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ABSTRACT
The emergence of antimicrobial resistance (AMR) is a principal global health crisis projected to 
cause 10 million deaths annually worldwide by 2050. While the Gram-negative bacteria Escherichia 
coli is commonly found as a commensal microbe in the human gut, some strains are dangerously 
pathogenic, contributing to the highest AMR-associated mortality. Strains of E. coli that can 
translocate from the gastrointestinal tract to distal sites, called extraintestinal E. coli (ExPEC), are 
particularly problematic and predominantly afflict women, the elderly, and immunocompromised 
populations. Despite nearly 40 years of clinical trials, there is still no vaccine against ExPEC. One 
reason for this is the remarkable diversity in the ExPEC pangenome across pathotypes, clades, and 
strains, with hundreds of genes associated with pathogenesis including toxins, adhesins, and 
nutrient acquisition systems. Further, ExPEC is intimately associated with human mucosal surfaces 
and has evolved creative strategies to avoid the immune system. This review summarizes previous 
and ongoing preclinical and clinical ExPEC vaccine research efforts to help identify key gaps in 
knowledge and remaining challenges.
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1. Introduction

Pathogenic Escherichia coli is an important global 
health concern. While intestinal pathogenic E. coli 
(InPEC) plays a vital role in worldwide diarrheal 
diseases,1 extraintestinal pathogenic E. coli 
(ExPEC) is responsible for various diseases at non- 
intestinal sites.2 According to the types of diseases 
caused in humans, ExPEC strains are divided into 
three major pathotypes (Figure 1): uropathogenic 
E. coli (UPEC), sepsis-causing E. coli (SEPEC), and 
neonatal meningitis-associated E. coli (NMEC).3 

Among all infections caused by ExPECs, the urinary 
tract is the most common site of infection.4 UPEC is 
the primary cause of urinary tract infections (UTIs), 
accounting for 80% of all cases.4,5 UTI is not only 
a common infection, with over 60% of all women 
diagnosed at least once during their lifetime, but also 
incredibly difficult to eliminate.6 More than 30% of 
women are plagued by a secondary infection within 
12 months.6 Globally, antibiotic resistant ExPEC 
strains are emerging, adding additional complexity 

to the treatment of these infections. Given these 
implications, the development of effective vaccines 
targeting ExPEC becomes of pivotal importance. As 
such, the goal of this review is to summarize the 
extensive body of research that has been carried 
out toward this end.

2. Review of prior vaccination attempts for 
ExPEC

This section will provide an overview of the previous 
vaccine formulations attempted to protect against 
disease caused by ExPEC, considering both preclini-
cal development and clinical research. To this end, 
we evaluated 27 prospective human vaccine trials for 
ExPEC-associated disease with endpoints for safety, 
immunogenicity, and/or protective efficacy. We 
organize these vaccines by their general approach 
(Figure 2) and contextualize them in the body of 
basic and preclinical literature that has motivated 
their progression to clinical trials.
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2.1. Traditional vaccinology

Traditional vaccine design refers to the use of 
whole pathogens in either live-attenuated or killed 
formulations to elicit a protective immune 
response. This method of vaccine development 
represents many of the original vaccines that revo-
lutionized public health. Early vaccination efforts 
were directed against viral pathogens such as small-
pox, rabies, and typhoid. However, this method 
was later applied against bacterial pathogens 
including the Bacillus Calmette-Guerin vaccine 
for tuberculosis and Bordetella pertussis, which in 
combination with diphtheria and tetanus toxoid 
subunits constitutes the first general population 
bacterial vaccine. Traditional vaccines remain in 
use today and have grown to include vaccines 
against measles, mumps, and rubella (MMR) and 
annual influenza strains, among others. These 

vaccines have strong immunogenicity due to their 
full repertoire of pathogen-associated molecular pat-
terns that initiate innate immune receptor signaling. 
As such, they may not require adjuvants and gen-
erally induce robust, enduring immune responses 
without frequent boosters. This is especially true 
for live-attenuated vaccines since the live pathogen 
retains its capacity to replicate and thus prolongs 
antigen exposure. However, using live pathogens 
carries greater safety concerns, particularly in an 
immunocompromised host, due to the possibility 
of reversion to virulence or person-to-person trans-
mission. Outbreaks of virulent poliovirus, for exam-
ple, have been reported after several independent 
reversions of the oral attenuated virus vaccine.7

Advancements in traditional vaccine platforms 
may improve the safety profile of these live- 
attenuated vaccines. Contemporary gene editing 

Figure 1. ExPEC reservoir and infection sites. Like commensal E. coli, ExPEC inhabits the human gastrointestinal tract as its long-term 
reservoir without causing gastroenteritis. However, when translocated to other body sites, ExPEC causes infections that may lead to 
fatal diseases. ExPEC pathotypes are divided according to the types of disease that they cause: uropathogenic E. coli (UPEC), sepsis- 
causing E. coli (SEPEC), and neonatal meningitis-associated E. coli (NMEC).
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technologies, for example, have achieved pathogen 
attenuation without risk of reversion by targeting 
key virulence factors for deletion. In the context of 
ExPEC, live-attenuated vaccines have been devel-
oped using genetic engineering approaches with 
some success in a mouse model of UTI. For exam-
ple, Billips et al.8 generated an attenuated NU14 
strain, an antibiotic-resistant clinical isolate of 
cystitis, with a targeted deletion of the O antigen 
ligase that attaches O antigens to the lipid A core of 
lipopolysaccharide (LPS). This mutant strain, 
ΔwaaL NU14, was nonpathogenic, induced cyto-
kine secretion, and yielded a two-log reduction in 
murine bladder colonization upon challenge with 
wild-type NU14.8

Genetic engineering can also steer the immune 
response toward or away from specific antigens. 
For example, a killed mutant strain deficient in 
polysaccharide capsule was used to direct adaptive 
immunity away from capsular antigens, which are 

less conserved between strains and have variable 
immunogenicity.9,10 However, despite improved 
IgG and IgA responses relative to killed wild-type 
bacteria,9 this vaccine was not protective against 
a murine model of sepsis.10 It remains to be seen if 
genetically engineered whole-cell vaccines will 
prove a viable strategy in a human host.

