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Abstract

Activated by retinoids, metabolites of vitamin A, the retinoic acid receptors (RARs) and the
retinoid X receptors (RXRs) play important roles in a wide variety of biological processes,
including embryo development, homeostasis, cell proliferation, differentiation and death. In this
review, we summarized the functional roles of nuclear receptor RAR/RXR heterodimers in liver
physiology. Specifically, RAR/RXR modulate the synthesis and metabolism of lipids and bile
acids in hepatocytes, regulate cholesterol transport in macrophages, and repress fibrogenesis in
hepatic stellate cells. We have also listed the specific genes that carry these functions and how
RAR/RXR regulate their expression in liver cells, providing a mechanistic view of their roles in
liver physiology. Meanwhile, we pointed out many questions regarding the detailed signaling of
RAR/RXR in regulating the expression of liver genes, and hope future studies will address these
issues.
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1. Introduction

Retinoic acids (RASs), the major active metabolites of vitamin A, play a pivotal role in
many essential biological processes, including embryogenesis, organogenesis, cell growth,
differentiation and apoptosis. The biologic effects of RAs are mainly mediated through
nuclear receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs).
Both RARs and RXRs have three isotypes, —a, —f, and —y, that are encoded by different
genes in humans and rodents, i.e. NR1B1-3 and NR2B1-3, respectively. In addition,

each isotype also has multiple variants due to alternative promoter and splicing. Despite
these differences, RAR isotypes share over 90% identity in their DNA binding domain
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(DBD), followed by ~85% identity in the ligand binding domain (LBD) whereas the N-

and C- terminal regions (also call A and F domains) vary markedly. Fig. 1 illustrates the
modular structure of these domains, designated A-F. Similarly, RXR isotypes also share
high sequence identity in their DBD and LBD domains. In contrast, the sequence identity in
DBD and LBD between RAR and RXR are 60% and 27%, respectively despite both being
activated by RAs and their metabolites [1].

All-trans retinoic acid (atRA) is believed to be the endogenous ligand for RARs as it
activates RARs at nanomolar levels, a physiologically relevant concentration, although

the EC50 for each isotype differs slightly [2]. Other sterecisomers of RA also activate
RARs, including 9-cis RA and 13-cis RA [3]. Fig. 1B demonstrates that the residues that
directly interact with atRA in RAR are well conserved among the isotypes [4]. However, the
endogenous ligand for RXRs remains debatable. Although 9-cis RA was initially identified
as a ligand for RXRs by in vitro assays [5], its concentration in plasma and tissues is

either undetectable or below the levels used in in vitro assays [6]; nevertheless, atRA

can isomerize to 9-cis RA in vivo. In contrast, polyunsaturated fatty acids (PUFA) have
been shown binding also activating RXRa both in tissue extracts and gene reporter assay
[7-9], including docosahexaenoic acid and arachidonic acid. These observations indicate that
PUFA are endogenous ligands for RXRs. This speculation is further supported by a recent
report where deficiency of vitamin A has limited effects in RXRa activation in vivo. In
contrast, deficiency of PUFA greatly repressed RXRa activation [10].

As type Il nuclear receptors, RARs are obligated to form heterodimers with RXRs and
bind to retinoic acid response elements (RARES), a sequence in the promoter of the target
genes that regulates their expression, whereas RXRs can form homodimers and regulate
gene expression. In vitro assays indicate that a given RAR isotype is able to heterodimerize
with any of the RXR isotypes and bind to a RARE [11]. The consensus RARE favors

a direct repeat (DR) of AGGTCA with a gap of 1-5 nucleotides (DR1-5) (Fig. 1). At
resting state, RAR/RXR may function as a repressor of gene transcription because of the
associated corepressors. Upon ligand binding, its LBD undergoes a conformation change,
resulting in the release of corepressors and recruitment of coactivators, leading to activation
of gene transcription. Because RXR is the obligated partner for RAR, agonists of RXR can
permissively activate RAR and regulate its target’s expression. This is also true for a few
other members of class Il nuclear receptors, including PPARs, LXRs, and FXRs [12-15].
As these receptors are the subject of other reviews, we will not discuss RA’s role in the
activation of these receptors here.

