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Abstract

Activated by retinoids, metabolites of vitamin A, the retinoic acid receptors (RARs) and the 

retinoid X receptors (RXRs) play important roles in a wide variety of biological processes, 

including embryo development, homeostasis, cell proliferation, differentiation and death. In this 

review, we summarized the functional roles of nuclear receptor RAR/RXR heterodimers in liver 

physiology. Specifically, RAR/RXR modulate the synthesis and metabolism of lipids and bile 

acids in hepatocytes, regulate cholesterol transport in macrophages, and repress fibrogenesis in 

hepatic stellate cells. We have also listed the specific genes that carry these functions and how 

RAR/RXR regulate their expression in liver cells, providing a mechanistic view of their roles in 

liver physiology. Meanwhile, we pointed out many questions regarding the detailed signaling of 

RAR/RXR in regulating the expression of liver genes, and hope future studies will address these 

issues.
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1. Introduction

Retinoic acids (RAs), the major active metabolites of vitamin A, play a pivotal role in 

many essential biological processes, including embryogenesis, organogenesis, cell growth, 

differentiation and apoptosis. The biologic effects of RAs are mainly mediated through 

nuclear receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). 

Both RARs and RXRs have three isotypes, −α, −β, and −γ, that are encoded by different 

genes in humans and rodents, i.e. NR1B1–3 and NR2B1–3, respectively. In addition, 

each isotype also has multiple variants due to alternative promoter and splicing. Despite 

these differences, RAR isotypes share over 90% identity in their DNA binding domain 
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(DBD), followed by ~85% identity in the ligand binding domain (LBD) whereas the N- 

and C- terminal regions (also call A and F domains) vary markedly. Fig. 1 illustrates the 

modular structure of these domains, designated A-F. Similarly, RXR isotypes also share 

high sequence identity in their DBD and LBD domains. In contrast, the sequence identity in 

DBD and LBD between RAR and RXR are 60% and 27%, respectively despite both being 

activated by RAs and their metabolites [1].

All-trans retinoic acid (atRA) is believed to be the endogenous ligand for RARs as it 

activates RARs at nanomolar levels, a physiologically relevant concentration, although 

the EC50 for each isotype differs slightly [2]. Other stereoisomers of RA also activate 

RARs, including 9-cis RA and 13-cis RA [3]. Fig. 1B demonstrates that the residues that 

directly interact with atRA in RAR are well conserved among the isotypes [4]. However, the 

endogenous ligand for RXRs remains debatable. Although 9-cis RA was initially identified 

as a ligand for RXRs by in vitro assays [5], its concentration in plasma and tissues is 

either undetectable or below the levels used in in vitro assays [6]; nevertheless, atRA 

can isomerize to 9-cis RA in vivo. In contrast, polyunsaturated fatty acids (PUFA) have 

been shown binding also activating RXRα both in tissue extracts and gene reporter assay 

[7-9], including docosahexaenoic acid and arachidonic acid. These observations indicate that 

PUFA are endogenous ligands for RXRs. This speculation is further supported by a recent 

report where deficiency of vitamin A has limited effects in RXRα activation in vivo. In 

contrast, deficiency of PUFA greatly repressed RXRα activation [10].

As type II nuclear receptors, RARs are obligated to form heterodimers with RXRs and 

bind to retinoic acid response elements (RAREs), a sequence in the promoter of the target 

genes that regulates their expression, whereas RXRs can form homodimers and regulate 

gene expression. In vitro assays indicate that a given RAR isotype is able to heterodimerize 

with any of the RXR isotypes and bind to a RARE [11]. The consensus RARE favors 

a direct repeat (DR) of AGGTCA with a gap of 1–5 nucleotides (DR1–5) (Fig. 1). At 

resting state, RAR/RXR may function as a repressor of gene transcription because of the 

associated corepressors. Upon ligand binding, its LBD undergoes a conformation change, 

resulting in the release of corepressors and recruitment of coactivators, leading to activation 

of gene transcription. Because RXR is the obligated partner for RAR, agonists of RXR can 

permissively activate RAR and regulate its target’s expression. This is also true for a few 

other members of class II nuclear receptors, including PPARs, LXRs, and FXRs [12-15]. 

As these receptors are the subject of other reviews, we will not discuss RA’s role in the 

activation of these receptors here.