To date, clinical trials with whole-cell vaccines 
against ExPEC have only investigated killed, wild- 
type strains. Three such vaccines – Uro-Vaxom, 
Solco-Urovac, and Uromune – have been evaluated 
in clinical trials for protection against recurrent 
UTI and are discussed below. Of note, evidence 
for antigen-specific adaptive immune responses 
generated by these vaccines is lacking, prompting 
some to refer to these instead as immune active or 
stimulating agents.11 Various other killed whole- 
cell vaccines (e.g. Urvakol) are available in coun-
tries around the globe, but have no clinical evi-
dence supporting their efficacy.

Figure 2. Considerations for antigen and vaccine type selection. Selecting the right targets for vaccination and delivering them in an 
appropriate formulation is essential for designing an effective vaccine. Commonly, vaccine developers use epidemiological observa-
tions about what pathogen strains and serogroups are most prevalent to determine vaccine targets (e.g. by including them in whole 
cell formulations or purifying their polysaccharide antigens). With the emergence of multi-omics technologies, bioinformatics 
approaches have been applied to screen databases for antigens that are enriched among pathogenic isolates. These antigens are 
often targeted directly with recombinant protein or nucleic acid vaccines.
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2.1.1. Uro-Vaxom
Uro-Vaxom, also known as OM-8930 or OM-89, is 
a lysate fraction vaccine of extracted outer mem-
brane proteins from lyophilized, killed cocktails of 
select E. coli strains delivered in a glycerin capsule 
for oral consumption.12 This was the first vaccine 
brought to human trials against UPEC (and more 
generally UTI) in 1986 and is extensively studied 
with 8 clinical trials.13 These trials have predomi-
nantly recruited outpatient women enrolled follow-
ing antibiotic treatment for acute UTI. Participants 
received oral capsules daily for 3 months. Primary 
endpoints for these trials included:

(1) Incidence of recurrence, with varying defini-
tions and criteria across trials, including symp-
tomatic UTI/cystitis,14–18 bacteriuria,12,13,17,19 

dysuria,13,16,17 or leukocyturia.13,16,17 Uro- 
Vaxom significantly reduced (by a factor of 
1.6 - 5.8) the recurrence of symptomatic UTI/ 
cystitis,15–18 as well as lowered the incidence of 
leukocyturia13,17 and bacteriuria.12,13,17,19 

Dysuria was significantly reduced in 2 of the 3 
trials measuring that outcome.13,17 Bauer et al. 
found that 55% of treated patients had no 
recurrences compared to 42% in the control 
arm.16

(2) Concomitant antimicrobial therapy, 
defined as the number of days necessitating 
antimicrobial treatment,18,19 the average 
duration of treatment,13 or the number of 
prescriptions written.12,16 All metrics were 
reduced across trials. However, the Hachen 
trial found that this effect was not sustained 
after halting daily administration.12

Nonetheless, there are also significant limitations 
associated with these trials and the outlook for 
Uro-Vaxom. First, most of these studies included 
a post-treatment observational period of only 3 
months,12–14,17,19 and thus it is difficult to know 
the duration of the protective effect. This concern 
was partly addressed by Tammen18 and Kim et al.15, 
whose trials extended the observational period to 
eight or 6 months after cessation, respectively, and 
found sustained protection against recurrence of 
cystitis and bacteriuria. However, Bauer et al.16 

found that a booster treatment between months 

six to nine was necessary to maintain protection 
through a 12-month trial.

Additionally, efficacy was only tested in patients 
with acute UTI and a history of recurrences. Given 
the incomplete protection against recurrence and 
the apparent lack of durable, pathogen-specific 
immunologic memory, the prophylactic potential 
of this vaccine to prevent UTI and its complica-
tions altogether remains unlikely. Nevertheless, 
Uro-Vaxom has been approved for use in various 
countries including Switzerland and the UK. Its 
application to complicated UTI, namely in patients 
with neurogenic bladder disorders, is being 
explored in clinical trials.12,14,20,21

2.1.2. Solco-Urovac
In contrast to the fractionated lysate used in Uro- 
Vaxom, Solco-Urovac (also called StroVac) is 
a heat-inactivated whole-cell vaccine derived from 
10 strains of uropathogenic organisms, including 
six diverse E. coli strains, Proteus mirabilis, 
Morganella morganii, Klebsiella pneumoniae, and 
Enterococcus faecalis.22 This vaccine has undergone 
8 trials since 1987.23

Three different routes of administration were 
tested for Solco-Urovac: vaginal suppository14–22,23– 

27 and intragluteal23,28 or intramuscular29 injections, 
each with three doses. The following primary end-
points were analyzed:

(1) Recurrence of UTI, measured by the interval 
until,22,25–27 and number27,29 or frequency23,28 

of, recurrences. Both trials measuring fre-
quency had significant reductions from Solco- 
Urovac treatment.23,28 Interval until recurrence 
had mixed outcomes with two of the four trials 
showing delays due to treatment.25,26 Number 
of recurrences was not reduced in Nestler et al.-
29 or Uehling et al. (1997).27

(2) Induction of antibodies, measured with 
serum, urine, and/or vaginal IgG, IgM, 
and IgA titers or ELISA 
concentrations.22,24–28 Uehling et al. 
(1994)24 observed a significant increase in 
total (nonspecific) IgG and vaginal IgA 
after Solco-Urovac administration. 
Urinary IgG and IgA also increased, both 
transiently24 and sustained with a booster.28 
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Others reported no difference in total 
serum25,26 or vaginal and urinary Ig27. 
Further, these trials consistently failed to 
induce E. coli-specific Ig.16,22,27 Despite 
nonspecific antibody responses, incidence 
of UPEC UTIs had greater reductions than 
other uropathogens.22

These modest outcomes combined with questions 
about trial design may limit the vaccine’s pro-
spects in the US. For example, three of the eight 
trials were not blinded and trials were consis-
tently underpowered to detect primary end-
points. Antibiotic prophylaxis may also have 
confounded interpretation of the data.27 Finally, 
a lack of E. coli-specific immune responses raises 
doubts about Solco-Urovac’s induction of dur-
able, prophylactic immunity against UPEC.