Both RAR and RXR are broadly expressed in almost all tissues, but the relative abundance
of each isotype differs. Table 1 lists the expression pattern of these isotypes and the
phenotype of the gene knockout in mouse. Numerous studies in the past few decades,
summarized in many excellent reviews, have demonstrated the functional significance of RA
mediated RAR/RXR activation in a wide variety of biological processes, including embryo
development, homeostasis, cell proliferation, differentiation and death. In this review, we
focus on RAR/RXR’s role in liver physiology where all of their isotypes are expressed
(Table 1).
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2. RAR/RXRin the regulation of lipid metabolism

The liver is the major organ involved in lipid metabolism. Both RARa and RXRa,, which
are abundantly expressed, play an important role in regulating the expression of genes
involved in hepatic lipid metabolism and homeostasis. Although deficiency of specific
RAR isotypes in mice does not show any liver-specific phenotype, likely due to functional
compensation from other RAR isotypes [21], mice with liver-specific knockout of RXRa,
the most abundantly expressed isoform in the liver, exhibit increased hepatic levels of
triglyceride and cholesterol [34]. Table 2 lists RAR/RXR target genes involved in lipid
metabolism, which are also depicted in Fig. 2.

2.1. Regulation of fatty acids and triglycerides by RAR/RXR

Several independent studies have indicated that the retinoid signaling modulates energy
expenditure and lipid metabolism in rodents as the administration of RA ameliorates obesity
and glucose intolerance and suppresses adipose lipid stores in mouse models of obesity

and diabetes [35-37]. Impaired hepatic retinoid signaling is also linked with non-alcoholic
fatty liver disease in humans [38], further supporting the functional significance of RA

in normal liver physiology. Subsequent studies indicate that this signaling is mediated
through fibroblast growth factor 21 (FGF21), a hormone secreted by the liver, involved

in gluco-neogenesis, lipid metabolism, and ketogenesis. As a hormone, FGF21 regulates
gene expression through activation of its membrane receptors, FGF receptor (FGFR) 1

and B-Klotho. The target genes in FGF21/FGFR1-p-Klotho signaling pathway include
glucose-6-phosphatase, phospho-enolpyruvate carboxykinase, carnitine palmitoyl transferase
la, and 3-hydroxybutyrate dehydrogenase type 1. Pharmacological administration of FGF21
improves insulin sensitivity, normalizes plasma lipids levels, causes weight loss, and
increases whole-body energy expenditure in obese rodents or monkeys [39-43].

Hepatic expression of FGF21 is directly regulated by RAR/RXR in both human and mouse.
Li et al. reported that both RARa and B but not y stimulated FGF21 expression in HepG2
cells [44]. A DR1 RARE is identified in human FGF21 promoter region at —644 to —632

nt upstream of the translation initiation site in gene reporter assays. Mutation of this RARE
abolishes RA induction of this promoter. The functional role of RAR in FGF21 expression
regulation is further confirmed in vivo in mouse liver, where over-expression of RARB with
a viral vector significantly elevated hepatic levels of Fgf21, leading to increased energy
expenditure by promoting hepatic fatty acid oxidation and ketogenesis. Two putative DR5
RAREs are identified in the mouse Fgf21 promoter at -602 to —586 and —537 to —521 nt, by
Chromatin immunoprecipitation (ChIP)-PCR analysis [44].

Like FGF21, FGF19 (Fgf15 in rodents) is another growth factor that plays an important role
in modulating hepatic lipid, bile acid, and carbohydrate metabolism. Human hepatocytes and
cholangiocytes express FGF19 [45], and RA stimulates FGF19 mRNA expression in both
human hepatocytes and HepG2 cells [45]. A DR5 RARE (+3423 to +3439 bp in intron 2)

is identified in the human FGF19 gene. Mutation of this RARE significantly reduced 9-cis
RA-induction of its promoter activity in a gene reporter assay [46]. However, this RARE is
not conserved in its mouse ortholog, suggesting that RARs do not directly regulate Fgf15
expression in this species.
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The liver is one of the major organs that synthesizes Apolipoprotein C-I11 (Apo C-l111),
which facilitates hepatic very-low-density lipoprotein (VLDL) particle formation and
secretion, thus affecting the levels of hepatic and plasma triglycerides. Vu-Dac et al. [47]
demonstrated that retinoids increase human Apo C-111 mRNA expression by activating RXR,
thereby contributing to the hypertriglyceridemic effect of retinoids. Takahashi et al. [95]
further identified a DR1 RARE in the human Apo C-I11 promoter. Interestingly, this DR1
RARE only binds RXR/RXR homodimers. Mutation of this DR1 RARE abolishes 9-cis RA
stimulation of RXR-mediated Apo C-I1I transcription. In contrast, AM580, a RARa specific
agonist, repressed the expression of Apo C-111 and HNF4a in HepG2 and Hep3B cells, in
association with increased expression of the small heterodimer partner (SHP/NROB2) [48].
Decreased hepatic expression of Apo C-I11 and HNF4a was also found in vivo in mice fed

a high-fat diet when administrated with AM580, where lower plasma levels of triglycerides
(TG) and cholesterol were also seen. Because HNF4a is a positive transcription factor for
hepatic Apo C-111 expression, and because SHP blocks HNF4a transcriptional activity, the
authors speculated that AM580 reduces Apo C-111 expression by activating RARa, leading
to up-regulation of SHP that then results in repressing HNF4a.. However, it remains unclear
how RARa stimulates SHP expression, an important player in modulating the expression of
genes involved in maintaining lipid and bile acid homeostasis.