Both RAR and RXR are broadly expressed in almost all tissues, but the relative abundance 

of each isotype differs. Table 1 lists the expression pattern of these isotypes and the 

phenotype of the gene knockout in mouse. Numerous studies in the past few decades, 

summarized in many excellent reviews, have demonstrated the functional significance of RA 

mediated RAR/RXR activation in a wide variety of biological processes, including embryo 

development, homeostasis, cell proliferation, differentiation and death. In this review, we 

focus on RAR/RXR’s role in liver physiology where all of their isotypes are expressed 

(Table 1).
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2. RAR/RXR in the regulation of lipid metabolism

The liver is the major organ involved in lipid metabolism. Both RARα and RXRα, which 

are abundantly expressed, play an important role in regulating the expression of genes 

involved in hepatic lipid metabolism and homeostasis. Although deficiency of specific 

RAR isotypes in mice does not show any liver-specific phenotype, likely due to functional 

compensation from other RAR isotypes [21], mice with liver-specific knockout of RXRα, 

the most abundantly expressed isoform in the liver, exhibit increased hepatic levels of 

triglyceride and cholesterol [34]. Table 2 lists RAR/RXR target genes involved in lipid 

metabolism, which are also depicted in Fig. 2.

2.1. Regulation of fatty acids and triglycerides by RAR/RXR

Several independent studies have indicated that the retinoid signaling modulates energy 

expenditure and lipid metabolism in rodents as the administration of RA ameliorates obesity 

and glucose intolerance and suppresses adipose lipid stores in mouse models of obesity 

and diabetes [35-37]. Impaired hepatic retinoid signaling is also linked with non-alcoholic 

fatty liver disease in humans [38], further supporting the functional significance of RA 

in normal liver physiology. Subsequent studies indicate that this signaling is mediated 

through fibroblast growth factor 21 (FGF21), a hormone secreted by the liver, involved 

in gluco-neogenesis, lipid metabolism, and ketogenesis. As a hormone, FGF21 regulates 

gene expression through activation of its membrane receptors, FGF receptor (FGFR) 1 

and β-Klotho. The target genes in FGF21/FGFR1-β-Klotho signaling pathway include 

glucose-6-phosphatase, phospho-enolpyruvate carboxykinase, carnitine palmitoyl transferase 

1α, and 3-hydroxybutyrate dehydrogenase type 1. Pharmacological administration of FGF21 

improves insulin sensitivity, normalizes plasma lipids levels, causes weight loss, and 

increases whole-body energy expenditure in obese rodents or monkeys [39-43].

Hepatic expression of FGF21 is directly regulated by RAR/RXR in both human and mouse. 

Li et al. reported that both RARα and β but not γ stimulated FGF21 expression in HepG2 

cells [44]. A DR1 RARE is identified in human FGF21 promoter region at −644 to −632 

nt upstream of the translation initiation site in gene reporter assays. Mutation of this RARE 

abolishes RA induction of this promoter. The functional role of RAR in FGF21 expression 

regulation is further confirmed in vivo in mouse liver, where over-expression of RARβ with 

a viral vector significantly elevated hepatic levels of Fgf21, leading to increased energy 

expenditure by promoting hepatic fatty acid oxidation and ketogenesis. Two putative DR5 

RAREs are identified in the mouse Fgf21 promoter at −602 to −586 and −537 to −521 nt, by 

Chromatin immunoprecipitation (ChIP)-PCR analysis [44].

Like FGF21, FGF19 (Fgf15 in rodents) is another growth factor that plays an important role 

in modulating hepatic lipid, bile acid, and carbohydrate metabolism. Human hepatocytes and 

cholangiocytes express FGF19 [45], and RA stimulates FGF19 mRNA expression in both 

human hepatocytes and HepG2 cells [45]. A DR5 RARE (+3423 to +3439 bp in intron 2) 

is identified in the human FGF19 gene. Mutation of this RARE significantly reduced 9-cis 

RA-induction of its promoter activity in a gene reporter assay [46]. However, this RARE is 

not conserved in its mouse ortholog, suggesting that RARs do not directly regulate Fgf15 

expression in this species.
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The liver is one of the major organs that synthesizes Apolipoprotein C-III (Apo C-III), 

which facilitates hepatic very-low-density lipoprotein (VLDL) particle formation and 

secretion, thus affecting the levels of hepatic and plasma triglycerides. Vu-Dac et al. [47] 

demonstrated that retinoids increase human Apo C-III mRNA expression by activating RXR, 

thereby contributing to the hypertriglyceridemic effect of retinoids. Takahashi et al. [95] 

further identified a DR1 RARE in the human Apo C-III promoter. Interestingly, this DR1 

RARE only binds RXR/RXR homodimers. Mutation of this DR1 RARE abolishes 9-cis RA 

stimulation of RXR-mediated Apo C-III transcription. In contrast, AM580, a RARα specific 

agonist, repressed the expression of Apo C-III and HNF4α in HepG2 and Hep3B cells, in 

association with increased expression of the small heterodimer partner (SHP/NR0B2) [48]. 

