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Abstract

Integrating high-level semantically correlated contents and low-level anatomical features is of 

central importance in medical image segmentation. Towards this end, recent deep learning-based 

medical segmentation methods have shown great promise in better modeling such information. 

However, convolution operators for medical segmentation typically operate on regular grids, 

which inherently blur the high-frequency regions, i.e., boundary regions. In this work, we 

propose MORSE, a generic implicit neural rendering framework designed at an anatomical 

level to assist learning in medical image segmentation. Our method is motivated by the fact 

that implicit neural representation has been shown to be more effective in fitting complex 

signals and solving computer graphics problems than discrete grid-based representation. The 

core of our approach is to formulate medical image segmentation as a rendering problem in an 

end-to-end manner. Specifically, we continuously align the coarse segmentation prediction with 

the ambiguous coordinate-based point representations and aggregate these features to adaptively 

refine the boundary region. To parallelly optimize multi-scale pixel-level features, we leverage 

the idea from Mixture-of-Expert (MoE) to design and train our MORSE with a stochastic 

gating mechanism. Our experiments demonstrate that MORSE can work well with different 

medical segmentation backbones, consistently achieving competitive performance improvements 

in both 2D and 3D supervised medical segmentation methods. We also theoretically analyze the 

superiority of MORSE.
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1 Introduction

Medical image segmentation is one of the most fundamental and challenging tasks in 

medical image analysis. It aims at classifying each pixel in the image into an anatomical 
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category. With the success of deep neural networks (DNNs), medical image segmentation 

has achieved great progress in assisting radiologists in contributing to a better disease 

diagnosis.

Until recently, the field of medical image segmentation has mainly been dominated by an 

encoder-decoder architecture, and the existing state-of-the-art (SOTA) medical segmentation 

models are roughly categorized into two groups: (1) convolutional neural networks (CNNs) 

[25,4,19,1,29,38,11,12,6,34,33], and (2) Transformers[2,5,35]. However, despite their recent 

success, several challenges persist to build a robust medical segmentation model: ❶ 
Classical deep learning methods require precise pixel/voxel-level labels to tackle this 

problem [37,36,30,31,32]. Acquiring a large-scale medical dataset with exact pixeland 

voxel-level annotations is usually expensive and time-consuming as it requires extensive 

clinical expertise [16,14,13,20,10,34]. Prior works [15,7] have used point-level supervision 

on medical image segmentation to refine the boundary prediction, where such supervision 

requires well-trained model weights and can only capture discrete representations on the 

pixel-level grids. ❷ Empirically, it has been observed that CNNs inherently store the 

discrete signal values in a grid of pixels or voxels, which naturally blur the high-frequency 

anatomical regions, i.e., boundary regions. In contrast, implicit neural representations 

(INRs), also known as coordinate-based neural representations, are capable of representing 

discrete data as instances of a continuous manifold, and have shown remarkable promise in 

computer vision and graphics [22,27,28]. Several questions then arise: how many pixel- or 
voxel-level labels are needed to achieve good performance? how should those coordinate 
locations be selected? and how can the selected coordinates and signal values be leveraged 
efficiently?

Orthogonally to the popular belief that the model architecture matters the most in medical 

segmentation (i.e., complex architectures generally perform better), this paper focuses 

on an under-explored and alternative direction: towards improving segmentation quality 
via rectifying uncertain coarse predictions. To this end, we propose a new INR-based 

framework, MORSE (iMplicit anatomical Rendering with Stochastic Experts). The core of 

our approach is to formulate medical image segmentation as a rendering problem in an end-

to-end manner. We think of building a generic implicit neural rendering framework to have 

fine-grained control of segmentation quality, i.e., to adaptively compose coordinate-wise 

point features and rectify uncertain anatomical regions. Specifically, we encode the sampled 

coordinate-wise point features into a continuous space, and then align position and features 

with respect to the continuous coordinate.

We further hinge on the idea of mixture-of-experts (MoE) to improve segmentation quality. 