2.1.3. Uromune
Uromune, also called MV140, is a heat-inactivated 
whole-cell sublingual spray containing E. coli, 
K. pneumoniae, E. faecalis, and P. vulgaris. The 
first studies of Uromune came in 201330 and 
201531 with two retrospective cohort analyses 
showing that women with recurrent UTI who 
were treated with Uromune experienced signifi-
cantly fewer recurrences30 and were less likely to 
experience any recurrence at all.31 However, with-
out randomization or placebo, no firm conclusions 
about efficacy could be drawn.

The first prospective clinical trial of Uromune 
partially addressed these limitations but was not 
placebo controlled. This trial compared the fre-
quency of UTI recurrences for 12 months before 
and after a three-month treatment.32 All partici-
pants had failed antibiotic prophylaxis and experi-
enced ≥3 recurrences prior to treatment; 22% had 
a recurrence following treatment.32 A follow-up 
double-blind, randomized, placebo-controlled 
trial published in 2022 evaluated three- or six- 
month treatments with a nine-month study period. 
Frequency of recurrences, the primary endpoint, 
was significantly greater in the placebo group 
than in either treatment course (median 3 vs. 0 
recurrences over 9 months; p < .001). Interval 
until recurrence was also significantly delayed by 
treatment (median 48 vs. 275 days for those with 
recurrence(s)).33

No data on antigen-specific adaptive immune 
responses were collected for these trials. However, 
in vitro treatment of human peripheral blood 
mononuclear cells (PBMCs) with Uromune acti-
vated dendritic cells (DCs) to stimulate differentia-
tion of Th1 and Th17 cells.34 This phenotype was 
recapitulated in mice.

2.2. Polysaccharide conjugate vaccines

Polysaccharide (PS) vaccines have been pursued 
for decades due to the ubiquity of PS structures at 
the surface of bacterial pathogens. However, 
extracellular PS are present in part to shield the 
pathogen from immune recognition. By them-
selves, PS are generally not strong immunogens 
because they do not stimulate CD4+ T cells, 
which are required for efficient expansion and 
differentiation of naïve B cells, antibody class 
switching, and affinity maturation. However, it 
was discovered that conjugating PS antigens to 
an immunogenic carrier protein can recruit CD4+ 

T cell help, leading to multiple PS-conjugate vac-
cines now being available, including for 
Haemophilus influenzae type b, Streptococcus 
pneumoniae, and meningococcus.

ExPEC strains exhibit a diverse array of PS anti-
gens on their cell surface (Figure 3). Among these, 
O and K antigens are the best characterized PS 
vaccine targets. Both antigens are polymerized 
chains of branched or linear sugar residue 
sequences (2–7 sugars in length) that decorate the 
exterior of the bacteria outer membrane. The 
unique sequence and structure for O and 
K antigens are determined by gene clusters encod-
ing proteins that synthesize and modify sugar pre-
cursors, covalently link these sugars together, then 
translocate and polymerize them. O antigens are 
anchored to the outer membrane by attachment to 
lipid A and a PS core structure that together form 
lipopolysaccharide (LPS), an important structural 
component that stabilizes the outer membrane. 
K antigens sheath the bacteria with a superficial 
layer of LPS-anchored and unanchored PS units 
that collectively form the capsule. This structure 
protects bacteria from host defenses and environ-
mental insults (e.g. desiccation). In total, there are 
185 E. coli distinct O serogroups and over 80 dis-
tinct K serogroups.35,36
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Early research demonstrated humoral immunity 
against these antigens in patients with ExPEC- 
associated pyelonephritis or bacteremia, with anti- 
O immunity being more common (Serological stu-
dies, Figure 2).37,38 Attempts with traditional vac-
cinology also suggest these antigens may be 
necessary and sufficient for adaptive humoral 
immune protection. Immunization with mutant 
E. coli deficient in O antigen and capsular PS was 
not protective against sepsis in mice despite strong 
induction of antibodies against surface protein 
targets.9 However, vaccination with killed wild- 
type pathogen has produced mixed results for gen-
erating anti-O and anti-K immunity. For example, 
one study generated anti-O2/O6 and anti-K1/K13 
immune responses with killed pathogen that were 
sufficient to protect against intraperitoneal (i.p.) 
challenge with homologous strains,39 while another 
study failed to produce anti-K1 antibodies with this 
approach.40

Beyond traditional vaccinology approaches, 
proof-of-principle preclinical research in animals 
has indicated that O and K antigens can be formu-
lated into immunogenic subunit vaccines. For 
example, the K1 antigen that was poorly immuno-
genic in killed cell vaccines was administered as 
purified PS with or without a carrier protein. 
Although the unconjugated K1 antigen failed to 

generate anti-K1 immunity,41 protein conjugation 
improved immune responses and partially pro-
tected against pyelonephritis in rats.41,42 

Vaccination against individual O antigens also 
showed promise in animals. For example, the 
O25b antigen, representing a prevalent ExPEC ser-
otype, induced robust IgG responses in both mice 
and cynomolgus macaques.43–45 The functionality 
of these antibodies was demonstrated with in vitro 
opsonophagocytosis assays. However, validating 
the functionality of these antibodies in vivo 
through clinical trials is necessary to confirm effi-
cacy. As such, these animal studies paved the way 
for human clinical trials, all of which target combi-
nations of clinically relevant O antigens.

2.2.1. Clinical trials of O antigen vaccines
Six clinical trials have been conducted for four 
different PS conjugate vaccines against UPEC, 
starting as early as 1991.46 All these trials have 
targeted O antigens of LPS. Cryz et al.46 brought 
the first such PS vaccine into clinical trials with 
a monovalent O18 antigen conjugated to cholera 
toxin or Pseudomonas aeruginosa toxin A carrier 
proteins. Both formulations were immunogenic 
and generated functional antibodies eliciting 
PBMC clearance of homologous bacteria in vitro. 
Further, passive immunization with participant 

Figure 3. ExPEC vaccine antigen targets. In early ExPEC vaccine studies, whole cell inactivated formulations were widely utilized. As 
antigen discovery methods evolve, polysaccharide conjugate vaccines and protein subunit vaccines that target one or multiple ExPEC 
antigens become more popular. Here is a scheme of an ExPEC cell with its virulence factors and respective antigens highlighted, which 
have been used as vaccine targets in previous studies.
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sera protected rabbits against fatal i.p. challenge 
with O18 E. coli.46 This group later expanded the 
coverage of their PS-conjugate vaccine by isolating 
detoxified LPS from 12 serogroups of E. coli and 
conjugating the polyvalent polysaccharide mixture 
to the P. aeruginosa toxin A.47 This vaccine also 
generated high titers of antigen-specific IgG that 
persisted over 6 months. Serum IgG against eight 
of the 12 serogroups induced robust (≥70%) bac-
terial clearance in vitro.