Decreased hepatic expression of Apo C-III and HNF4α was also found in vivo in mice fed 

a high-fat diet when administrated with AM580, where lower plasma levels of triglycerides 

(TG) and cholesterol were also seen. Because HNF4α is a positive transcription factor for 

hepatic Apo C-III expression, and because SHP blocks HNF4α transcriptional activity, the 

authors speculated that AM580 reduces Apo C-III expression by activating RARα, leading 

to up-regulation of SHP that then results in repressing HNF4α. However, it remains unclear 

how RARα stimulates SHP expression, an important player in modulating the expression of 

genes involved in maintaining lipid and bile acid homeostasis.

In addition, RAR also plays a role in de novo lipogenesis (DNL), the first step in lipid 

metabolism, mediated through the hairy and enhancer of split 6 (Hes6), a transcriptional 

repressor of HNF4α. This leads to reduced expression and activity of peroxisome 

proliferator-activated receptor-γ (PPARγ), a potent lipogenic transcription factor [49]. Three 

putative RAREs were identified in the proximal promoter of mouse Hes6 gene using a gene 

reporter assay and ChIP-PCR. Most importantly, over-expression of RARα or treatment 

with atRA in vivo significantly reduced hepatic fat accumulation in obese mouse models, 

demonstrating the physiological significance of this regulation. However, it is not known 

whether this HES6-HNF4α-PPARγ-mediated pathway is conserved in humans.

2.2. Regulation of cholesterol metabolism

The liver is also the principal site for cholesterol metabolism. Both the ATP-binding cassette 

(ABC) transporter A1 (ABCA1) and G1 (ABCG1) mediate the efflux of cellular cholesterol 

to apolipoproteins (Apo) A-I and A-II, two plasma proteins that are the major components 

of high-density lipoprotein (HDL). These four proteins are predominantly synthesized in 

the liver, where their expression is directly regulated by RAR and/or RXR. Rottman et 

al. [50] first reported that retinoids stimulate Apo A-I expression in HepG2 cells. At least 

three RAREs have been identified in the apoA-I promoter. One of the RARE (located from 

−214 to −192 bp upstream of transcription start) is mostly activated by RXR alone, whereas 

the other two (located from −169 to −146 bp, and −134 to −119 bp) are responsible for 

the stimulatory effects of RARα and β [50]. In the case of apo A-II, only one RARE 

is identified in its promoter region and it only binds RXR [51]. In addition, retinoids 

also induce the expression of the cholesterol efflux transporters ABCA1 and ABCG1 in 

macrophages. Costet et al. found that atRA and TTNPB, a synthetic RAR agonist, increased 

ABCA1 mRNA and protein expression in both human and mouse macrophages. This up-

regulation is mediated through a DR4 RARE in the human ABCA1 promoter, a site that 
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LXR/RXR also binds to. ChIP analysis in macrophages revealed that RARγ/RXR bind to 

this DR4 element in the presence of atRA, where weaker binding of RARα/RXR was also 

found. In contrast, RARβ/RXR did not show any binding to this site [52]. The RAREs in 

the human ABCG1 promoter were characterized by Ayaori et al. There are two RAREs 

localized in the ABCG1 gene upstream of exon 1 in promoter A and upstream of exon 5 

in promoter B. While promoter A only responds to atRA with minor transcription activity, 

promoter B can be activated by both atRA and other RAR agonists, TTNPB, and AM580, 

which generates the major transcript. Gene reporter assays have confirmed that ABCG1 

level is regulated more by promoter B than promoter A, where the identified a DR4 RARE 

in the promoter B overlaps with a liver X receptor-responsive element (LXRE). This RARE 

was further confirmed by ChIP assay and overexpression of RAR isoforms in reporter assays 

[53].

Sterol 27-hydroxylase (CYP27A1) catalyzes the degradation of cholesterol, an important 

pathway in sterol elimination. It is also the initiating enzyme in the acidic pathway that 

converts cholesterol to bile acids. CYP27A1 is highly expressed in human macrophage. 

Several studies have found that retinoids and synthetic RAR agonists (e.g. AM580, TTNPB) 

induce CYP27A1 expression and increase 27-hydroxy-cholesterol production in human 

macrophages, including primary cells and THP-1 cell lines [54-56]. At least one RARE, 

which is also shared with PPAR/RXR is identified in the proximal promoter of this human 

gene, localized between −853 and −217 bp upstream of its transcription start site. Both 

ChIP assays and reporter assays indicate that a DR1 RARE plays the dominant role in 

response to retinoid stimulation of RAR/RXR [54]. A recent study indicates that the activity 

of carboxylesterase 1 also modulates CYP27A1 expression in macrophages via the nuclear 

receptors PPARγ, RAR, and/or RXR [57].

3. RAR/RXR regulation of bile acid homeostasis

Bile formation is one of the most important functions of the liver. RAR/RXR regulates the 

expression of a number of genes involved in bile formation, including bile acid synthesis and 

transport (Table 3) (Fig. 2).

