
solid cancers. Standard therapies have proven ineffective 
for patients with PDAC, but immunotherapy has demon-
strated encouraging results in preclinical stages. Despite 
these promising results, immunotherapies still face fun-
damental challenges, which may limit their efficacy in 
clinical contexts. It is important to consider that each 
treatment modality has its advantages and disadvantages 
(Table  10). This article explored a wide range of immu-
notherapies, such as OVT, and adoptive cell transfer 
therapies including TCR-engineered T cells, CAR T-cell 
therapy, CAR NK cell therapy, and CIK cell therapy. 
Additionally, ICB, immunomodulators, cancer vaccines, 
and strategies targeting myeloid cells were discussed as 
potential avenues. Furthermore, this article provided the 
application of CRISPR/Cas9 technology and gut micro-
biome in pancreatic cancer immunotherapy. Lastly, strat-
egies for enhancing the effectiveness of immunotherapy 
and the primary obstacles confronting pancreatic cancer 
immunotherapy were highlighted.

The complex nature and heterogeneous compo-
sition of cellular elements in the pancreatic tumor 

microenvironment are of significant importance. There 
is a complex transition of cell populations as PDAC 
advances. Employing advanced methods such as single-
cell sequencing and multi-omics analysis allows us to 
delve deeper into the immune cell profile in PDAC, pin-
point cells with higher precision, and chart the single-
cell trajectories [546]. This advancement lays a stronger 
groundwork for developing immunotherapies that target 
the various elements of the TME.

As we progress in developing immunotherapeutic 
strategies for the treatment and management of PDAC, it 
is crucial to prioritize efforts that enhance patients’ qual-
ity of life. Numerous trials employing immunotherapy in 
PDAC have had disappointing outcomes, primarily due to 
the immunosuppressive TME. Therefore, it is imperative 
to refine and improve existing immunotherapies to effec-
tively address this significant challenge. Furthermore, it 
is essential to conduct further research on the efficacy 
of novel immunotherapy targets identified in preclinical 
studies, thereby validating their potential through human 
clinical trials. Overall, the open-ended research question 
remains unanswered as to why many patients with pan-
creatic cancer do not respond to immunotherapies.

The identification of novel and appropriate molecu-
lar targets for targeted immunotherapies is crucial for 
the success of this immunotherapy in treating pancre-
atic cancer. While CAR-based therapies have achieved 
impressive clinical responses in targeting cancer anti-
gens, the efficacy of these therapies in solid cancers has 
been disappointing, in part due to antigen escape. Target-
ing heterogeneous pancreatic tumors with immunothera-
pies will require the identification of novel tumor-specific 
targets. Therefore, identifying novel and appropriate 
molecular targets for CAR T cell therapy is essential for 
the development of effective cancer treatments.

As our understanding of the complex interplay 
between the immune system and pancreatic cancer con-
tinues to evolve, the field of pancreatic cancer immu-
notherapy is positioned at the forefront of cutting-edge 
research. These groundbreaking domains of research, 
such as machine learning and artificial intelligence [547], 
mutant KRAS peptide-driven vaccines and personalized 
RNA neo-antigen vaccines [401, 548], single-cell multi-
omics-oriented approaches [546, 549], and CRISPR/Cas-
based RNA editing [550], are of utmost importance as 
they define the active research areas of the future, paving 
the way for gaining better clinical outcomes. Given the 
role of artificial intelligence in cancer research, research-
ers used machine learning to analyze complex tumor 
molecular data from pancreatic cancer patients and 
found that anti-CD40 therapy reduced T-cell exhaustion 
in the TME. They identified specific T-cell populations 
that correlated with improved DFS following anti-CD40 
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therapy, demonstrating the potential of machine learn-
ing in pancreatic cancer immunology research [547]. The 
creation of multiplexed effector guide arrays (MEGA) has 
made it possible to effectively control and regulate the T 
cell transcriptome through the use of CRISPR-Cas13d. 
With MEGA, genes can be suppressed in primary human 
T cells without any changes to the DNA, leading to 
improved T cell function and stronger anti-tumor capa-
bilities. MEGA also enables the regulation of CAR acti-
vation and disruption of immunoregulatory metabolic 
pathways [550], providing a flexible and powerful tool for 
use in pancreatic cancer immunotherapy.
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