A Phase I dose escalation clinical trial with 
a different formulation, J5dLPS/OMP, was carried 
out by this group in 2003.48 This included the 
conserved core saccharides from J5 strain LPS, 
detoxified and conjugated to group 
B meningococcus outer membrane protein 
(OMP). Each dose escalation induced significantly 
greater levels of IgG, IgA, and IgM specific for 
J5dLPS. This translated to significantly greater bac-
terial clearance in bacteremic rabbits receiving 
serum Ig from immunized human patients com-
pared to pre-immunized control serum. Titers of 
anti-J5dLPS were also negatively associated with 
TNF, IL-6, and IL-10 cytokine secretion (markers 
of septic shock) in an in vitro whole blood infection 
assay. An additional Phase I trial by Cross et al. in 
2015 explored J5dLPS/OMP vaccine immunogeni-
city for protection against Gram-negative bactere-
mia. Results trended toward sustained anti-LPS 
IgG and IgM responses after 180 but not 236 days.-
49 However, the trial was underpowered due to 
recruitment ending prematurely.

Despite significant improvements in the desig-
nated endpoints produced by each of these trials, 
neither vaccine formulation advanced to efficacy 
studies. Nevertheless, these trials paved the way 
for the polysaccharide conjugate vaccine 
ExPEC4V. This vaccine includes four of the most 
prevalent O antigens in UTI clinical isolates con-
jugated to the P. aeruginosa exotoxin A carrier. 
Preclinical testing showed robust antigen-specific 
IgG responses across rabbit, mouse, and rat animal 
models.50 Safety and immunogenicity in humans 
were evaluated in three trials. Two Phase I trials 
demonstrated tolerability and robust induction of 
serum IgG increased for all antigens. The vaccine 
also significantly reduced the number of UTIs 
experienced by participants despite not being pow-
ered for efficacy assessment.51,52 The Phase II trial 

by Frenck et al.53 reported 80% of participants had 
a minimum two-fold increase in serotype-specific 
serum IgG.

An updated vaccine formulation, ExPEC9V, 
with a nine-valent conjugated PS pool is currently 
undergoing Phase III clinical trials 
(NCT04899336). This vaccine follows recently 
published Phase I and II safety and immunogeni-
city trials carried out in older adults, age 60–85, 
with a 10-valent formulation ExPEC10V. Similar to 
the four-valent formulation, this vaccine was well 
tolerated and induced antigen-specific antibodies 
in most of the participants despite their advanced 
age.54 However, unlike the previous clinical trials, 
the Phase III study’s primary endpoints evaluate 
the number of first invasive E. coli disease events 
experienced by patients, in which blood or other 
sterile tissues are infected with E. coli that is micro-
biologically confirmed to match an O group con-
tained within the vaccine.

Increasing the number of O antigens and testing 
efficacy against systemic infection may be seen as 
an attempt to overcome the significant antigenic 
heterogeneity of ExPEC, as fewer serogroups com-
prise the majority of invasive infections than for 
less invasive infections such as cystitis. For exam-
ple, the 4 O-serotypes chosen for ExPEC4V cover 
only 30–35% of E. coli cystitis isolates, although the 
authors cite unpublished data implicating 12 
O-serogroups as the predominant drivers of UTI 
(Microbiological studies, Figure 2).55 They do not 
comment on the coverage of the O antigens in 
invasive E. coli disease (infecting blood or sterile 
tissue), which is the endpoint for their current 
Phase III ExPEC9V trial. However, a recent and 
comprehensive study of thousands of ExPEC bac-
teremia cases across four continents reported that 
the nine most prevalent O-serotypes represent 
64.6% of E. coli blood isolates.56 Assuming 
O antigens were selected on the basis of their pre-
valence in E. coli blood isolates (constituting inva-
sive disease), these nine serogroups account for 34– 
58% of E. coli cystitis and 47–66% of E. coli pyelo-
nephritis isolates observed in two smaller 
studies.57,58 Thus, vaccination against O antigens 
may not be fully protective, even against invasive 
disease (although the trial will analyze only invasive 
E. coli disease events with strains of the same 
O groups as those in the ExPECV9 vaccine).
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2.3. Protein subunit vaccines

Recombinant protein vaccines direct the adaptive 
immune response against specific antigens impor-
tant for microbial pathogenesis. For ExPEC, pro-
tein virulence factors (VFs) mediate diverse 
functions such as host cell adherence, motility, 
micronutrient acquisition, and toxin delivery 
(Figure 3).59 However, identifying ExPEC VF tar-
gets has been tricky due to complex interactions 
between factors such as: (1) the genetic diversity of 
strains; (2) the immense number of putative VFs 
that act in a context-dependent way (e.g. mediating 
virulence only in combination with other factors); 
(3) horizontal gene transfer of mobile gene ele-
ments. This complexity yields both independent 
and redundant pathways for ExPEC 
pathogenesis.60

Identifying relevant antigen targets for subunit 
vaccines therefore requires some deconvolution. 
This effort has been accelerated by reverse vacci-
nology, an innovative approach that screens patho-
gen genomes to identify potential VFs. Indeed, 
comparative genomics has already been used to 
identify pathogenicity islands specific to patho-
genic E. coli strains.61,62 Our group recently 
mapped the conservation of the E. coli virulome 
(encompassing all genes with known pathogenic 
roles) across all strains with published genomes to 
identify targets specific to – and broadly conserved 
among – pathogenic E. coli.63 The autotransporter 
invasin-like SinH VF identified in this study was 
broadly protective against ExPEC phylogroups in 
a murine model of sepsis, including mortality and 
dissemination to liver, spleen, and kidneys. This 
vaccine also protected against cystitis in mice chal-
lenged with select strains.64