3.1. Regulation of bile acid synthesis

The classic pathway for bile acid biosynthesis occurs primarily in the liver, which 

contributes around 90% of bile acid production. Cholesterol 7a-hydroxylase (CYP7A1) 

is the rate-limiting enzyme in bile acid synthesis. The expression of CYP7A1 is 

transcriptionally regulated and tightly controlled. While HNF4α and LRH-1 activate 

CYP7A1 gene transcription, there are two separate signaling pathways that repress this 

transcription. The major one is mediated through FGF19 (Fgf15 in mouse) /FGFR4/β-

Klotho signaling. In humans, both hepatocytes and gallbladder epithelia express FGF19, 

in addition to the ileal enterocytes. Although details of this regulatory mechanism remain 

unclear, when FGF19 activates its receptor FGFR4/β-Klotho on the plasma membrane 

of hepatocytes, this initiates a signaling cascade that transactivates MAPKs, resulting in 

repression of CYP7A1 expression [58]. A second pathway is mediated through the nuclear 

receptor SHP (NR0B2). SHP is not a usual nuclear receptor as it does not have a DNA 
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binding domain. However, when SHP interacts with other transcription factors, it blocks 

gene transcription, including HNF4α and LRH-1, two transcription factors that normally 

activate CYP7A1 expression. We have found that RA represses CYP7A1 expression in 

human hepatocytes and HepG2 cells by stimulating the expression of both FGF19 and SHP 

[45]. This repression is mediated through both FXR-dependent and -independent pathways. 

While Jahn’s study [46] identified a novel DR5 RARE in human FGF19 gene as described 

earlier, it remains to be determined how a RAR agonist that stimulated SHP expression also 

can repress CYP7A1 expression.

The alternative acidic pathway of bile acid synthesis, accounting for around 10% of bile 

acid production, is initiated by CYP27A1, described in the previous section. In contrast to 

macrophages, we found that both bile acids and retinoids repressed CYP27A1 expression 

in human hepatocytes [45]. Chen and Chiang identified the bile acid response element in 

human CYP27A1 gene, localized at −147 bp of its promoter, a site that also binds HNF4α 
[59]. Because both bile acids and retinoids induce SHP expression in hepatocytes, it is likely 

that SHP represses HNF4α activity, leading to reduced CYP27A1 expression in hepatocytes. 

The different effects of retinoids on CYP27A1 expression in human hepatocytes and 

macrophages are likely due to cell-specific transcriptional regulatory mechanisms.

Similar to CYP7A1 and CYP27A1, retinoids also have inhibitory effects on several other 

genes involved in bile acid synthesis, including BAAT, CYP8B1, and AKR1D1 [60,61], 

where RAR or RXR may also play a role. This repressive regulation is likely mediated 

through RA-stimulated expression of SHP in hepatic parenchymal cells, although details 

remain elusive.

3.2. Regulation of hepatic bile acid transporters

The sodium taurocholate co-transporting polypeptide (NTCP, SLC10A1) and the multidrug 

resistance-associated protein 2 (MRP2, ABCC2), represent basolateral and apical membrane 

transporters respectively that are responsible for the uptake and efflux of bile acids, drugs 

and other organic anions from hepatocytes. Hepatic expression of NTCP and Mrp2 are 

induced by retinoids through activation of RAR/RXR heterodimer in vitro [62]. A DR5 

RARE has been identified in the promoter of both rat Ntcp and Mrp2 genes [63]. RAR’s 

role in NTCP expression is also seen in human cells. A DR5 RARE in human NTCP is 

localized to nucleotides −112 to −96 of its promoter. When a synthetic chemical Ro41-5253 

antagonizes RAR transactivation, the expression of NTCP, which also functions as the 

receptor for human hepatitis B virus entry into the hepatocyte, is reduced in cultured human 

hepatic cells, leading to decreased infection of hepatitis B virus infection [64].

Moreover, in inflammatory conditions, NTCP is down regulated, mainly by IL-1β-induced 

suppression of RXR/RAR nuclear binding activity as shown in vitro. The retinoid response 

element of the NTCP promoter was identified at −158 to −36 nt upstream of the 

translation initiation site, which contains a putative DR2 RARE sequence [63]. Mutations 

of this DR2 RARE reduced the NTCP promoter activity and NTCP transcription. Besides 

direct induction by retinoids, transcription of NTCP is also suppressed by the FXR/RXR 

heterodimer via its up-regulation of SHP [65]. Recent studies have suggested that SHP 

can suppress RXR/RAR activity through a direct protein-protein interaction [66]. Thus, it 
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means that NTCP is also regulated by cross-talk between a retinoid-RAR-dependent direct 

pathway and a bile acid-FXR-mediated indirect pathway. However, the expression of NTCP 

is maximally regulated by bile acid-activation compared to retinoid-activation when both 

retinoids and bile acids are present [62].

