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Abstract

Conventional crystalline magnets are characterized by symmetry breaking and normal modes 

of excitation called magnons, with quantized angular momentum ℏ. Neutron scattering 

correspondingly features extra magnetic Bragg diffraction at low temperatures and dispersive 

inelastic scattering associated with single magnon creation and annihilation. Exceptions are 

anticipated in so-called quantum spin liquids, as exemplified by the one-dimensional spin-1/2 

chain, which has no magnetic order and where magnons accordingly fractionalize into spinons 

with angular momentum ℏ/2. This is spectacularly revealed by a continuum of inelastic neutron 

scattering associated with two-spinon processes. Here, we report evidence for these key features 

of a quantum spin liquid in the three-dimensional antiferromagnet NaCaNi2F7. We show that 

despite the complication of random Na1+–Ca2+ charge disorder, NaCaNi2F7 is an almost ideal 

realization of the spin-1 antiferromagnetic Heisenberg model on a pyrochlore lattice. Magnetic 
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Bragg diffraction is absent and 90% of the neutron spectral weight forms a continuum of magnetic 

scattering with low-energy pinch points, indicating NaCaNi2F7 is in a Coulomb-like phase. Our 

results demonstrate that disorder can act to freeze only the lowest-energy magnetic degrees of 

freedom; at higher energies, a magnetic excitation continuum characteristic of fractionalized 

excitations persists.

The existence of a spin liquid for isotropically interacting classical spins on the pyrochlore 

lattice was first proposed by Jacques Villain nearly 40 years ago1. Since then, it has been 

established that the classical S ∞  Heisenberg antiferromagnet does not undergo any 

magnetic ordering transition2–6. The magnetic interaction energy is minimized by all spin 

configurations with vanishing magnetization on every tetrahedron, and the ensemble of 

these configurations forms a macroscopically degenerate, but highly correlated, ground-state 

manifold. Such a collective state is termed a Coulomb phase because coarse-grained spin 

configurations within the manifold form a divergence-free vector field, implying dipolar 

correlations7–9. Experiments probing magnetic correlations, and hence the solenoidal field, 

should include sharp pinch point features, as in related classical spin-ice materials, where 

ferromagnetic Ising interactions dominate10. Both classical spin ice and the classical 

Heisenberg antiferromagnet may be classified as Coulomb phases but, whereas there is 

much activity and progress in exploring quantum spin ice, less is understood about the 

quantum limit of the antiferromagnetic Heisenberg model. There is theoretical evidence that 

pinch point correlations survive2,3,11–13, but the specific character of the ground state and of 

the magnetic excitations is unknown.

The experimental challenge lies in realizing the pyrochlore Heisenberg model in a material. 

The highly degenerate manifold of the Coulomb phase is susceptible to small perturbations2 

and lattice instabilities14 such that at low temperatures the spin liquid phase is more often 

than not supplanted by a broken-symmetry phase. So far, the closest realizations of a 

Heisenberg antiferromagnet on a pyrochlore lattice have been found in the cubic spinels. 

Many of these materials exhibit considerable exchange interactions extending to the second- 

and third-nearest neighbours15. Magnetic frustration is manifest through self-organized 

independent hexagonal clusters16–19, but a magneto-structural transition severely impacts 

almost half of the magnetic bandwidth.

Extrinsic disorder, in the form of impurity ions, or variations in magnetic exchange 

interactions caused by chemical disorder may also disrupt the spin liquid. Generally, these 

perturbations result in a spin-freezing transition at low temperatures20–22. For example, 

in the Heisenberg pyrochlore Y2Mo2O7, weak disorder results in a fully frozen state 

with isotropic short-range spin correlations23,24. Here, we demonstrate that disorder is not 

necessarily fatal to the search for quantum spin liquids, as it can act to freeze only the lowest 

energy magnetic degrees of freedom. At higher energies a magnetic excitation continuum 

characteristic of fractionalized excitations persists.