These genomic technologies can further be bol-
stered by RNA-Seq and proteomic studies to vali-
date expression of these genes and explore their 
interactions with the host.65,66 Large datasets emer-
ging from these multi-omics approaches have seen 
the parallel rise in the suite of bioinformatics tools 
encompassing predictive models for antigen 
structure,67 epitope mapping,68,69 and host cross- 
reactivity.70 Although nascent, these models have 
already been used to engineer chimeric vaccines 
linking various immunodominant epitopes from 
ExPEC VFs into minimal peptide vaccines,62,71,72 

including a notable multi-epitope vaccine against 
immunodominant peptides from the siderophore 
receptor IutA and the fimbrial adhesin protein 
FimH. This spliced peptide vaccine generated 
a durable (>180 days) immunologic memory 
response that was protective against UPEC bladder 
colonization (three-log reduction) in mice.72

Despite the impressive antigen engineering in 
this study, this vaccine was not the first to target 
FimH or IutA antigens. These targets were selected 
on the basis of prior studies and their distinct 
mechanisms promoting pathogen survival in the 
bladder. FimH is an adhesin protein at the tip of 
the type 1 pilus that mediates attachment to the 
urothelium through binding of host uroplakins,73 

glycosylated membrane proteins that form large 
plaques spanning >70% of the urothelial surface. 
It has been shown that FimH is necessary for bind-
ing to murine and human bladder tissue in vitro 
and that binding can be blocked with antisera from 
vaccinated mice.74 Further preclinical animal test-
ing of FimH vaccines demonstrated 
immunogenicity75–78 and protection against mur-
ine cystitis,74 and against bacteriuria and leukocy-
turia in cynomolgus monkeys.79 On the basis of 
these results, the FimH adhesin became the first 
ExPEC subunit vaccine in clinical trials in 1999 
(unpublished), but the vaccine did not advance 
beyond Phase II trials due to a reported lack of 
efficacy.80 Potential explanations for this lack of 
efficacy include: (1) lower FimH expression in the 
human bladder than in model systems,81 (2) bipha-
sic transcriptional regulation allowing expression 
to be shut off,82–84 and (3) induction of antibodies 
that do not prevent FimH adhesion (or even 
enhance binding).85 A key lesson from this vaccine 
attempt therefore is that animal and in vitro studies 
do not necessarily produce results predictive of 
protective human responses. Nonetheless, interest 
in a FimH-based vaccine has been renewed with 
a Phase I dose escalation study recently published. 
This vaccine seroconverted 93% of participants 
with no severe adverse events86 and Phase II clin-
ical trials are planned. Other adhesin vaccines have 
also been explored in preclinical studies, including 
a novel adhesin FdeC identified by comparative 
genomics,87 and the well-studied Dr fimbriae and 
PapDG tip of P fimbriae.88,89 Animal studies 
demonstrated immune responses with reduced 
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UTI colonization and mortality in mice immu-
nized with Dr fimbriae88 and protection from pye-
lonephritis in mice vaccinated against FdeC90 or 
mature cynomolgus monkeys immunized with 
PapDG.89 However, as seen with the FimH vaccine 
attempt, it will be necessary to study these antigens’ 
efficacy in human clinical trials to determine their 
protective effect.

IutA, by contrast, is a receptor that binds side-
rophores (iron-chelating molecules secreted by 
ExPEC for iron sequestration). Siderophore receptors 
such as IutA traffic sequestered iron through the 
bacterial membrane. These and other iron uptake 
systems are highly upregulated during UTI91,92 and 
are key mediators of UPEC pathogenesis. Indeed, 
iron acquisition may be required for kidney 
colonization93 and intracellular invasion of urothelial 
cells, which contributes to epithelial barrier destruc-
tion. Specifically, UPEC iron uptake increases the 
bacterial load of acute, highly proliferative intracellu-
lar bacterial communities91 and facilitates formation 
of persistent quiescent intracellular reservoirs.94

IutA was one of six iron acquisition genes 
identified as promising vaccine targets in 
a multi-omic screen of 5,379 genes with geno-
mic, transcriptomic, and immunoproteomic 
datasets pertaining to the prototypic and viru-
lent UPEC strain CFT073.95 Although all six 
antigens induced systemic and mucosal adaptive 
immunity following intranasal immunization in 
mice, only IutA demonstrated dual protection 
against mouse bladder and kidney colonization 
by this strain (Two other iron acquisition anti-
gens upregulated in UTI, IreA siderophore 
receptor and Hma heme receptor, induced 
a greater magnitude of organ-specific protection 
in kidney or bladder, respectively.95). Peptides of 
30 amino acids taken from conserved, surface- 
exposed regions of IutA also yielded two-log 
reductions in murine kidney colonization. 
Interestingly, this suggests the IutA extracellular 
epitope is sufficient to recapitulate the whole- 
antigen vaccine’s protection in the kidneys but 
not in the bladder.

This study also tested an extracellular epitope of 
the IroN antigen, a salmochelin siderophore recep-
tor, which yielded protection against pyelonephri-
tis comparable to the IutA epitope in these mice.95 

The efficacy of IroN vaccination was elaborated 

with whole-antigen immunization protecting 
against mortality in a murine lethal challenge 
model.96 This vaccine also reduced kidney but not 
bladder colonization in a murine UTI model (per-
haps owing to a lack of IgA responses).97 However, 
another preclinical mouse study failed to replicate 
protection with whole-antigen IroN vaccination 
despite the induction of serum IgG, and instead 
identified the yersiniabactin siderophore receptor 
FyuA as protective against pyelonephritis in these 
mice.98 Despite a lack of protection against cystitis 
in this model, others have reported FyuA vaccina-
tion reduced both bladder and kidney colonization 
in addition to protecting against lethal challenge in 
a murine host.99

Similar to the chimeric FimH adhesin and IutA 
siderophore receptor multi-epitope vaccine, 
a spliced peptide vaccine containing immunodo-
minant surface epitopes from iron acquisition 
receptors was attempted. This vaccine included 
eight epitopes from six iron acquisition genes 
(including FyuA, IroN, and IreA) administered as 
both recombinant peptide with adjuvant71 or via 
the Salmonella type 3 secretion system (T3SS) for 
intracellular delivery.100 Interestingly, the recombi-
nant peptide induced both humoral and cellular 
immunity in mice, whereas the T3SS delivery sys-
tem only induced cellular immunity. Nonetheless, 
only the T3SS vaccine reduced both liver and 
spleen colonization by UPEC following i.p. chal-
lenge, whereas the recombinant peptide only pro-
tected against liver colonization.71,100 This finding 
suggests that T cell-mediated immunity (the 
authors do not differentiate between CD8+ and 
CD4+ T cell subtypes) may constitute a correlate 
of protection for some ExPEC vaccine formula-
tions in this mouse model.