In addition, RAR also plays a role in de novo lipogenesis (DNL), the first step in lipid
metabolism, mediated through the hairy and enhancer of split 6 (Hes6), a transcriptional
repressor of HNF4a. This leads to reduced expression and activity of peroxisome
proliferator-activated receptor-y (PPARY), a potent lipogenic transcription factor [49]. Three
putative RAREs were identified in the proximal promoter of mouse Hes6 gene using a gene
reporter assay and ChIP-PCR. Most importantly, over-expression of RARa. or treatment
with atRA in vivo significantly reduced hepatic fat accumulation in obese mouse models,
demonstrating the physiological significance of this regulation. However, it is not known
whether this HES6-HNF4a-PPARy-mediated pathway is conserved in humans.

2.2. Regulation of cholesterol metabolism

The liver is also the principal site for cholesterol metabolism. Both the ATP-binding cassette
(ABC) transporter A1 (ABCAL) and G1 (ABCG1) mediate the efflux of cellular cholesterol
to apolipoproteins (Apo) A-l and A-11, two plasma proteins that are the major components
of high-density lipoprotein (HDL). These four proteins are predominantly synthesized in
the liver, where their expression is directly regulated by RAR and/or RXR. Rottman et

al. [50] first reported that retinoids stimulate Apo A-l expression in HepG2 cells. At least
three RARES have been identified in the apoA-1 promoter. One of the RARE (located from
—-214 to —192 bp upstream of transcription start) is mostly activated by RXR alone, whereas
the other two (located from —169 to —146 bp, and —134 to —119 bp) are responsible for

the stimulatory effects of RARa and B [50]. In the case of apo A-11, only one RARE

is identified in its promoter region and it only binds RXR [51]. In addition, retinoids

also induce the expression of the cholesterol efflux transporters ABCA1 and ABCGL1 in
macrophages. Costet et al. found that atRA and TTNPB, a synthetic RAR agonist, increased
ABCAL mRNA and protein expression in both human and mouse macrophages. This up-
regulation is mediated through a DR4 RARE in the human ABCA1 promoter, a site that
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LXR/RXR also binds to. ChIP analysis in macrophages revealed that RARy/RXR bind to
this DR4 element in the presence of atRA, where weaker binding of RARa/RXR was also
found. In contrast, RARB/RXR did not show any binding to this site [52]. The RAREs in
the human ABCGL1 promoter were characterized by Ayaori et al. There are two RARES
localized in the ABCGL1 gene upstream of exon 1 in promoter A and upstream of exon 5

in promoter B. While promoter A only responds to atRA with minor transcription activity,
promoter B can be activated by both atRA and other RAR agonists, TTNPB, and AM580,
which generates the major transcript. Gene reporter assays have confirmed that ABCG1
level is regulated more by promoter B than promoter A, where the identified a DR4 RARE
in the promoter B overlaps with a liver X receptor-responsive element (LXRE). This RARE
was further confirmed by ChIP assay and overexpression of RAR isoforms in reporter assays
[53].

Sterol 27-hydroxylase (CYP27A1) catalyzes the degradation of cholesterol, an important
pathway in sterol elimination. It is also the initiating enzyme in the acidic pathway that
converts cholesterol to bile acids. CYP27AL1 is highly expressed in human macrophage.
Several studies have found that retinoids and synthetic RAR agonists (e.g. AM580, TTNPB)
induce CYP27AL1 expression and increase 27-hydroxy-cholesterol production in human
macrophages, including primary cells and THP-1 cell lines [54-56]. At least one RARE,
which is also shared with PPAR/RXR is identified in the proximal promoter of this human
gene, localized between —853 and —217 bp upstream of its transcription start site. Both
ChIP assays and reporter assays indicate that a DR1 RARE plays the dominant role in
response to retinoid stimulation of RAR/RXR [54]. A recent study indicates that the activity
of carboxylesterase 1 also modulates CYP27A1 expression in macrophages via the nuclear
receptors PPARy, RAR, and/or RXR [57].