NaCaNi2F7 is one member of a family of recently discovered transition metal pyrochlore 

fluorides where charge balance in the neutral chemical structure requires an equal mixture 

of Na1+ and Ca2+ (refs 25–27). Diffraction measurements probing the average crystal 

structure indicate that Na1+ and Ca2+ are uniformly and randomly distributed on the 
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A-site of the pyrochlore lattice. Magnetic susceptibility measurements reveal Curie–Weiss 

behaviour, with an effective moment of peff = 3.7 1 μB (where μB is the Bohr magneton), 

consistent with S = 1, and a Curie–Weiss temperature of θCW = 129 1 K (ref. 26). A spin-

glass-like freezing transition is observed at T f = 3.6 K in d.c. and a.c. magnetic susceptibility 

measurements26. This freezing may result from the Na1 + /Ca2 +  charge disorder, which is 

expected to generate a random variation in the magnetic exchange interactions. For the 

Heisenberg pyrochlore antiferromagnet described by the Hamiltonian ℋ = 1/2∑ij JijSi ⋅ Sj

the freezing temperature provides an estimate21 of the strength of the bond disorder 

δJ = 3/8 kBT f = 0.19 meV for S = 1. Despite this disorder, for temperatures (T ) and energies 

E beyond 2% of the magnetic bandwidth, we show that NaCaNi2F7 is an excellent 

approximation to a nearest-neighbour Heisenberg antiferromagnet on the pyrochlore lattice, 

and exhibits key characteristics of a quantum spin liquid (QSL): an excitation continuum 

and a finite energy maximum in the momentum-resolved spectrum of scattering at an energy 

transfer of the order of the nearest-neighbour exchange constant.

We start by determining the spin Hamiltonian for NaCaNi2F7. The elegant method employed 

for other frustrated magnets28,29 is not feasible here because the magnetic energy scale 

is too large to reach the forced ferromagnetic state in a neutron scattering experiment. 

Instead we focus on the equal-time spin correlation function, which can be measured 

with inelastic neutron scattering and calculated for a given spin Hamiltonian in the 

paramagnetic state through the self-consistent Gaussian approximation (SCGA)15. Fig. 

1a shows the measured equal-time structure factor S q  for NaCaNi2F7 obtained from 

the energy-integrated magnetic neutron scattering intensity. More detailed information is 

provided by polarized neutron scattering in the ℎ, ℎ, ℓ  plane, which is sensitive to spin 

components perpendicular to q within the ℎ, ℎ, ℓ  reciprocal lattice plane for the spin-flip 

(SF) channel, and along (1,−1,0) for the non-spin-flip channel (NSF). Without further 

analysis, the similarity of SF and NSF magnetic neutron intensities in Fig. 1a is evidence 

of a near spin-space isotropic system. Weak anisotropic interactions are revealed by two 

features of the polarized intensity. First, the SF scattering exhibits a pronounced asymmetry 

of the lobes of intensity centred on (± 0.6, ± 0.5,2) positions about the dashed line parallel 

to (1,1,0) and passing though (0, 0, 2), as indicated in Fig. 1b. Second, the NSF intensity is 

diminished around the (0, 0, 2) pinch point positions.

The full symmetry-allowed nearest-neighbour bilinear exchange Hamiltonian takes the 

form ℋ = 1/2∑ij Jij
μνSi

μSj
ν, where the 3 × 3 interaction matrix Jμν is parameterized by four 

independent terms: the diagonal components J1 and J2, and off-diagonal components J3 and 

J4 (ref. 29). For the next-nearest-neighbour interactions JNNN we retain only the isotropic 

part. We find the best global fit of the measured equal-time structure factor with the SCGA 

using the exchange parameters: J1 = J2 = 3.2 1 meV, J3 = 0.019 3 meV, J4 = − 0.070 4 meV
and JNNN = − 0.025 5 meV. Details of the neutron measurements, fitting procedure and the 

goodness of fit diagnostics are provided in the Methods and Supplementary Information. 