Vaccines against secreted VFs have also been 
explored. For example, iron-chelating siderophores 
Ybt and Aer were conjugated to immunogenic 
carrier proteins and tested in a transurethral mur-
ine challenge with UPEC. A bivalent vaccine 
achieved two-log reduction in kidney colonization, 
but a more marginal reduction in bladder coloni-
zation and no reduction in bacteriuria.101 This 
result is unsurprising because antibodies against 
secreted factors do not bind to bacteria to induce 
clearance, but instead target secreted factors that 
otherwise drive invasive phenotypes. Beyond 
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siderophores, inactivated toxoids have generated 
neutralizing antibody responses against the α- 
hemolysin (HlyA) and cytotoxic necrotizing factor 
1 (CNF1) toxins, which are associated with highly 
invasive strains of ExPEC63 and directly mediate 
cytotoxic effects.102 Mice immunized against these 
toxins were protected against bladder pathology 
during UTI challenge. Interestingly, the HlyA tox-
oid also significantly reduced bacterial load in both 
urine and bladder tissue in these mice,103 perhaps 
by limiting efficient colonization. Taken together, 
these results show promise for targeting secreted 
factors to limit the pathogenic potential of ExPEC 
and protect against disease severity. However, 
a lack of any clinical trials on this approach limits 
the interpretability of these data for human 
efficacy.

3. Immune responses or host responses to 
ExPEC vaccines

To dissect why past vaccine attempts have had 
limited success, here we summarize current 

knowledge of the protective immune responses 
for ExPEC vaccines and host immune factors that 
may complicate ExPEC vaccine design. We also 
consider approaches that have been tested to cir-
cumvent these challenges by modulating the 
immune response to vaccination (Figure 4).

3.1. Antibodies as correlates of protection

Like any exogenous antigens, vaccines are first 
recognized by the host innate immune system, 
which then elicits the appropriate cell-mediated 
and/or humoral immune responses to confer pro-
tection against future infections and diseases.104–106 

Understanding these immunological correlates of 
protection (CoP) is thus crucial to develop an effec-
tive vaccine. So far, functional antibodies have been 
the most common CoP for available bacterial 
vaccines,106,107 including those against tetanus, 
diphtheria, and pertussis.108 However, in rare 
cases, CD4+ T cell subsets have been identified as 
the key CoP, as with the tuberculosis BCG 
vaccine.109,110

Figure 4. Considerations for adjuvant selection and delivery method. The immunologic response to vaccination can be optimized with 
the addition of immunomodulatory adjuvants or by route of administration. For example, vaccine delivery to mucosal membranes 
(e.g. nose, mouth, and vagina) increases protection at these important immunologic barriers.
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Although no CoP has been established for 
immunological memory against ExPECs, previous 
research provided clues. According to a murine 
study focused on UPEC, infection evoked antigen- 
specific serum IgG and IgM increases and antigen- 
specific T cell proliferation.111 Additionally, naïve 
mice that received adoptive transfer of serum, 
T cells, or splenocytes from infected mice were 
protected from subsequent challenge, suggesting 
the sufficiency of either humoral or cellular immu-
nity against UPEC infection.111 Nonetheless, most 
ExPEC vaccine studies to date have homed in on 
antibodies as potential CoP. Early work on 
O-antigen conjugate vaccines showed that passive 
immunization of mice with total serum IgG from 
vaccinated human volunteers conferred serospeci-
fic protection in an E. coli sepsis model.46 Similarly, 
FimH-based vaccines produced functional antibo-
dies that inhibit UPEC binding to human bladder 
epithelial cells79 and passively protect mice from 
bladder colonization.74 One group examined iron 
receptor-based vaccines in mice and suggested 
urinary IgA, degree of antibody class switching 
(IgG/IgM),95 and antigen-specific serum IgG98 as 
potential CoP for UTI. In summary, although no 
universal ExPEC vaccine has been established, the 
different formulations of ExPEC vaccines to date 
seem to induce humoral antibody response in 
human and animal subjects as CoP.

3.2. Bladder TH polarization

In response to intracellular invasion of UPEC, the 
bladder sheds luminal epithelial cells as part of its 
innate immune response, a phenomenon termed 
exfoliation.112–114 Exfoliation is a double-edged 
sword because although it rapidly clears infected 
cells, it further exposes the deeper and less mature 
urothelium to invasion, leading to quiescent intra-
cellular reservoirs and recurrent infections.115 This 
pathogenic mechanism requires a delicate balance 
of immune responses to clear intracellular bacteria 
while maintaining the barrier integrity of the 
epithelium. Recent research indicates that bladder 
TH1 immune responses improve UPEC clearance, 
especially during reinfections.116 Nevertheless, 
some evidence suggests that the bladder launches 
TH2-biased immunity in both primary and second-
ary infections to restore epithelial integrity after 

exfoliation.116 Therefore, designing a UPEC vac-
cine that stimulates the TH1 compartment may 
improve efficacy. For example, in a murine model 
of UTI, the addition of TH1-polarizing adjuvants 
CpG and IL-12 to lysate or FimH-based vaccines 
significantly promoted TH1 responses and 
decreased bladder colonization compared to anti-
gen-only vaccines (Figure 4).117 Importantly, the 
TH2 tissue repair response remained unaffected by 
these adjuvants.117 Taken together, these new find-
ings suggest that reprograming CD4+ immunity in 
the bladder through the use of adjuvants may be 
a promising approach to enhance ExPEC vaccine 
efficacy.