3. RAR/RXR regulation of bile acid homeostasis

Bile formation is one of the most important functions of the liver. RAR/RXR regulates the
expression of a number of genes involved in bile formation, including bile acid synthesis and
transport (Table 3) (Fig. 2).

3.1. Regulation of bile acid synthesis

The classic pathway for bile acid biosynthesis occurs primarily in the liver, which
contributes around 90% of bile acid production. Cholesterol 7a-hydroxylase (CYP7A1)
is the rate-limiting enzyme in bile acid synthesis. The expression of CYP7A1 is
transcriptionally regulated and tightly controlled. While HNF4a and LRH-1 activate
CYP7AL gene transcription, there are two separate signaling pathways that repress this
transcription. The major one is mediated through FGF19 (Fgf15 in mouse) /FGFR4/B-
Klotho signaling. In humans, both hepatocytes and gallbladder epithelia express FGF19,
in addition to the ileal enterocytes. Although details of this regulatory mechanism remain
unclear, when FGF19 activates its receptor FGFR4/B-Klotho on the plasma membrane
of hepatocytes, this initiates a signaling cascade that transactivates MAPKS, resulting in
repression of CYP7A1 expression [58]. A second pathway is mediated through the nuclear
receptor SHP (NROB2). SHP is not a usual nuclear receptor as it does not have a DNA
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binding domain. However, when SHP interacts with other transcription factors, it blocks
gene transcription, including HNF4a and LRH-1, two transcription factors that normally
activate CYP7AL expression. We have found that RA represses CYP7A1 expression in
human hepatocytes and HepG2 cells by stimulating the expression of both FGF19 and SHP
[45]. This repression is mediated through both FXR-dependent and -independent pathways.
While Jahn’s study [46] identified a novel DR5 RARE in human FGF19 gene as described
earlier, it remains to be determined how a RAR agonist that stimulated SHP expression also
can repress CYP7AL expression.

The alternative acidic pathway of bile acid synthesis, accounting for around 10% of bile

acid production, is initiated by CYP27A1, described in the previous section. In contrast to
macrophages, we found that both bile acids and retinoids repressed CYP27A1 expression

in human hepatocytes [45]. Chen and Chiang identified the bile acid response element in
human CYP27A1 gene, localized at —147 bp of its promoter, a site that also binds HNF4a
[59]. Because both bile acids and retinoids induce SHP expression in hepatocytes, it is likely
that SHP represses HNF4a activity, leading to reduced CYP27A1 expression in hepatocytes.
The different effects of retinoids on CYP27A1 expression in human hepatocytes and
macrophages are likely due to cell-specific transcriptional regulatory mechanisms.

Similar to CYP7A1 and CYP27A1, retinoids also have inhibitory effects on several other
genes involved in bile acid synthesis, including BAAT, CYP8B1, and AKR1D1 [60,61],
where RAR or RXR may also play a role. This repressive regulation is likely mediated
through RA-stimulated expression of SHP in hepatic parenchymal cells, although details
remain elusive.

Regulation of hepatic bile acid transporters

The sodium taurocholate co-transporting polypeptide (NTCP, SLC10A1) and the multidrug
resistance-associated protein 2 (MRP2, ABCC2), represent basolateral and apical membrane
transporters respectively that are responsible for the uptake and efflux of bile acids, drugs
and other organic anions from hepatocytes. Hepatic expression of NTCP and Mrp2 are
induced by retinoids through activation of RAR/RXR heterodimer in vitro [62]. A DR5
RARE has been identified in the promoter of both rat Ntcp and Mrp2 genes [63]. RAR’s
role in NTCP expression is also seen in human cells. A DR5 RARE in human NTCP is
localized to nucleotides —112 to —96 of its promoter. When a synthetic chemical Ro41-5253
antagonizes RAR transactivation, the expression of NTCP, which also functions as the
receptor for human hepatitis B virus entry into the hepatocyte, is reduced in cultured human
hepatic cells, leading to decreased infection of hepatitis B virus infection [64].

Moreover, in inflammatory conditions, NTCP is down regulated, mainly by IL-1p-induced
suppression of RXR/RAR nuclear binding activity as shown in vitro. The retinoid response
element of the NTCP promoter was identified at =158 to —36 nt upstream of the
translation initiation site, which contains a putative DR2 RARE sequence [63]. Mutations
of this DR2 RARE reduced the NTCP promoter activity and NTCP transcription. Besides
direct induction by retinoids, transcription of NTCP is also suppressed by the FXR/RXR
heterodimer via its up-regulation of SHP [65]. Recent studies have suggested that SHP

can suppress RXR/RAR activity through a direct protein-protein interaction [66]. Thus, it
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means that NTCP is also regulated by cross-talk between a retinoid-RAR-dependent direct
pathway and a bile acid-FXR-mediated indirect pathway. However, the expression of NTCP
is maximally regulated by bile acid-activation compared to retinoid-activation when both
retinoids and bile acids are present [62].