Considering our goal is to rectify uncertain coarse predictions, we regard multi-scale 

representations from the decoder as experts. During training, experts are randomly activated 

for features from multiple blocks of the decoder, and correspondingly the INRs of multi-

scale representations are separately parameterized by a group of MLPs that compose a 

spanning set of the target function class. In this way, the INRs are acquired across the 

multi-block structure while the stochastic experts are specified by the anatomical features at 

each block.

You et al. Page 2

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2024 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In summary, our main contributions are as follows: (1) We propose a new implicit neural 

rendering framework that has fine-grained control of segmentation quality by adaptively 

composing INRs (i.e., coordinate-wise point features) and rectifying uncertain anatomical 

regions; (2) We illustrate the advantage of adopting mixture-of-experts that endows the 

model with better specialization of features maps for improving the performance; (3) 

Extensive experiments show that our method consistently improves performance compared 

to 2D and 3D SOTA CNN- and Transformer-based approaches; and (4) Theoretical analysis 

verifies the expressiveness of our INR-based model. Code is released at here.

2 Method

Let us assume a supervised medical segmentation dataset D = x, y , where each input 

x = x1, x2, …, xT is a collection of T 2D/3D scans, and y refers to the ground-truth labels. Given 

an input scan x ∈ ℝH × W × d, the goal of medical segmentation is to predict a segmentation 

map ŷ. Fig. 1 illustrates the overview of our MORSE. In the following, we first describe our 

baseline model f for standard supervised learning, and subsequently present our MORSE. A 

baseline segmentation model consists of two main components: (1) encoder module, which 

generates the multi-scale feature maps such that the model is capable of modeling multi-

scale local contexts, and (2) decoder module that makes a prediction ŷ using the generated 

multi-block features of different resolution. The entire model M is trained end-to-end using 

the supervised segmentation loss ℒsup [35] (i.e., equal combination of cross-entropy loss and 

dice loss).

2.1 Stochastic Mixture-of-Experts (SMoE) Module

Motivation—We want a module that encourages inter- and intra-associations across multi-

block features. Intuitively, multi-block features should be specified by anatomical features 

across each block. We posit that due to the specialization-favored nature of MoE, the model 

will benefit from explicit use of its own anatomical features at each block by learning multi-

scale anatomical contexts with adaptively selected experts. In implementation, our SMoE 

module follows an MoE design [21], where it treats features from multiple blocks of the 

decoder as experts. To mitigate potential overfitting and enable parameter-efficient property, 

we further randomly activate experts for each input during training. Our approach makes 

three major departures compared to [21] (i.e., SOTA segmention model): (1) implicitly 

optimized during training since it greatly trims down the training cost and the model scale; 

(2) using features from the decoder instead of the encoder tailored for our refinement goal; 

and (3) empirically showing that “self-slimmable” attribute delivers sufficiently exploited 

expressiveness of the model.

Modulization—We first use multiple small MLPs with the same size to process different 

block features and then up-sample the features to the size of the input scans, i.e., H × W × d. 

With N as the total number of layers (experts) in the decoder, we treat these upsampled 

features F1, F2, …, FN  as expert features. We then train a gating network G to re-weight the 

features from activated experts with the trainable weight matrices W 1, W 2, …, W N , where 
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W ∈ ℝH × W × d. Specifically, the gating network or router G outputs these weight matrices 

satisfying ∑i W i = 1H × W × d using a structure depicted as follows:

W i = Softmax Conv F1, F2, …, FN i, for i ∈ N .

(1)

The gating network first concatenates all the expert features along channels and uses several 

convolutional layers to get Conv F1, F2, …, FN ∈ ℝC × H × W × d × N, where C is the channel 

dimension. A softmax layer is applied over the last dimension (i.e., N-expert) to output 

the final weight maps. After that, we feed the resultant output xout to another MLP to fuse 

multi-block expert features. Finally, the resultant output xout (i.e. the coarse feature) is given 

as follows:

xout = MLP ∑
i = 1

N
W i ⋅ F i ,

(2)

where ⋅ denotes the pixel-wise multiplication, and xout ∈ ℝC × H × W × d.