The resulting calculated neutron intensity is shown in Fig. 1b. Although the SCGA is an 

approximate procedure, we find exceptional agreement between the model and data, and 

we shall later see that a classical Monte Carlo calculation of the specific heat based on 
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the inferred spin Hamiltonian is consistent with our measurements. Although the effective 

moment of 3.7(1) μB implies an orbital contribution to the magnetism26, we find that the 

effect of spin-orbit coupling on the exchange Hamiltonian is very small. We conclude 

that the spin Hamiltonian for NaCaNi2F7 closely approximates the S = 1 Heisenberg 

antiferromagnet on the pyrochlore lattice, perturbed only at the percent level by symmetric 

and antisymmetric exchange anisotropies, next-nearest-neighbour interactions and exchange 

disorder.

Having established its frustrated quantum spin Hamiltonian, we now explore the 

corresponding magnetic excitations in NaCaNi2F7. Figure 2 shows the q-dependence of the 

inelastic magnetic scattering through a series of constant-energy transfer slices covering the 

ℎ, ℎ, ℓ  and ℎ, 0, ℓ  reciprocal lattice planes. At low energy transfer, the dynamic structure 

factor forms a bow-tie pattern with pinch points characteristic of dipolar spin correlations. 

The scattering closely resembles predictions for the classical Heisenberg antiferromagnet 

on the pyrochlore lattice7,8,15, but with important deviations, including a slight momentum 

broadening and reduction of intensity around the pinch points. For E = 8 meV the magnetic 

scattering extends through more of momentum space with subtle modulations in intensity, 

particularly near (−2, −2, 0) in the ℎ, ℎ, ℓ  zone, where a double-ridge structure resembles 

highly damped dispersing spin waves in a one-dimensional magnet. Sharper features around 

(−2, −2, 2) and at high q arise from phonon scattering. Finally, at E = 11 meV magnetic 

scattering is uniformly distributed through momentum space, except for exclusion zones 

centred around the Γ point, where scattering is precluded for a Heisenberg model30.

In Fig. 3 we present the momentum- and energy-resolved spin-flip neutron scattering cross-

section. For our experiment this cross-section is sensitive only to magnetic scattering and 

nuclear incoherent scattering; thus data in Fig. 3 are representative of the dynamic structure 

factor uncontaminated by coherent non-magnetic scattering. The magnetic excitations form 

a continuum that extends over an energy bandwidth of ~12.5 meV ~4J S1. Along the (h, 

h, 2) direction and pinch point ridge, the inelastic neutron intensity is relatively featureless. 

However, along the (2, 2, ℓ) direction, which traverses the pinch point ridge, the magnetic 

scattering is more structured, becoming doubly peaked above 5 meV. This precludes 

factorization of the dynamic structure factor: S q, E ≠ S q f E , which distinguishes 

NaCaNi2F7 from the classical limit of the Heisenberg model on the pyrochlore lattice31. 

In the constant-momentum and constant-energy transfer cuts plotted in Fig. 3b,c very broad 

dispersive ridges are observed. Whereas the spectrum is gapless down to the 0.17 meV 

scale set by our finest energy resolution measurements, the dynamic structure factor is 

peaked at finite energy transfers and can be fitted with the spectral form of an over-damped 

harmonic oscillator. The characteristic energy scale disperses from Eq = 4.8 meV J1 at the 

pinch point q = 2, 2, 0 , to Eq = 7.8 meV at the nodal point q = 2, 2, 1 . This spectrum 

distinguishes NaCaNi2F7 from recent theoretical treatments of the semiclassical Heisenberg 

model, which find a purely diffusive response that is peaked at zero energy13. The absence 

of inelastic scattering at the Γ point and our polarized neutron measurements rule out any 

sizeable single-ion anisotropies that could explain the peak in spectral weight at non-zero 

energy transfers. The only energy scale large enough to account for the resonance is the 

nearest-neighbour antiferromagnetic exchange interaction J1.
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A conservative interpretation is that the dispersing modes are overdamped spin waves of 

an underlying classical magnetic order, disrupted in NaCaNi2F7 by exchange disorder. 