Several lines of evidence indicate that decreased hepatic Mrp2 expression in cholestatic 

livers is also associated with the reduction of nuclear RARα/RXRα levels as seen with 

NTCP expression. The proinflammatory cytokine IL-1 β was identified as the responsible 

inducer of this down-regulation [67-69]. However, this regulatory mechanism is only seen in 

cholestatic livers, as down-regulation of NTCP and Mrp2 in CCl4-treated rats is independent 

of nuclear RAR/RXR but regulated by HNF1 [69].

Organic anion transporting polypeptides (OATPs), OATP1B1 and 1B3, organic cation 

transporter 1 (OCT1) and organic anion transporter 2 (OAT2), are organic anion and cation 

transporters expressed on the basolateral membrane of the hepatocyte, which are also 

thought to be regulated in an RXR/RAR-dependent manner, as atRA treatment decreases 

mRNA expression of these transporters in both primary human hepatocytes and hepatoma 

HepaRG cells. Knockdown of RARα or RXRα in HepaRG cells using siRNA transfection 

diminishes atRA repression of the expression of these genes [70], providing corroborating 

evidence of involvement of these nuclear receptors. However, how atRA and RAR/RXR 

repress the expression of these genes has yet to be defined. We have also found that 

RAR/RXR represses human MRP3 (ABCC3) expression in gene reporter assays [71]. 

MRP3 is expressed on the basolateral membrane of hepatocytes. It effluxes intracellular 

organic anions and bile acid glucuronides. Its expression is increased in cholestatic livers 

as an adaptive response to protect the liver from toxic chemicals. Under normal physiologic 

conditions, RAR/RXR binds to Sp1, a transcription activator of MRP3. This protein-protein 

interaction blocks Sp1 transcription activity and represses MRP3 expression. However, 

in cholestasis, hepatic expression of RAR/RXR is reduced. This results in increased 

transcription activity of Sp1 with the MRP3 promoter, providing a mechanistic explanation 

for RAR/RXR’s role in regulating MRP3 expression [71].

The apical sodium-dependent bile acid transporter (ASBT, SLC10A2), located on the 

luminal membrane of cholangiocytes as well as the terminal ileum, functions to actively 

reabsorb bile acids, thereby facilitating the cholehepatic and enterohepatic circulations of 

bile acids. Gene promoter reporter assays indicate that RAR/RXR positively regulates 

human ASBT mRNA expression. A DR2 RARE is identified from +118 to +131 nt 

downstream of the transcription initiation site in the human ASBT gene. RA stimulates this 

promoter activity by four-fold, while site-mutations of this DR2 RARE attenuate the basal 

activity of the promoter by 50% [62]. Further studies indicate that this DR2 RARE is also 

responsible for bile acid repression of ASBT expression as the mutation of this DR-2 RARE 

eliminated bile acid repression. This negative feedback regulation is mediated through the 

FXR signaling pathway. When FXR is activated, SHP and FGF19/Fgf15 expression is 

stimulated. Increased SHP in turn represses RAR/RXR activity in ASBT transcription, 

leading to this down-regulation [73-75]. In addition, elevated FGF19/Fgf15 represses ASBT 

expression in human cholangiocarcinoma Mz-ChA-1 cells and colon cancer Caco2 cells 
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through FGFR4/β-Klotho receptors as mentioned earlier, although details of this signaling 

pathway still remain unclear [76].

The bile salt export pump (BSEP, ABCB11) is the major apical transporter in the hepatocyte 

for the efflux of bile salts. FXR/RXR heterodimers activate transcription of human BSEP 

through binding to the IR-1 site [77]. Although FXR/RXR is thought to be the permissive 

RXR heterodimer, Kassam A et al. reported that RXR agonists didn’t activate the FXR/RXR 

heterodimer, but prevented the binding of FXR/RXR heterodimers to the BSEP promoter, 

suggesting RXR-mediated antagonism for ligand-bound FXR-induced expression of BSEP 

in both rodent and human [78]. During the transactivation of the IR-1 element, the 

presence of ligand for the FXR/RXR complex requires the recruitment of steroid receptor 

coactivators, raising the possibility that RXR ligands may have an antagonistic effect on 

FXR activation [78].

In summary, RAR-, RXR- mediated pathways are involved in suppressing bile acid synthesis 

and stimulating bile acid export by directly or indirectly regulating enzymes (CYP7A1, 

CYP27A1, CYP8B1, BAAT) and transporters (NTCP, MRP2, MRP3, OATPs, and others), 

and thus can be interpreted as having anti-cholestatic effects.