Stochastic Routing—The prior MoE-based model [21] are densely activated. That is, 

a model needs to access all its parameters to process all inputs. One drawback of such 

design often comes at the prohibitive training cost. Moreover, the large model size suffers 

from the representation collapse issue [26], further limiting the model’s performance. Our 

proposed SMoE considers randomly activated expert sub-networks to address the issues. 

In implementation, we simply apply standard dropout to multiple experts with a dropping 

probability α. For each training iteration, there are dropout masks placed on experts with the 

probability α. That is, the omission of experts follows a Bernoulli α  distribution. As for 

inference, there is no dropout mask and all experts are activated.

2.2 Implicit Anatomical Rendering (IAR)

The existing methods generally assume that the semantically correlated information and fine 

anatomical details have been captured and can be used to obtain high-quality segmentation 

quality. However, CNNs inherently operate the discrete signals in a grid of pixels or 

voxels, which naturally blur the high-frequency anatomical regions, i.e., boundary regions. 

To address such issues, INRs in computer graphics are often used to replace standard 

discrete representations with continuous functions parameterized by MLPs [28,27]. Our key 

motivation is that the task of medical segmentation is often framed as a rendering problem 

that applies implicit neural functions to continuous shape/object/scene representations 

[22,27]. Inspired by this, we propose an implicit neural rendering framework to further 

improve segmentation quality, i.e., to adaptively compose coordinate-wise point features and 

rectify uncertain anatomical regions.
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Point Selection—Given a coarse segmentation map, the rendering head aims at rectifying 

the uncertain boundary regions. A point selection mechanism is thus required to filter out 

those pixels where the rendering can achieve maximum segmentation quality improvement. 

Besides, point selection can significantly reduce computational cost compared to blindly 

rendering all boundary pixels. Therefore, our MORSE selects Np points for refinement given 

the coarse segmentation map using an uncertainty-based criterion. Specifically, MORSE 

first uniformly randomly samples kpNp candidates from all pixels where the hyper-parameter 

kp ≥ 1, following [9]. Then, based on the coarse segmentation map, MORSE chooses ρNp

pixels with the highest uncertainty from these candidates, where 0.5 < ρ < 1. The uncertainty 

for a pixel is defined as SecondLargest v − max v , where v is the logit vector of 

that pixel such that the coarse segmentation is given as Softmax v . The rest 1 − ρ Np

pixels are sampled uniformly from all the remaining pixels. This mechanism ensures the 

selected points contain a large portion of points with uncertain segmentation which require 

refinement.

Positional Encoding—It is well-known that neural networks can be cast as universal 

function approximators, but they are inferior to high-frequency signals due to their limited 

learning power [23,18]. Unlike [9], we explore using the encoded positional information 

to capture high-frequency signals, which echoes our theoretical findings in Appendix A. 

Specifically, for a coordinate-based point x, y ∈ H × W , the positional encoding function 

is given as:

ψ x, y = sin 2π w1x + v1y , ⋯, sin 2π wLx + vLy ,
cos 2π w1x + v1y , ⋯, cos 2π wL + vLy ,

(3)

where x = 2x/H − 1 and y = 2y/W − 1 are the standardized coordinates with values in 

between [–1, 1]. The frequency wi, vi i = 1
L  are trainable parameters with Gaussian random 

initialization, where we set L = 128 [3]. For each selected point, its position encoding will 

then be concatenated with the coarse features of that point (i.e., xout defined in Sec. 2.1), to 

output the fine-grained features.

Rendering Head—The fine-grained features are then fed to the rendering head whose 

goal is to rectify the uncertain predictions with respect to these selected points. Inspired by 

[9], the rendering head adopts 3-layer MLPs design. Since the rendering head is designed 

to rectify the class label of the selected points, it is trained using the standard cross-entropy 

loss ℒrend.