Several lines of evidence indicate that decreased hepatic Mrp2 expression in cholestatic
livers is also associated with the reduction of nuclear RARa/RXRa levels as seen with
NTCP expression. The proinflammatory cytokine IL-1  was identified as the responsible
inducer of this down-regulation [67-69]. However, this regulatory mechanism is only seen in
cholestatic livers, as down-regulation of NTCP and Mrp2 in CCly-treated rats is independent
of nuclear RAR/RXR but regulated by HNF1 [69].

Organic anion transporting polypeptides (OATPs), OATP1B1 and 1B3, organic cation
transporter 1 (OCT1) and organic anion transporter 2 (OAT2), are organic anion and cation
transporters expressed on the basolateral membrane of the hepatocyte, which are also
thought to be regulated in an RXR/RAR-dependent manner, as atRA treatment decreases
MRNA expression of these transporters in both primary human hepatocytes and hepatoma
HepaRG cells. Knockdown of RARa or RXRa in HepaRG cells using siRNA transfection
diminishes atRA repression of the expression of these genes [70], providing corroborating
evidence of involvement of these nuclear receptors. However, how atRA and RAR/RXR
repress the expression of these genes has yet to be defined. We have also found that
RAR/RXR represses human MRP3 (ABCC3) expression in gene reporter assays [71].
MRP3 is expressed on the basolateral membrane of hepatocytes. It effluxes intracellular
organic anions and bile acid glucuronides. Its expression is increased in cholestatic livers
as an adaptive response to protect the liver from toxic chemicals. Under normal physiologic
conditions, RAR/RXR binds to Sp1, a transcription activator of MRP3. This protein-protein
interaction blocks Sp1 transcription activity and represses MRP3 expression. However,

in cholestasis, hepatic expression of RAR/RXR is reduced. This results in increased
transcription activity of Sp1 with the MRP3 promoter, providing a mechanistic explanation
for RAR/RXR’s role in regulating MRP3 expression [71].

The apical sodium-dependent bile acid transporter (ASBT, SLC10A2), located on the
luminal membrane of cholangiocytes as well as the terminal ileum, functions to actively
reabsorb bile acids, thereby facilitating the cholehepatic and enterohepatic circulations of
bile acids. Gene promoter reporter assays indicate that RAR/RXR positively regulates
human ASBT mRNA expression. A DR2 RARE is identified from +118 to +131 nt
downstream of the transcription initiation site in the human ASBT gene. RA stimulates this
promoter activity by four-fold, while site-mutations of this DR2 RARE attenuate the basal
activity of the promoter by 50% [62]. Further studies indicate that this DR2 RARE is also
responsible for bile acid repression of ASBT expression as the mutation of this DR-2 RARE
eliminated bile acid repression. This negative feedback regulation is mediated through the
FXR signaling pathway. When FXR is activated, SHP and FGF19/Fgf15 expression is
stimulated. Increased SHP in turn represses RAR/RXR activity in ASBT transcription,
leading to this down-regulation [73-75]. In addition, elevated FGF19/Fgf15 represses ASBT
expression in human cholangiocarcinoma Mz-ChA-1 cells and colon cancer Caco2 cells
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through FGFR4/p-Klotho receptors as mentioned earlier, although details of this signaling
pathway still remain unclear [76].

The bile salt export pump (BSEP, ABCB11) is the major apical transporter in the hepatocyte
for the efflux of bile salts. FXR/RXR heterodimers activate transcription of human BSEP
through binding to the IR-1 site [77]. Although FXR/RXR is thought to be the permissive
RXR heterodimer, Kassam A et al. reported that RXR agonists didn’t activate the FXR/RXR
heterodimer, but prevented the binding of FXR/RXR heterodimers to the BSEP promoter,
suggesting RXR-mediated antagonism for ligand-bound FXR-induced expression of BSEP
in both rodent and human [78]. During the transactivation of the IR-1 element, the

presence of ligand for the FXR/RXR complex requires the recruitment of steroid receptor
coactivators, raising the possibility that RXR ligands may have an antagonistic effect on
FXR activation [78].

In summary, RAR-, RXR- mediated pathways are involved in suppressing bile acid synthesis
and stimulating bile acid export by directly or indirectly regulating enzymes (CYP7AL,
CYP27A1, CYP8BL1, BAAT) and transporters (NTCP, MRP2, MRP3, OATPs, and others),
and thus can be interpreted as having anti-cholestatic effects.