Since the frozen spin configurations feature non-collinear interacting spins, single-particle 

S = 1 magnon excitations can decay from interactions with multimagnon states to 

form a continuum of scattering32. Such a scenario may be appropriate for the related 

pyrochlore XY antiferromagnet NaCaCo2F7
25. Elastic magnetic neutron scattering from 

NaCaCo2F7 resembles that of an ordered antiferromagnet, consistent with the non-collinear 

magnetic structure favoured by an order-by-disorder mechanism33. This order develops at a 

temperature coincident with a broad peak in the magnetic specific heat, which constitutes the 

total magnetic entropy of the J = 1/2 magnetic moments formed by Co ions. The fraction 

of elastic magnetic neutron intensity for NaCaCo2F7 is 0.3(1)33, almost exactly as expected 

for an ordered S = 1/2 magnet (S2/S(S + 1) = 1/3). Thus, it appears that in NaCaCo2F7, 

exchange disorder truncates the magnetic correlations of the classical antiferromagnetic 

order favoured by the underlying Hamiltonian.

In contrast, for NaCaNi2F7, by comparing the spectral weight for elastic (E < 0.7 meV) 

and inelastic scattering (0.7 < E < 14 meV) we find ~90% of the magnetic scattering is 

inelastic in the low-T limit. This greatly exceeds the 50% mark for a semi-classical ground 

state based on S = 1 Ni ions, and is direct evidence of a spin system dominated by quantum 

fluctuations. Integrating the data for the dynamic spin correlation function S q, E  over 

momentum and energy, including the elastic diffuse magnetic scattering, we recover the total 

spectral weight of 3 ∫ S q, E dE d3q = 13 1 , which is consistent with the 3.7μB
2 = 13.7μB

2

effective moment extracted from the high- T  magnetic susceptibility data26.

The magnetic specific heat Cm T  (Fig. 4a) provides an excellent overview of three 

distinct regimes of magnetism in NaCaNi2F7. For > 18 K, Cm T  follows the form expected 

for the classical spin liquid (Villain’s cooperative paramagnet) phase of the Heisenberg 

antiferromagnet on a pyrochlore lattice. The dashed line in Fig. 4a shows that a classical 

Monte Carlo simulation of the Heisenberg model with the exchange parameters extracted 

from neutron scattering provides an excellent account of the data.

In the second regime, where T J1, as indicated by light shading in Fig. 4a, Cm T  falls 

below the classical model. The corresponding broad maximum at 18 K thus marks the 

crossover from classical to quantum spin liquid. Finally, for < T f = 3.6 K, a discontinuity in 

dm T /dT  (inset of Fig. 4a) indicates spin freezing26. A fit to Cm T ∝ T α for T < T f yields 

α = 2.2 1 . Cm ∝ T 2 has been found for T < T f in a number of frustrated magnets with spin-

disordered ground states24,34,35. This form can arise from linearly dispersing bosonic quasi-

particles in two dimensions. Although this might seem out of place for cubic NaCaNi2F7, 

frustration can produce soft ‘nodal’ lines which effectively reduce dimensionality to two36. 

The lack of translational symmetry in NaCaNi2F7 implies the corresponding quasi-particles 

cannot manifest as coherent modes in neutron scattering, yet Cm T  reflects their density of 

states37,38.

In Fig. 4b we show the magnetic entropy recovered between 100 mK and 150 K that 

saturates at 84% of the available Rln 3  for S = 1. We interpret the 0.176R per spin residual 
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entropy at 100 mK as indicating broken ergodicity for T < T f. Specifically, we propose 

that below T f a metastable spin configuration within the Coulomb phase manifold is 

kinetically arrested by the disorder potential so the material no longer explores all states 

of a given energy. Correspondingly, we expect spin correlations for E < kBT f to reflect a 

disorder-dominated regime. Figure 4d shows the onset of elastic neutron scattering for 

< 8 K. In a continuation of the trend in a.c.-susceptibility data26, the apparent freezing 

temperature increases with the measurement frequency, which here is the energy resolution 

of ΔE = 0.37 meV. The momentum width of the elastic signal is independent of T , 

indicating the sample averaged spatial correlations are unaffected by the freezing transition. 