Adaptive Weight Adjustment—Instead of directly leveraging pre-trained weights, it is 

more desirable to train the model from scratch in an end-to-end way. For instance, we 

empirically observe that directly using coarse masks by pretrained weights to modify unclear 

anatomical regions might lead to suboptimal results (See Sec. 3.1). Thus, we propose to 

modify the importance of ℒrend as:
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λt = λrend ⋅ 1 t > T /2 ⋅ t − T /2
T ,

(4)

where t is the index of the iteration, T  denotes the total number of iterations, and 1 ⋅
denotes the indicator function.

Training Objective—As such, the model is trained in an end-to-end manner using total 

loss ℒtotal = ℒsup + λt × ℒrend.

3 Experiments

Dataset

We evaluate the models on two important medical segmentation tasks.

1. Synapse multi-organ segmentation1: Synapse multi-organ segmentation 

dataset contains 30 abdominal CT scans with 3779 axial contrast-enhanced 

abdominal clinical CT images in total. Each volume scan has variable volume 

sizes 512 × 512 × 85~512 × 512 × 198 with a voxel spatial resolution of 

([0.54~0.54] × [0.98~0.98] × [2.5~5.0])mm3. For a fair comparison, the data 

split2 is fixed with 18 (2211 axial slices) and 12 patients’ scans for training and 

testing, respectively. The entire dataset has a high diversity of aorta, gallbladder, 

spleen, left kidney, right kidney, liver, pancreas, spleen, and stomach.

2. Liver segmentation: Multi-phasic MRI (MP-MRI) dataset is an in-house dataset 

including 20 patients, each including T1 weighted DCE-MRI images at three-

time phases (i.e., pre-contrast, arterial, and venous). Here, our evaluation is 

conducted via 5-fold cross-validation on the 60 scans. For each fold, the training 

and testing data includes 48 and 12 cases, respectively.

Implementation Details—We use AdamW optimizer [17] with an initial learning rate 

5e−4, and adopt a polynomial-decay learning rate schedule for both datasets. We train each 

model for 30K iterations. For Synapse, we adopt the input resolution as 256×256 and the 

batch size is 4. For MP-MRI, we randomly crop 96×96×96 patches and the batch size is 

2. For SMoE, following [21], all the MLPs have hidden dimensions [256, 256] with ReLU 

activations, the dimension of expert features F1, F2, …, FN  are 256. We empirically set α
as 0.7. Following [9], Np is set as 2048, and 8192 for training and testing, respectively, 

and kp, ρ are 3, 0.75. We follow the same gating network design [21], which includes four 

3 × 3 convolutional layers with channels [256, 256, 256, N] and ReLU activations. λrend

are set to 0.1. We adopt four representative models, including UNet [25], TransUnet [2], 3D-

UNet [4], UNETR [5]. Specifically, we set N for UNet [25], TransUnet [2], 3D-UNet [4], 

UNETR [5] with 5, 3, 3, 3, respectively. We also use Dice coefficient (DSC), Jaccard, 95% 

1 https://www.synapse.org/#!Synapse:syn3193805/wiki/217789 
2 https://github.com/Beckschen/TransUNet/tree/main/lists/lists_Synapse 
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Hausdorff Distance (95HD), and Average Surface Distance (ASD) to evaluate 3D results. 

We conduct all experiments in the same environments with fixed random seeds (Hardware: 

Single NVIDIA RTX A6000 GPU; Software: PyTorch 1.12.1+cu116, and Python 3.9.7).

3.1 Comparison with State-of-the-Art Methods

We adopt classical CNN- and transformer-based models, i.e., 2D-based {UNet [25], 

TransUnet [2]} and 3D-based {3D-UNet [4], UNETR [5]}, and train them on {2D Synapse, 

3D MP-MRI} in an end-to-end manner3.

Main Results—The results for 2D synapse multi-organ segmentation and 3D liver 

segmentation are shown in Tables 1 and 2, respectively. The following observations can 

be drawn: (1) Our MORSE demonstrates superior performance compared to all other 

training algorithms. Specifically, Compared to UNet, TransUnet, 3D-UNet, and UNETR 

baselines, our MORSE with all experts selected obtains 3.36%~6.48% improvements in 

Dice across two segmentation tasks. It validates the superiority of our proposed MORSE. 