4. RAR/RXR in the regulation of liver fibrogenesis

Lipid droplets in hepatic stellate cells (HSC) are the central site for the storage of retinoids
in the body. Activated HSCs are characterized by loss of retinoids and production of
extracellular matrix (ECM), and play an important pathogenic role in liver fibrosis. RXRs
and RARs are expressed in quiescent HSCs from rodents and humans, where their alpha
isoforms are most highly expressed. However, their expression is reduced when HSCs are
activated [79].

When HSC are activated in vivo in the livers of patients with cirrhosis or carcinoma or

in bile duct ligated cholestatic rats, the mRNA expression levels of RARP and RXRa

are down-regulated, suggesting that these nuclear receptors play a role in HSC activation
and liver fibrogenesis [80,81]. Cortes et al. demonstrate that atRA promotes human HSC
deactivation via RARB-dependent transcriptional down-regulation of myosin light chain
2 (MLC-2) expression (Table 4). MLC-2 plays a major role in cytoskeletal tension,

force generation, mechanosensing, and ECM deposition. Elevated hepatic expression of
MLC-2 is associated with liver fibrosis in both humans and mice [81]. Consistent

with these observations, reduced liver fibrosis is also seen in cholestatic rodent models
after administration of atRA [82-84], where atRA demonstrates inhibitory effects on the
expression of profibrotic genes, including TGF-p1, COL1A1, MMP2, and a-SMA both in
vivo in rodent livers and in vitro in primary human hepatic stellate cells and LX-2 cells.
Reduced mRNA expression of all three RAR isotypes is also found in freshly isolated rat
HSC where treatment with retinoids decreased markers of activation [85,86]. In further
support of RAR’s role in HSC activation, Mezaki et al. found that RARa and B proteins
formed insoluble aggregated speckled droplets in the cytosol of retinol activated rat HSC
[87], suggesting that RARSs have lost their function as transcription factors. Indeed, the
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expression of RARa, RARP and RAR-y are undetectable in chronically activated rat HSC
[86].

More direct evidence for RXR’s role in HSC activation comes from over-expression of
RXRa in transfected rat HSC cultures, which induces a quiescent phenotype [88]. RXR
specific agonists are also able to inhibit cell proliferation in HSC. Similarly, treatment of
activated rat HSC with atRA or RAR agonists both reduced the expression of profibrotic
genes, including collagen I, collagen 11, and fibronectin. AtRA also reduced HSC
proliferation, whereas RAR agonists did not. In contrast, RAR specific antagonists enhance
HSC proliferation, indicating that RARs do play a role in HSC proliferation [89]. Similarly,
the combined treatment of ligands for PPAR, RAR, and RXR results in an anti-proliferative
effect by inducing cell cycle arrest at the GO/G1 phase [90].

Two RAREs in mouse Collagen | alpha-2 chain (Colla2) promoter have been identified.
They are localized at —879 to —874 bp (site 1) and —930 to —911 bp (site 2). When the
reporter construct was cotransfected with RARP and RXRa expression vectors into stellate
cells or the transfected cells were treated with RA, the promoter activity was suppressed.
Conversely, mutation of these RARES enhanced promoter activity, demonstrating the direct
role of RAR/RXR in this gene expression regulation [91]. However, these two RARES are
not typical RARES. Site 1 appears to be half of the regular RARE, whereas site 2 is an
everted repeat of the conserved sequence AGGTCA with a gap of 8 base-pairs. Also, a
liganded RAR/RXR normally transactivates gene expression rather than represses it. It is
not known whether this repressive effect is due to these two atypical RAREs. Alternatively,
the RAR/RXR repression of mouse Colla2 is mediated through transrepression of another
transcription factor, such as AP1 (Fig. 2). Several studies have indicated that AP1 positively
regulates the expression of many genes involved in liver fibrosis, including TGF-f1,
collagenase, stromelysin, and TNF-a [77,89-92], where retinoids repress the expression

of these genes. This transrepression is thought to be mediated through RAR/RXR. In this
case, liganded RAR does not directly bind to a traditional RARE in the promoter but

rather associates with AP1 through protein-protein interactions [92-94]. When RAR binds
to AP1, it blocks AP1 transcription activity, leading to reduced expression of the target
genes. As a previously mentioned example, RAR/RXR counteracts Sp1l transactivation of
MRP3 expression [71]. These regulatory mechanisms may also provide an explanation for
atRA and RARP repression of MLC-2 expression in HSC [81]. In summary, it is clear that
RARs and RXRs play a major role in HSC activation by modulating cell proliferation and
the expression of profibrotic genes, although many mechanistic details still remain to be
determined.