Figure 4c shows the elastic magnetic neutron scattering in two high-symmetry reciprocal 

lattice planes of the cubic lattice. The signal is dominated by extended diffuse intensity 

arising from short-range correlated spin configurations that are static within the 10 ps 

time window of our measurement. Neutron intensity is concentrated in lobes centred 

near q = 2n ± 0.6, 2n ± 0.6, 0  positions, where n is an integer. Near (002) and (220), 

where sharp pinch point features representing long-range dipolar correlations of the pure 

Heisenberg model are expected, the momentum distribution of the scattering is broader 

than the experimental resolution. The inverse momentum width corresponds to a real-space 

correlation length of ξ = 6 Å, or just two nearest-neighbour lattice spacings.

By averaging the elastic E = 0  intensity over the accessible parts of the Brillouin zone we 

find the frozen moment accounts for only S /S = 44% of the saturation magnetization for 

Ni2+. The small fraction of frozen magnetization is similar to that of the spin- 3/2 kagome 

lattice KCr3(OD)6(SO4)2 (ref. 39). To gain insight into the nature of this unconventional 

frozen low-temperature state, we have carried out classical Monte Carlo simulations of 

the Heisenberg Hamiltonian relevant to NaCaNi2F7. Random bond disorder was included 

by sampling from a box distribution, with a half-width of δJ = 0.19 meV and exchange 

parameters extracted from an independent analysis of inelastic neutron scattering data. In 

Fig. 4c we compare the measured elastic scattering with the corresponding numerically 

modelled signal. The overall qualitative agreement gives confidence in our optimized 

magnetic Hamiltonian and numerical simulations.

A number of theoretical investigations2,15,40–42 have shown that small perturbations in the 

classical Heisenberg model, J′, in the form of exchange anisotropies or further-neighbour 

interactions, result in a magnetically ordered phase below temperatures of the order of J′ 
S2. In NaCaNi2F7 these perturbations are significantly smaller than the freezing temperature. 

Correspondingly, our Monte Carlo simulations for the anisotropic Hamiltonian relevant to 

NaCaNi2F7, but without exchange disorder, find no classical magnetic order above T = 500 

mK. So even if the disorder free spin-Hamiltonian for NaCaNi2F7 ultimately has long-range 

magnetic order, it is preempted by exchange-disorder-induced spin freezing.

The spin configurations generated through Monte Carlo simulation offer a unique real-

space view of frozen magnetism in NaCaNi2F7. In the absence of disorder, the energy 

of the classical Heisenberg Hamiltonian is minimized by all states with zero total spin 

per tetrahedra, Stot = ∑i = 1
4 Si = 0. We find the lowest energy states for the bond-disordered 

Heisenberg Hamiltonian with small anisotropic exchanges relevant to NaCaNi2F7 also fall 
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approximately within the Stot = 0 manifold (see Supplementary Information). This manifold 

is parameterized by the order parameters f1 = S1 + S2 ⋅ S3 + S4 − 2S1 ⋅ S2 − 2S3 ⋅ S4 / 12 and 

f2 = S1 ⋅ S3 + S2 ⋅ S4 − S2 ⋅ S3 − S1 ⋅ S4 /2 refs 14,42). The statistical distribution of f1 and f2 over 

a Monte Carlo ensemble of tetrahedra provides a local characterization of the particular 

frozen Stot = 0 spin configuration. Such histograms of f1, f2  extracted from our Monte Carlo 

simulations are shown in Fig. 4e, where possible values span an equilateral triangle in the 

f1, f2  plane. Tetrahedra with pairs of antiparallel spins lie along the triangular edges and 

collinear spin configurations are at the vertices. The classical Heisenberg (only) model with 

weak bond disorder is glassy21, with a tendency to form locally collinear states; this is 

confirmed by the results in the top half of Fig. 4e (ref. 20) The enhanced density along the 

boundaries, and away from the corners, of the lower part of the triangle in Fig. 4e indicates 

a tendency to form configurations of pairwise collinear spins when the small anisotropic 

interactions specific to NaCaNi2F7 are added.

Let us now discuss the fundamental challenges presented by our results on NaCaNi2F7. 