(2) The stochastic routing policy shows consistent performance benefits across all four 

network backbones on 2D and 3D settings. Specifically, we can observe that our SMoE 

framework improves all the baselines, which is within expectation since our model is 

implicitly “optimized” given evolved features. (3) As is shown, we can observe that 

IAR consistently outperforms PointRend across all the baselines (i.e., UNet, TransUnet, 

3D-UNet, and UNETR) and obtain {1.59%, 1.07%, 2.03%, 1.14%} performance boosts 

on two segmentation tasks, highlighting the effectiveness of our proposal in INRs. (4) 

With Implicit PointRend [3] equipped, all the models’ performances drop. We find: adding 

Implicit PointRend leads to significant performance drops of −2.78%, −5.57%, −1.18%, 

and −1.23% improvements, compared with the SOTA baselines (i.e., UNet, TransUnet, 

3D-UNet, and UNETR) on two segmentation tasks, respectively. Importantly, we find that: 

[3] utilizes INRs for producing different parameters of the point head for each object with 

point-level supervision. As this implicit function does not directly optimize the anatomical 

regions, we attribute this drop to the introduction of additional noise during training, which 

leads to the representation collapse. This further verifies the effectiveness of our proposed 

IAR. In Appendix Figs. 2 and 3, we provide visual comparisons from various models. We 

can observe that MORSE yields sharper and more accurate boundary predictions compared 

to all the other training algorithms.

Visualization of IAR Modules—To better understand the IAR module, we visualize 

the point features on the coarse prediction and refined prediction after the IAR module in 

Appendix Fig. 4. As is shown, we can see that IAR help rectify the uncertain anatomical 

regions for improving segmentation quality.

3.2 Ablation Study

We first investigate our MORSE equipped with UNet by varying α (i.e., stochastic rate) and 

N (i.e., experts) on Synapse. The comparison results of α and N are reported in Table 3. 

We find that using α = 0.7 performs the best when the expert capacity is N = 5. Similarly, 

3All comparison experiments are using their released code.
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when reducing the expert number, the performance also drops considerably. This shows our 

hyperparameter settings are optimal.

Moreover, we conduct experiments to study the importance of Adaptive Weight Adjustment 

(AWA). We see that: (1) Disabling AWA and training ℒrend from scratch causes unsatisfied 

performance, as echoed in [9]. (2) Introducing AWA shows a consistent advantage compared 

to the other. This demonstrates the importance of the Adaptive Weight Adjustment.

4 Conclusion

In this paper, we proposed MORSE, a new implicit neural rendering framework that has 

fine-grained control of segmentation quality by adaptively composing coordinate-wise point 

features and rectifying uncertain anatomical regions. We also demonstrate the advantage of 

leveraging mixture-of-experts that enables the model with better specialization of features 

maps for improving the performance. Extensive empirical studies across various network 

backbones and datasets, consistently show the effectiveness of the proposed MORSE. 

Theoretical analysis further uncovers the expressiveness of our INR-based model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of the MORSE pipeline.
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Table 1.

Quantitative comparisons for multi-organ segmentation on the Synapse multiorgan CT dataset. The best results 

are indicated in bold.

Method

Average
Aorta 

Gallbladder
Kidney 

(L)
Kidney 

(R) Liver Pancreas Spleen StomachDSC 
↑

Jaccard 
↑

95HD 
↓

ASD 
↓

UNet 
(Baseline) 
[25]

70.11 59.39 44.69 14.41 84.00 56.70 72.41 62.64 86.98 48.73 81.48 67.96

 + 
PointRend [9] 71.52 61.34 43.19 13.70 85.74 57.14 75.42 63.27 87.32 50.16 81.82 71.29

 + Implicit 
PointRend [3] 67.33 59.73 52.44 22.15 76.32 51.99 70.28 70.36 81.69 43.77 77.18 67.05

 + Ours 
(MoE) 72.83 62.64 40.44 13.15 86.11 59.51 75.81 67.10 87.82 52.11 83.48 70.86