5. RAR/RXRin the regulation of liver inflammation

Supplementation of RA has been shown to reduce liver inflammation in several animal
models of liver disease, suggesting a potential role for RAR/RXR in regulating the
immune response [101-103]. Many studies have indicated that RA plays a very important
role in immune cells differentiation and activation [104,105]. In particular, RA represses
the production of proinflammatory cytokines in immune cells, including dendritic cells,
monocytes, macrophages, T-cells [3,105-108]. The anti-inflammatory effects of RA are
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partially RAR/RXR dependent. Dawson et al. showed that repression of IFN-gamma and
TNF-alpha by RAs is mediated through activation of RARa, but not RARB or RARYy in
human T cells because the RARa.-selective agonist AM580, but not the RARB/y ligand
4-hydroxyphenylretinamide, recapitulates RA’s effect [3]. Dzhagalov et al. revealed that
RARy is a positive regulator of inflammatory cytokine production in CD8+ T-cells and
macrophages using RARy-deficient mice [109]. Together, these observations indicate that
individual retinoid receptors play specific roles in the differential regulation of immune
responses. Several studies have also revealed that RXR alone or in association with RAR
block NF-xB or AP-1 activation in immune cells [102,106-108,110], where both NF-xB and
AP-1 are transactivators of proinflammatory cytokine expression. (Table 5).

The anti-inflammatory effects of RA are also found in microglia and astrocytes

[111-113]. Reduced production of metalloproteases (MMP), cyclooxygenase-2 (COX-2),
and prostaglandin | synthase (PGIS) were also found in other cells [110,114-116]. However,
we were not able to find any reports in the literature regarding RAR/RXR’s role in
proinflammatory cytokine production in hepatic cells. Instead, several studies indicate that
hepatic cells respond to proinflammatory cytokines by altering gene expression where
RAR/RXR is involved as mentioned earlier in the regulation of NTCP, MRP2 and MRP3
expression. Furthermore, Aguirre and Karpen indicate that interleukin-1p and TNFa
cause RXRa SUMOylation in hepatocytes, resulting in decreased expression of its target
genes [117]. Clearly, more studies are needed to examine RAR/RXR’s role in hepatic
inflammation.

6. Conclusions and prospective

RAR and RXR are significant therapeutic targets for various clinical disorders, i.e., atopic
dermatitis, breast cancer, acute promyelocytic leukemia (APL), and diabetic cardiomyopathy
[118-121]. Emerging findings have shown that vitamin A homeostasis is implicated in the
prevention of hepatic fibrosis, regulation of hepatic immunological response to cholestasis,
and reduction of liver injury [83,84,122-124]. Given the crucial role of Vitamin A deficiency
in chronic cholestasis, RAR and RXR may hold therapeutic potential for the treatment

of cholestatic liver diseases. Although UDCA and Obeticholic acid have been approved

by the FDA for early-stage and UDCA-refractory primary biliary cholangitis [125,126],

not all patients respond, and beneficial effects on clinical endpoints in primary sclerosing
cholangitis (PSC) patients remains controversial [127]. Thus there is a need for alternative
therapies. Several lines of evidence indicate that atRA has potentially positive effects on
liver injury in several rodent models of chronic cholestasis, including bile duct ligation

and alpha-naphthyl isothiocyanate in the rat and in Mdr2 null mice, a model of PSC
[84,128]. The most positive findings were seen in rats treated with atRA with and without
UDCA, which demonstrated marked reductions in necrosis and hepatic fibrosis [83]. In
addition, markers of inflammation and significant decreases in the bile acid pool and

bile duct proliferation were also seen, with the combination of atRA and UDCA having

the greatest effect. The regulatory mechanisms may involve suppressing the activity of
cytochrome CYP7A1 [83,84], which led to reductions in the bile acid pool size and reduced
bile duct proliferation. In addition, RA repressed collagen 1Al expression in stellate cells
suggesting an anti-fibrotic effect [83]. These encouraging findings led to a small clinical
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trial that found that combination therapy of UDCA and atRA for 12 weeks in patients with
PSC had an inhibitory effect on bile acid synthesis (C4) and significantly reduced serum
aminotransferases, thus potentially reducing hepatic inflammation [129]. However, retinoids
can also exhibit serious side effects such as teratogenicity, hypervitaminosis, and resistance
can develop [130]. Therefore, several synthetic RAR- and RXR- ligands (Rexinoids) have
been developed in recent years that show potential as anti-tumor agents in clinical and
pre-clinical studies, including AM80 (dual RARa/p-selective agonist) for APL [131] and
bexarotene (RXR ligands) for persistent cutaneous T-cell lymphoma [132]. It is possible
that these specific ligands could also be promising new therapeutic agents in the therapy of
chronic cholestatic disorders.