We have shown this three-dimensional spin-1 system forms a nearly spin-space-isotropic 

Coulomb-like phase, with vanishing net spin on each of the corner-sharing tetrahedra and a 

broad gapless continuum of spin-flip excitations. Because we are dealing with a crystalline 

solid at low temperatures, this implies the absence of propagating magnons and a spin 

system that either has no quasi-particles or where the quasi-particles are inaccessible to 

neutron scattering.

Whereas conventional spin wave theory is built upon a spin-ordered ground state, 

NaCaNi2F7 has a low-energy manifold distinguished by local constraints that do not impose 

a unique ordered state. There is weak exchange disorder and a non-ergodic aperiodic 

frozen component, but these features cannot have major impacts at high energies because 

of the discrepancy in energy scales δJ /J ≈ 6% . More detrimental to a spin wave picture 

are the local soft modes that characterize corner-sharing simplexes such as the kagome, 

and here the pyrochlore lattice. These present scattering centres for putative magnons, 

which correspondingly become overdamped and lose their quasi-particle status. The broad 

dispersing ridges that we do observe in the q − E dependence of the magnetic neutron 

scattering cross-section (Fig. 3) might loosely be associated with such incoherent magnons.

The efficacy of a semi-classical spin wave expansion to describe quantum spin systems 

with incoherent magnons is, however, questionable. Specifically, quantum tunnelling may be 

important in describing local soft modes for S = 1, and this could impact both the spectrum 

of excitations and the nature of the ground state. Considering, furthermore, that 90% of the 

magnetic spectral weight for NaCaNi2F7 lies in the inelastic channel, a description of its 

magnetism in terms of a quantum spin liquid may be more appropriate. For energies above 

kBT f, the continuous spectrum is consistent with the fractionalization of a spin-flip excitation 

into weakly interacting multiparticle excitations. The non-ergodic regime for energies below 

kBT f might be associated with the pinning of these fractionalized excitations by exchange 

disorder. A quantitative measure of the frozen subspace is provided by the fraction of the 

total entropy that is residual ΔS /Rln 3 = 16 4 %  which is within error bars of the fraction 

of the total spectral weight contained in elastic scattering ( melastic
2/ g2S S + 1 = 10(2)%).
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Our experiments on NaCaNi2F7 show frustration and weak disorder can completely 

suppress conventional spin order in three dimensions, leaving behind strong spin-1 quantum 

fluctuations at low temperatures. The quantitative spin Hamiltonian that we have developed, 

and the distinct collective properties that we have documented, establish NaCaNi2F7 as an 

ideal model system for what would appear to be a new state of matter.

Methods

The identification of any commercial product or trade name does not imply endorsement or 

recommendation by the National Institute of Standards and Technology.

Specific heat.

Heat capacity measurements were conducted using a Quantum Design PPMS with a dilution 

insert for temperatures between 100 mK and 4 K, and standard insert for temperatures 

between 2 K and 270 K. All measurements were carried out on the same 5 mg single crystal 

using the adiabatic pulse method. The non-magnetic contribution over the full measured 

temperature range was determined by scaling the measured specific heat of the iso-structural 

compound NaCaZn2F7 by the relative Debye temperatures.

Neutron scattering.

All neutron scattering measurements were performed on the same 3 g single crystal, grown 

as described elsewhere26. Unpolarized neutron scattering measurements were performed on 

the MACS spectrometer44 at the NIST Center for Neutron Research. Neutron momentum 

transfer is indexed in the cubic lattice with a* = 2π/a = 0.61 Å−1. Measurements were 

performed with the sample oriented in both the ℎ, ℎ, ℓ  and ℎ, k, 0  scattering planes. 

For elastic E = 0  measurements the monochromator was configured in a vertical focusing 

configuration for a neutron energy of 5 meV. Two configurations were used for inelastic 

measurements, both with the monochromator in double-focusing mode. For energy transfers 

below 1.4 meV, MACS was operated with a fixed final energy of 3.7 meV and with Be and 

BeO filters before and after the sample, respectively. For energy transfers above 1.4 meV 

we used a fixed final energy of 5 meV with a Be filter after the sample and no incident 

beam filter. Data for energy transfers above 1.4 meV were corrected for the effects of 

contamination from high-order harmonics in the incident beam neutron monitor.