 + Ours 
(SMoE) 74.86 64.94 37.69 12.66 86.39 63.99 77.96 68.93 88.88 53.62 86.12 72.98

 + Ours 
(IAR) 73.11 62.98 34.01 12.67 86.28 60.25 76.58 65.34 88.32 52.12 83.47 72.51

 + Ours 
(IAR+MoE) 75.37 65.65 33.34 11.43 87.00 64.45 78.14 70.13 89.32 52.33 85.20 76.40

 + Ours 
(MORSE) 76.59 66.97 32.00 10.67 87.28 64.73 80.58 71.87 90.04 54.60 86.67 76.93

TransUnet 
(Baseline) [2] 77.49 64.78 31.69 8.46 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

 + 
PointRend [9] 78.30 65.88 34.17 8.62 87.93 63.96 83.47 77.23 94.86 56.45 85.76 76.75

 + Implicit 
PointRend [3] 71.92 60.62 41.42 18.55 78.39 61.64 79.59 73.20 89.61 50.01 80.17 62.75

 + Ours 
(MoE) 77.85 65.30 32.75 7.90 87.40 63.46 82.34 77.88 94.14 56.12 85.24 76.25

 + Ours 
(SMoE) 78.68 65.98 31.86 7.00 87.60 66.21 82.62 78.12 94.88 57.59 85.97 76.48

 + Ours 
(IAR) 79.37 66.50 30.13 7.25 88.63 66.76 83.70 79.50 95.26 57.10 86.90 77.10

 + Ours 
(IAR+MoE) 79.60 66.99 27.59 6.54 88.73 66.83 83.85 80.19 95.98 57.12 86.92 77.21

 + Ours 
(MORSE) 80.85 68.53 26.61 6.46 88.92 67.53 84.83 81.68 96.83 59.70 87.73 79.58
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Table 2.

Quantitative comparisons for liver segmentation on the Multi-phasic MRI dataset. The best results are 

indicated in bold.

Method
Average

Method
Average

DSC ↑ Jaccard ↑ 95HD ↓ ASD ↓ DSC ↑ Jaccard ↑ 95HD ↓ ASD ↓

3D-UNet (Baseline) [4] 89.19 81.21 34.97 10.63 UNETR (Baseline) [5] 89.95 82.17 24.64 6.04

 + PointRend [9] 89.55 81.80 30.88 10.12 + PointRend [9] 90.49 82.36 21.06 5.59

 + Implicit PointRend 
[3] 88.01 79.83 37.55 12.86 + Implicit PointRend 

[3] 88.72 80.18 26.63 10.58

 + Ours (MoE) 89.81 82.06 29.96 10.15 + Ours (MoE) 90.70 82.80 15.31 5.93

 + Ours (SMoE) 90.16 82.28 28.36 9.79 + Ours (SMoE) 91.02 83.29 15.12 5.64

 + Ours (IAR) 91.22 83.30 27.84 8.89 + Ours (IAR) 91.63 83.83 14.25 4.99

 + Ours (IAR+MoE) 92.77 83.94 26.57 7.51 + Ours (IAR+MoE) 93.01 84.70 13.29 4.84

 + Ours (MORSE) 93.59 84.62 19.61 6.57 + Ours (MORSE) 93.85 85.53 12.33 4.38
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Table 3.

Effect of stochastic rate α and expert number N.

α DSC[%] ↑ ASD[voxel] ↓ N DSC[%] ↑ ASD[voxel] ↓

0.1 75.41 11.96 1 (No MoE) 75.11 11.67

0.2 75.68 11.99 2 75.63 11.49

0.5 76.06 10.43 3 75.82 11.34

0.7 76.59 10.67 4 76.16 11.06

0.9 74.16 11.32 5 76.59 10.67
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Table 4.

Ablation studies of the Adaptive Weight Adjustment (AWA).

Method DSC[%] ↑ ASD[voxel] ↓

w/o AWA & train w/ ℒrend from scratch 70.56 14.89

w/o AWA & train w/ ℒrend in 
T
2 75.42 12.00

w/ AWA 76.59 10.67
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