4. RAR/RXR in the regulation of liver fibrogenesis

Lipid droplets in hepatic stellate cells (HSC) are the central site for the storage of retinoids 

in the body. Activated HSCs are characterized by loss of retinoids and production of 

extracellular matrix (ECM), and play an important pathogenic role in liver fibrosis. RXRs 

and RARs are expressed in quiescent HSCs from rodents and humans, where their alpha 

isoforms are most highly expressed. However, their expression is reduced when HSCs are 

activated [79].

When HSC are activated in vivo in the livers of patients with cirrhosis or carcinoma or 

in bile duct ligated cholestatic rats, the mRNA expression levels of RARβ and RXRα 
are down-regulated, suggesting that these nuclear receptors play a role in HSC activation 

and liver fibrogenesis [80,81]. Cortes et al. demonstrate that atRA promotes human HSC 

deactivation via RARβ-dependent transcriptional down-regulation of myosin light chain 

2 (MLC-2) expression (Table 4). MLC-2 plays a major role in cytoskeletal tension, 

force generation, mechanosensing, and ECM deposition. Elevated hepatic expression of 

MLC-2 is associated with liver fibrosis in both humans and mice [81]. Consistent 

with these observations, reduced liver fibrosis is also seen in cholestatic rodent models 

after administration of atRA [82-84], where atRA demonstrates inhibitory effects on the 

expression of profibrotic genes, including TGF-β1, COL1A1, MMP2, and α-SMA both in 

vivo in rodent livers and in vitro in primary human hepatic stellate cells and LX-2 cells. 

Reduced mRNA expression of all three RAR isotypes is also found in freshly isolated rat 

HSC where treatment with retinoids decreased markers of activation [85,86]. In further 

support of RAR’s role in HSC activation, Mezaki et al. found that RARα and β proteins 

formed insoluble aggregated speckled droplets in the cytosol of retinol activated rat HSC 

[87], suggesting that RARs have lost their function as transcription factors. Indeed, the 
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expression of RARα, RARβ and RARγ are undetectable in chronically activated rat HSC 

[86].

More direct evidence for RXR’s role in HSC activation comes from over-expression of 

RXRα in transfected rat HSC cultures, which induces a quiescent phenotype [88]. RXR 

specific agonists are also able to inhibit cell proliferation in HSC. Similarly, treatment of 

activated rat HSC with atRA or RAR agonists both reduced the expression of profibrotic 

genes, including collagen I, collagen III, and fibronectin. AtRA also reduced HSC 

proliferation, whereas RAR agonists did not. In contrast, RAR specific antagonists enhance 

HSC proliferation, indicating that RARs do play a role in HSC proliferation [89]. Similarly, 

the combined treatment of ligands for PPAR, RAR, and RXR results in an anti-proliferative 

effect by inducing cell cycle arrest at the G0/G1 phase [90].

Two RAREs in mouse Collagen I alpha-2 chain (Col1a2) promoter have been identified. 

They are localized at −879 to −874 bp (site 1) and −930 to −911 bp (site 2). When the 

reporter construct was cotransfected with RARβ and RXRα expression vectors into stellate 

cells or the transfected cells were treated with RA, the promoter activity was suppressed. 

Conversely, mutation of these RAREs enhanced promoter activity, demonstrating the direct 

role of RAR/RXR in this gene expression regulation [91]. However, these two RAREs are 

not typical RAREs. Site 1 appears to be half of the regular RARE, whereas site 2 is an 

everted repeat of the conserved sequence AGGTCA with a gap of 8 base-pairs. Also, a 

liganded RAR/RXR normally transactivates gene expression rather than represses it. It is 

not known whether this repressive effect is due to these two atypical RAREs. Alternatively, 

the RAR/RXR repression of mouse Col1a2 is mediated through transrepression of another 

transcription factor, such as AP1 (Fig. 2). Several studies have indicated that AP1 positively 

regulates the expression of many genes involved in liver fibrosis, including TGF-β1, 

collagenase, stromelysin, and TNF-α [77,89-92], where retinoids repress the expression 

of these genes. This transrepression is thought to be mediated through RAR/RXR. In this 

case, liganded RAR does not directly bind to a traditional RARE in the promoter but 

rather associates with AP1 through protein-protein interactions [92-94]. When RAR binds 

to AP1, it blocks AP1 transcription activity, leading to reduced expression of the target 

genes. As a previously mentioned example, RAR/RXR counteracts Sp1 transactivation of 

MRP3 expression [71]. These regulatory mechanisms may also provide an explanation for 

atRA and RARβ repression of MLC-2 expression in HSC [81]. In summary, it is clear that 

RARs and RXRs play a major role in HSC activation by modulating cell proliferation and 

the expression of profibrotic genes, although many mechanistic details still remain to be 

determined.