Polarized neutron scattering measurements were carried out on the HYSPEC spectrometer45 

at the Spallation Neutron Source at Oak Ridge National Lab. An incident neutron energy 

of 17 meV was selected using a Fermi chopper rotating at 240 Hz, resulting in an energy 

resolution of δE = 1.4 meV for the elastic line. The incident neutron beam polarization 

was defined using a vertically focusing Heusler monochromator, while the outgoing beam 

polarization was selected using a radially collimating supermirror array. All polarized 

measurements were performed with the guide field applied perpendicular to the (h, h, l) 
scattering plane, along the (1, −1,0) direction. In this configuration, SF scattering measures 

the component of magnetic cross-section that is polarized within the scattering plane and 

perpendicular to q, whereas NSF measures the out-of-plane component, here along the (1, 
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−1,0) direction. The flipping ratio measured on a (4, 4, 0) nuclear Bragg peak was 16. All 

data reduction and analysis was carried out using the Mantid software suite46.

Quantitative measurement of the energy- and momentum-resolved magnetic neutron cross-

section in NaCaNi2F7 was essential for a detailed comparison of neutron scattering and 

specific heat data. To accurately distinguish magnetic scattering intensity, both unpolarized 

and polarized measurements were performed. Measured neutron count rates from both 

instruments were converted into absolute units of the neutron scattering cross-section 

using incoherent elastic scattering from the sample as a reference scattering cross-section. 

The scale factor for conversion to absolute units was additionally cross-checked against 

measurements from a vanadium standard.

Numerical methods.

We fit the static structure factor from the neutron scattering data to the corresponding 

prediction of the self-consistent Gaussian approximation (SCGA) at 1.8 K, to obtain the 

magnetic interaction parameters in the main text. Details of the method, including the cost 

function and error analysis, are discussed in the Supplementary Information. The results of 

the SCGA are complemented by classical Monte Carlo calculations, from which we extract 

both the specific heat and the magnetic structure factor. Monte Carlo simulations used single 

spin updates for continuous spin on pyrochlore lattices (with 16-site cubic unit cells) of 

size N = 16L3 for L = 3 to L = 10. To determine the classical ground state of the fitted 

spin Hamiltonian, parallel tempering Monte Carlo47 was carried out with Tmin = 0.01 K and 

Tmax = 1 K with the number of replicas Nr = Nln Tmax/Tmin  (approximately 100 for L = 3 and 

400 for L = 8, the two sizes studied extensively, see Supplementary Information for more 

analyses) and the simulation carried out for a total of 108 steps. With the lowest-energy 

configurations encountered in this finite Monte Carlo run, further iterative minimization was 

performed to accelerate the approach to the classical ground state. For these optimized spin 

configurations (many of which are local minima), two-component local order parameters (f1

and f2) are calculated on all N /4 tetrahedra of a fixed orientation (‘up’). This was repeated 

for 50–100 bond-disorder realizations and the combined data set, including all tetrahedra 

and disorder realizations, was used to obtain the two-dimensional histogram in Fig. 4. The 

static structure factor from these low-energy, zero-temperature configurations, for L = 8, was 

averaged to obtain an estimate of the elastic neutron cross-section. Further details of all 

methods and algorithms employed are provided in the Supplementary Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Equal-time structure factor in NaCaNi2F7.
a, Measured neutron cross-section integrated over the range 0 < E < 14 meV at T = 1.8 2 K. 

Polarized neutron measurements are labelled by NSF, which measures components of 

the dynamic spin correlation function that are perpendicular to the ℎ, ℎ, ℓ  scattering 

plane, and SF, which measures the component of the dynamics spin correlation function 

polarized within the ℎ, ℎ, ℓ  scattering plane and perpendicular to momentum transfer. 

Before integration, the data were symmetrized by folding about the lines ℎ = 0 and ℓ = 0 for 

data in the ℎ, 0, ℓ  scattering plane and the lines ℎℎ = 0 and ℓ = 0 for data in the ℎ, ℎ, ℓ
scattering plane. No smoothing or interpolation was applied to the data. b, Energy-integrated 

neutron cross-section calculated using the self-consistent Gaussian approximation (SCGA) 

and exchange parameters J1 = J2 = 3.2 1 meV, J3 = 0.019 3 meV J4 = − 0.070 4 meV and 

JNNN = − 0.025 5 meV. Dashed lines delineate the plane of asymmetry in the SF scattering. 