As summarized in this review, RAR and RXR play critical roles in many aspects of hepatic
physiology and responsiveness to disease (Fig. 2). Here we have focused on those aspects
that relate to hepatic lipid metabolism, bile acid metabolism and the pathogenesis of hepatic
fibrosis and inflammation, as well as the possibility that ligands of these nuclear receptors
may have potential therapeutic anti-inflammatory and anti-fibrotic benefits in liver disease.
While many details of these interactions have been described, there is still much to be
learned about these pathways and particularly where novel therapeutic interventions might
be targeted. Given the widespread roles of RAR and RXR in the regulation of these hepatic
functions, future studies should continue to focus on this important area.

Acknowledgments

This study was supported by National Institutes of Health Grants DK34989 (Yale Liver Center), DK25636 (to
J.L.B.) and Gilead Pharmaceuticals (Foster City, CA).

Abbreviations:
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AKR1D1 aldo-keto reductase family 1 member D1
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BSEP/ABCB11 bile salt export pump
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CE
DBD
DR
DNL
ECM
FXR
FGF15/19
FGFR
IR
Hes6
HDL
HNF4A
HSC
IL
LBD
LDLR
LRH-1
NTCP/SLC10A1
MRP
MLC-2
MM P-2
OATP
NF-xB
PPARY
PC

RA
RARE
RAR

RXR

cholesterol ester

DNA-binding domain

direct repeat

de novo lipogenesis

extracellular matrix

farnesoid X receptor

fibroblast growth factor 15/19
fibroblast growth factor receptor
inverted repeat

hairy and enhancer of split 6
high-density lipoprotein

hepatocyte nuclear factor 4 alpha
hepatic stellate cells

interleukin

ligand binding domain

low-density lipoprotein receptor

liver receptor homolog-1
sodium/taurocholate cotransporting polypeptide
multidrug resistance-associated protein
myosin light chain 2

matrix metalloproteinase-2

organic anion transporting polypeptide
nuclear factor-kappa B

peroxisome proliferator-activated receptor gamma
phosphatidylcholine

retinoic acid

retinoic acid response element

retinoic acid receptor

retinoid X receptor
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9cRA 9-cis retinoic acid
SHP/NROB2 small heterodimer partner
CYP8B1 sterol 12-alpha-hydroxylase
CYP27A1 sterol 27-hydroxylase
a-SMA alpha-smooth muscle actin
TNFa tumor necrosis factor-alpha
Spl specificity protein 1
TGF-B1 transforming growth factor-beta 1
TG triglycerides
VLDL very-low-density lipoprotein.
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A structural model of retinoid receptors in gene regulation. A) structural modules of RAR
and RXR. B) Residues that directly interact with atRA in RARs and 9-cis RA in RXRs

are well conserved among isotypes within the family. C) Structure of atRA, 9-cis RA and
docosahexaenoic acid (DHA, 22:6 omega-3). D) Transcription activation of target genes by

RAR/RXR.
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Fig. 2.
Functional role of RAR/RXR in liver physiology. The black arrows or bar-headed lines

show key genes involved in lipid metabolism and fibrogenesis that are directly regulated

by RAR/RXR signaling pathways in liver cells, including hepatocytes and cholangiocytes
Kupffer cells, and stellate cells. Dashed lines indicate that genes are directly or indirectly
regulated by RAR/RXR signaling pathways, the detail of which has not been defined. Thick
red arrows mean inhibition, and thick blue arrows mean stimulation. Yellow, brown, and red
dots represent apo A-1, apo A-11, and apo C-I11I, respectively. Abbreviations can be found
separately in the “list of abbreviations.” More information about the regulations and function
of the individual genes can be found in Tables 2-4.
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Table 4

RAR/RXR target genes involved in liver fibrosis.
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Target Regulation  Function Species Cell  References
gene type
AP-1 (RAR/RXR) Repression  The transcription factor for regulating expression of collagenase, Rat HSC [80]
stromelysin, TGF-B1 and TNF-a. promoting fibrogenesis.
MLC-2 (RAR/RXR)  Repression  The sarcomeric protein for increasing HSC contractility (the RAR-B/ Human HSC [81]
MLC-2 axis) X
Mice HSC
Colla2 (RAR/RXR) Repression A protein for the major component of extracellular matrix Rat HSC [91]
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