5. RAR/RXR in the regulation of liver inflammation

Supplementation of RA has been shown to reduce liver inflammation in several animal 

models of liver disease, suggesting a potential role for RAR/RXR in regulating the 

immune response [101-103]. Many studies have indicated that RA plays a very important 

role in immune cells differentiation and activation [104,105]. In particular, RA represses 

the production of proinflammatory cytokines in immune cells, including dendritic cells, 

monocytes, macrophages, T-cells [3,105-108]. The anti-inflammatory effects of RA are 
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partially RAR/RXR dependent. Dawson et al. showed that repression of IFN-gamma and 

TNF-alpha by RAs is mediated through activation of RARα, but not RARβ or RARγ in 

human T cells because the RARα-selective agonist AM580, but not the RARβ/γ ligand 

4-hydroxyphenylretinamide, recapitulates RA’s effect [3]. Dzhagalov et al. revealed that 

RARγ is a positive regulator of inflammatory cytokine production in CD8+ T-cells and 

macrophages using RARγ-deficient mice [109]. Together, these observations indicate that 

individual retinoid receptors play specific roles in the differential regulation of immune 

responses. Several studies have also revealed that RXR alone or in association with RAR 

block NF-κB or AP-1 activation in immune cells [102,106-108,110], where both NF-κB and 

AP-1 are transactivators of proinflammatory cytokine expression. (Table 5).

The anti-inflammatory effects of RA are also found in microglia and astrocytes 

[111-113]. Reduced production of metalloproteases (MMP), cyclooxygenase-2 (COX-2), 

and prostaglandin I synthase (PGIS) were also found in other cells [110,114-116]. However, 

we were not able to find any reports in the literature regarding RAR/RXR’s role in 

proinflammatory cytokine production in hepatic cells. Instead, several studies indicate that 

hepatic cells respond to proinflammatory cytokines by altering gene expression where 

RAR/RXR is involved as mentioned earlier in the regulation of NTCP, MRP2 and MRP3 

expression. Furthermore, Aguirre and Karpen indicate that interleukin-1β and TNFα 
cause RXRα SUMOylation in hepatocytes, resulting in decreased expression of its target 

genes [117]. Clearly, more studies are needed to examine RAR/RXR’s role in hepatic 

inflammation.

6. Conclusions and prospective

RAR and RXR are significant therapeutic targets for various clinical disorders, i.e., atopic 

dermatitis, breast cancer, acute promyelocytic leukemia (APL), and diabetic cardiomyopathy 

[118-121]. Emerging findings have shown that vitamin A homeostasis is implicated in the 

prevention of hepatic fibrosis, regulation of hepatic immunological response to cholestasis, 

and reduction of liver injury [83,84,122-124]. Given the crucial role of Vitamin A deficiency 

in chronic cholestasis, RAR and RXR may hold therapeutic potential for the treatment 

of cholestatic liver diseases. Although UDCA and Obeticholic acid have been approved 

by the FDA for early-stage and UDCA-refractory primary biliary cholangitis [125,126], 

not all patients respond, and beneficial effects on clinical endpoints in primary sclerosing 

cholangitis (PSC) patients remains controversial [127]. Thus there is a need for alternative 

therapies. Several lines of evidence indicate that atRA has potentially positive effects on 

liver injury in several rodent models of chronic cholestasis, including bile duct ligation 

and alpha-naphthyl isothiocyanate in the rat and in Mdr2 null mice, a model of PSC 

[84,128]. The most positive findings were seen in rats treated with atRA with and without 

UDCA, which demonstrated marked reductions in necrosis and hepatic fibrosis [83]. In 

addition, markers of inflammation and significant decreases in the bile acid pool and 

bile duct proliferation were also seen, with the combination of atRA and UDCA having 

the greatest effect. The regulatory mechanisms may involve suppressing the activity of 

cytochrome CYP7A1 [83,84], which led to reductions in the bile acid pool size and reduced 

bile duct proliferation. In addition, RA repressed collagen 1A1 expression in stellate cells 

suggesting an anti-fibrotic effect [83]. These encouraging findings led to a small clinical 
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trial that found that combination therapy of UDCA and atRA for 12 weeks in patients with 

PSC had an inhibitory effect on bile acid synthesis (C4) and significantly reduced serum 

aminotransferases, thus potentially reducing hepatic inflammation [129]. However, retinoids 

can also exhibit serious side effects such as teratogenicity, hypervitaminosis, and resistance 

can develop [130]. Therefore, several synthetic RAR- and RXR- ligands (Rexinoids) have 

been developed in recent years that show potential as anti-tumor agents in clinical and 

pre-clinical studies, including AM80 (dual RARα/β-selective agonist) for APL [131] and 

bexarotene (RXR ligands) for persistent cutaneous T-cell lymphoma [132]. It is possible 

that these specific ligands could also be promising new therapeutic agents in the therapy of 

chronic cholestatic disorders.