The dipole approximation for the Ni2+ magnetic form factor43 was used when converting the 

calculated S q  to a neutron cross-section.

Plumb et al. Page 13

Nat Phys. Author manuscript; available in PMC 2024 June 05.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Fig. 2 |. Inelastic neutron scattering showing dynamic magnetic correlations in NaCaNi2F7.
Momentum and energy dependence of inelastic magnetic scattering in NaCaNi2F7 for the 

ℎ, ℎ, ℓ  and ℎ, k, 0  scattering planes at = 1.8 K. Each slice was integrated over an energy 

transfer range of ± 0.25 meV. No smoothing or symmetrization was applied to the data. 

Above energy transfers of 0.5 meV, the dynamic magnetic correlations form a ‘bow-tie’ 

pattern in momentum space. The sharp pinch-point-like features around (2, 0, 0) and (2, 2, 

0) positions indicate that the net magnetization per tetrahedron vanishes in the Coulomb-like 

phase realized in NaCaNi2F7. Above energies of 5 meV, the scattering forms a broad 

continuum with no intensity around the Γ points.
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Fig. 3 |. Momentum- and energy-resolved inelastic neutron scattering probing magnetic 
excitations in NaCaNi2F7.
a, Energy-momentum slices through the spin-flip portion of the polarized neutron scattering 

cross-section at = 1.8 K. The data were symmetrized by folding about the line along 0, 0, ℓ
for the 2, 2, ℓ -energy slice and the line along ℎ, ℎ, 0  for the ℎ, ℎ, 2 -energy slice. No 

smoothing or interpolation was applied to the data. b, Constant-momentum cuts of the 

spin-flip cross-section through a pinch point at q = 2, 2, 0  and nodal point at (2, 2, 1) 

integrated over ℓ ± 0.2. Solid lines are a fit to the sum of a Lorentzian function centred 

on the elastic line and a damped oscillator form S(E) = n + 1 2ΓE

E2 − Eq
2 2 + (2ΓE)2

, where n is the 

thermal population factor, Γ a relaxation rate and Eq the characteristic energy scale. c, 

Constant-energy transfer cuts, integrated over E ± 0.25 meV, showing the energy evolution of 

momentum-dependent scattering, which becomes doubly peaked above 5 meV. Error bars 

represent one standard deviation.
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Fig. 4 |. Specific heat and elastic neutron scattering revealing spin freezing in NaCaNi2F7.
a, Magnetic specific heat. Dashed line is a classical Monte Carlo simulation and solid line 

is a fit to Cm T = AT α, with A = 0.07 1  and α = 2.2 1 . Light shading indicates the classical 

to quantum crossover regime. Inset shows the low-temperature region. b, Magnetic entropy 

obtained by integration of C /T  between T = 150 K and 100 mK, corresponding to 84% of 

Rln 3 . c, Diffuse elastic ( E = 0 ) magnetic scattering, integrated over the resolution window 

of ±0.37 meV and obtained by subtracting T = 40 K data from that at 1.8 K. Lower quadrants 

display disorder and configuration-averaged ground state Monte Carlo structure factors. 

d, Temperature-dependent intensity of the diffuse elastic scattering around q = 0, 0, 2 , 

dashed line is 1 − T /T f
2β, with T f = 8.2 K and β = 0.5. Inset shows the T = 1.8 K line shape 

across the pinch point, integrated over −0.1 < ℎ, ℎ, 0 < 0.1, the horizontal dash denotes 

the instrumental resolution. Error bars represent one standard deviation. e, Histogram of 

bond vector order parameter components f1, f2  from classical Monte Carlo simulations for 

the Heisenberg and exchange models relevant to NaCaNi2F7 including exchange disorder. 

Extremal spin configurations corresponding to collinear spin arrangements are shown.
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