3.3. T cell-mediated immune memory

Immune memory is a fundamental part of vac-
cines: the immune system launches a more rapid 
and vigorous attack at a pathogen that it has 
encountered before, thus protecting the host from 
re-infections.118 Although immune memory devel-
ops in response to UPEC infections, it fails to 
induce sterilizing immunity, which partially con-
tributes to UTI recurrence.119 An effective vaccine 
may achieve sterilizing immunity by amplifying the 
protective memory response. A recent study 
showed that, in a mouse model of recurrent UTI, 
bladder tissue-resident memory T cells (Trm) are 
both necessary and sufficient for developing 
immune memory.120 Interestingly, the authors 
found no TH subset cell skewing among CD4

+ 

T cells in bladder and draining lymph nodes post 
infection. Instead, a mixture of TH1, TH2, TH17, 
and Treg cells was detected over 7 days of 
infection.120 It remains unclear how each of these 
TH subsets participate in the formation of the Trm 
reservoir, an area worth future investigation.120 

Additionally, mice that lack mature B cells 
achieved a level of bacterial clearance comparable 
to wild-type mice during reinfection, suggesting 
that B cells are dispensable for UTI memory.120 

Another mouse study also pointed out that TH1 
cells instead of serum IgG are responsible for the 
increased bacterial clearance induced by 
vaccination.117 As most past vaccine studies have 
considered B cell antibody response as a hallmark 
for protection, these findings question the para-
digm and highlight the protective role of T cells 
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in immune memory. Although it remains 
unknown how vaccine immune response can be 
programmed toward the production of Trm 
cells,120 more research on cellular memory 
response will provide insights into a better vaccine 
design.

3.4. Mucosal vaccination

The delivery method of a vaccine plays an impor-
tant role in governing the type of immune response 
elicited (Figure 4). Since the urogenital tract is the 
most common infection site for ExPEC,4 there have 
been many attempts in developing mucosal vac-
cines to induce strong humoral and cellular 
responses at this site. Although all currently 
licensed human mucosal vaccines are based on 
live-attenuated or whole-cell components,121 this 
approach has not been successful for ExPEC vac-
cines. In a randomized, placebo-controlled phase II 
clinical trial, the whole-cell vaccine SolcoUrovac 
was administered as vaginal suppositories in 
women with recurrent UTI.25–27 However, the vac-
cine was not universally immunogenic despite 
causing an initial delay to reinfection. Another 
whole-cell vaccine taken as oral tablets also 
induced poor immune response: increase in saliva 
antibody titers were observed in <50% patients.122 

More recently, researchers explored intranasal and 
intravesical subunit vaccines with cholera toxin or 
other adjuvants for UPEC.95,98,101,123 These vac-
cines showed promising immunogenicity and effi-
cacy in animal models, though their effect in 
human remains unknown. Together, these past 
vaccine attempts suggest that, when delivered 
mucosally, whole-cell antigens may not be suffi-
cient to elicit strong and functional immune 
response, whereas adjuvanted subunit vaccines 
are a more promising solution. Novel mucosal 
vaccine designs for other pathogens may shed 
light into how ExPEC vaccines can be improved. 
For example, the enterotoxigenic E. coli vaccine 
ETVAX utilizes inactivated whole-cell bacteria to 
overexpress colonization antigens on cell 
surfaces.124 ETVAX in combination with the 
mucosal adjuvant dmLT induced strong mucosal 
antibody responses in both mice and human 
subjects.124,125 The combination of whole cells, tar-
geted antigens, and adjuvants allows the vaccine to 

be highly immunogenic and may be useful for 
designing ExPEC vaccines as well.

3.5. The aging disease population

Older adults are at a higher risk for ExPEC infec-
tions: 1) the majority of patients hospitalized for 
ExPEC-caused bacteremia are aged >65 years126,127; 2) 
UTI occurrence in women doubles in those >65 years 
compared to the overall population128; 3) for men 65– 
74 years of age, the incidence rate of UTI increases 
fivefold when compared with men in their 20s.129 

One major reason for the increased susceptibility to 
infection in older adults is immunosenescence, which 
refers to the functional decline of the immune system 
as part of the natural aging process.130 Characteristics 
of immunosenescence include decreased production 
of naïve lymphocytes, increased accumulation of 
terminally differentiated memory cells, and declines 
in antibody quantity and quality131–133 (Figure 4). In 
addition to poor response to various infections, 
immunosenescence also leads to impaired vaccine 
responses. For example, studies of influenza vaccines 
have shown that older adults have a lower serocon-
version rate,134 decreased vaccine-specific neutraliz-
ing antibody level,135 and declined CD4+ and CD8+ 

T cell expansion136 after vaccination compared to 
younger adults. The efficacy of herpes zoster vaccine 
in people over 60 years old also decreases rapidly 
from 68% in the first year to merely 4% in the 
eighth year,137 which is likely due to age-related wan-
ing of cellular immunity. Considering the dramatic 
impact of aging on vaccine responses, it is therefore 
imperative to tailor ExPEC vaccine design to the 
needs of this target population. In other vaccine for-
mulations designed for older adults, the addition of 
adjuvants is useful for boosting immune responses. 
For instance, the influenza vaccine FLUAD™ formu-
lated with the adjuvant MF59® has significantly 
improved vaccine effectiveness compared to non- 
adjuvanted formulations in adults larger than or 
equal to 65 years old.138 Similarly, the herpes zoster 
vaccine Shingrix™ containing the AS01B adjuvant 
confers protection in over 96% vaccinated older 
adults139 and elicits virus-specific antibodies that per-
sists for at least 9 years.140 So far, ExPEC vaccine 
studies have been focused on women or adults in 
general, while studies that recruit older adults are 
lacking, with ExPEC9V (NCT04899336) being the 
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only clinical trial conducted solely in older adults. 
Understanding what immune correlates are wea-
kened in ExPEC-infected older adults and testing 
different adjuvant and antigen combinations stand 
as unexplored area of ExPEC vaccine research.