As summarized in this review, RAR and RXR play critical roles in many aspects of hepatic 

physiology and responsiveness to disease (Fig. 2). Here we have focused on those aspects 

that relate to hepatic lipid metabolism, bile acid metabolism and the pathogenesis of hepatic 

fibrosis and inflammation, as well as the possibility that ligands of these nuclear receptors 

may have potential therapeutic anti-inflammatory and anti-fibrotic benefits in liver disease. 

While many details of these interactions have been described, there is still much to be 

learned about these pathways and particularly where novel therapeutic interventions might 

be targeted. Given the widespread roles of RAR and RXR in the regulation of these hepatic 

functions, future studies should continue to focus on this important area.
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Abbreviations:

atRA all-trans retinoic acid

ASBT/SLC10A2 apical sodium-dependent bile salt transporter

ABC ATP-binding cassette transporter

Apo apolipoprotein

AKR1D1 aldo-keto reductase family 1 member D1

AP-1 activator protein 1

BAAT bile acid coenzyme A: amino acid N-acyltransferase

BSEP/ABCB11 bile salt export pump

CYP7A1 cholesterol 7-alpha-hydroxylase

CD36 cluster determinant 36

COL1A1 collagen type I alpha 1 chain

COL1A2 collagen type I alpha 2 chain
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CE cholesterol ester

DBD DNA-binding domain

DR direct repeat

DNL de novo lipogenesis

ECM extracellular matrix

FXR farnesoid X receptor

FGF15/19 fibroblast growth factor 15/19

FGFR fibroblast growth factor receptor

IR inverted repeat

Hes6 hairy and enhancer of split 6

HDL high-density lipoprotein

HNF4A hepatocyte nuclear factor 4 alpha

HSC hepatic stellate cells

IL interleukin

LBD ligand binding domain

LDLR low-density lipoprotein receptor

LRH-1 liver receptor homolog-1

NTCP/SLC10A1 sodium/taurocholate cotransporting polypeptide

MRP multidrug resistance-associated protein

MLC-2 myosin light chain 2

MMP-2 matrix metalloproteinase-2

OATP organic anion transporting polypeptide

NF-κB nuclear factor-kappa B

PPARγ peroxisome proliferator-activated receptor gamma

PC phosphatidylcholine

RA retinoic acid

RARE retinoic acid response element

RAR retinoic acid receptor

RXR retinoid X receptor
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9cRA 9-cis retinoic acid

SHP/NR0B2 small heterodimer partner

CYP8B1 sterol 12-alpha-hydroxylase

CYP27A1 sterol 27-hydroxylase

α-SMA alpha-smooth muscle actin

TNFα tumor necrosis factor-alpha

Sp1 specificity protein 1

TGF-β1 transforming growth factor-beta 1

TG triglycerides

VLDL very-low-density lipoprotein.
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Fig. 1. 
A structural model of retinoid receptors in gene regulation. A) structural modules of RAR 

and RXR. B) Residues that directly interact with atRA in RARs and 9-cis RA in RXRs 

are well conserved among isotypes within the family. C) Structure of atRA, 9-cis RA and 

docosahexaenoic acid (DHA, 22:6 omega-3). D) Transcription activation of target genes by 

RAR/RXR.
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Fig. 2. 
Functional role of RAR/RXR in liver physiology. The black arrows or bar-headed lines 

show key genes involved in lipid metabolism and fibrogenesis that are directly regulated 

by RAR/RXR signaling pathways in liver cells, including hepatocytes and cholangiocytes 

Kupffer cells, and stellate cells. Dashed lines indicate that genes are directly or indirectly 

regulated by RAR/RXR signaling pathways, the detail of which has not been defined. Thick 

red arrows mean inhibition, and thick blue arrows mean stimulation. Yellow, brown, and red 

dots represent apo A-I, apo A-II, and apo C-III, respectively. Abbreviations can be found 

separately in the “list of abbreviations.” More information about the regulations and function 

of the individual genes can be found in Tables 2-4.
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Table 4

RAR/RXR target genes involved in liver fibrosis.

Target
gene

Regulation Function Species Cell
type

References

AP-1 (RAR/RXR) Repression The transcription factor for regulating expression of collagenase, 
stromelysin, TGF-β1 and TNF-α. promoting fibrogenesis.

Rat HSC [80]

MLC-2 (RAR/RXR) Repression The sarcomeric protein for increasing HSC contractility (the RAR-β/
MLC-2 axis)

Human HSC [81]

Mice HSC

Col1a2 (RAR/ RXR) Repression A protein for the major component of extracellular matrix Rat HSC [91]
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