4. New vaccine technologies for ExPEC

Other than traditional vaccine approaches and 
delivery methods (Figures 2 and 4), novel vaccine 
technologies have been explored by researchers to 
improve ExPEC vaccine immunogenicity and effi-
cacy. Here, we focus on 3 of the new vaccine 
strategies that have improved upon ExPEC vacci-
nation in preclinical models: encapsulated vac-
cines, nanofiber vaccines, and DNA vaccines. For 
a full overview of these emerging vaccine technol-
ogies, we refer to the following dedicated reviews 
on the subject.141,142

4.1. Encapsulated vaccines

During the course of infection, the immune system 
is stimulated with microbial antigens for an 
extended period of time. However, traditional non- 
live vaccines deliver antigens in single injections. 
This has prompted vaccine research to focus on 
antigen kinetics, specifically the slow or extended 
delivery of antigens to more closely mimic natural 
infections.143 Prolonged vaccine antigen availabil-
ity can boost germinal center formation in draining 
lymph nodes and improve antibody responses by 
increasing the abundance of neutralizing antibo-
dies and T follicular helper cells.143–145 

Encapsulation of whole cell and subunit antigens 
is one such way that creates a depot effect to effec-
tively control antigen kinetics.146 Common meth-
ods of encapsulation include liposomes, virosomes, 
nanoparticles, and microspheres.146

A recent study demonstrated better immuno-
genicity of nanoparticle-encapsulated subunit vac-
cines against UPEC in a mouse model.147 Here, the 
researchers developed 2 vaccines, each containing 
B- or T-cell epitopes of previously explored anti-
gens FdeC (adherence factor), Hma (adhesion 
autotransporter), and UpaB (iron receptor) with 
the cholera toxin subunit B adjuvant, encapsulated 
in chitosan nanoparticles.147 When intranasally 
delivered to mice, the B cell construct generated 

high levels of IgG1 and IL-4 characteristic of TH2 
response, while the T cell construct elicited high 
levels of IgG2a and IFNγ characteristic of TH1 
response.147 Although mice immunized with either 
nanoparticle coated or non-coated vaccines were 
protected from UPEC colonization in bladder, the 
coated vaccines produced significantly stronger 
antibody- and cell-mediated immune responses.147

Another useful trait of nanoparticle encapsula-
tion is providing stability for subunit antigens. For 
instance, OmpAVac, a recombinant vaccine based 
on outer membrane protein A of the neonatal 
bacterial meningitis-causing strain E. coli K1, 
induced TH1, TH2, and TH17 responses and 
showed effective protection in mice,148 but was 
impeded from downstream applications due to 
poor in vitro and in vivo stability.149 By coating 
OmpAVac in chitosan-modified poly (lactic-co- 
glycolic acid) (PLGA) nanoparticles, researchers 
demonstrated that not only are the antigens more 
slowly released, but they also preserved immune 
protection in mice after 180 days of storage.149

Since classic vaccine encapsulation vehicles 
work better with small proteins and antigens, 
additional technologies are required for larger 
cargos such as whole bacterial cells.150 In one 
study, a biomimetic network called Zeolitic 
Imidazolate Framework (ZIF) was used to 
encapsulate and inactivate the urosepsis strain 
CFT073 as a whole-cell vaccine.150 Similar to 
nanoparticles, ZIF slowed the dissipation of vac-
cine, which remained at the injection site in 
mice for 4 days longer than the uncoated 
version.150 Mice immunized with ZIF-coated 
CFT073 exhibited significant increases in 
humoral response (anti-CFT073 IgG1, IgG2a 
and IgG2b), cellular response (CD3+, CD4+, 
CD8+ cell numbers in the spleen), and cytokine 
response (TNF-α, IFN-γ, IL-4, and IL-17).150 In 
a mouse model of urosepsis, the ZIF- 
encapsulated bacteria vaccine protected over 
85% of vaccinated mice, while less than 20% 
animals survived in the non-encapsulated vac-
cine group.150 Unlike standard whole-cell inacti-
vation methods, ZIF encapsulation preserved the 
native structures of CFT073 surface epitopes,150 

which may be another explanation for the 
superior immunogenicity and efficacy of this 
vaccine.
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4.2. Nanofiber vaccines

Similar to encapsulated vaccines, nanofiber vaccine 
is another approach that utilizes biomaterials to 
engineer antigen delivery. This vaccine platform 
allows the supramolecular co-assembly of selected 
epitopes with Q11 nanofibers conjugated with 
polyethylene glycol (PEG), a hydrophilic 
polymer.151 The supramolecular assembly has 
been shown to be superior in immunogenicity 
compared to PEGylated peptides directly delivered 
as vaccines.151 Additionally, the mucus-penetrating 
ability of PEG-modified nanofibers is ideal for 
delivering mucosal vaccines.151,152 Recently, one 
research group developed a sublingual nanofiber 
vaccine effective against UPEC strain CFT073 in 
mice.152 In this vaccine, UPEC B cell epitopes from 
siderophore receptors (IreA, lutA, IroN) and 
helper T cell epitopes (VAC or PADRE) are supra-
molecularly co-assembled with PEGylated Q11 
nanofibers.152 After mice were immunized with 
this nanofiber vaccine, strong UPEC-specific anti-
body response was observed both in serum and 
urine. The vaccine demonstrated great efficacy in 
protecting mice from urosepsis and in reducing 
UTI.152 Notably, vaccination had minimal impact 
on the microbiome, especially when compared to 
mice treated with antibiotics.152 Despite these posi-
tive results, this study did not include a group that 
receives non-assembled vaccine, which would be 
a critical control group that indicates the immuno-
genic benefit of this novel vaccine technology.

4.3. DNA vaccines

DNA-based vaccines are an increasingly attractive 
platform because of improved safety compared to 
live vaccines and induction of both humoral and 
cellular immunity.153 Specifically, DNA vaccines 
were shown to stimulate cytotoxic T lymphocyte 
production, which is essential for the elimination 
of intracellular pathogens.153,154 In general, DNA 
vaccines work by utilizing host cellular machinery 
to produce the antigens of interest endogenously, 
which then get presented to stimulate adaptive 
immunity.153 Since UPEC is a facultative intracel-
lular pathogen, developing DNA vaccines have the 
potential to overcome current challenges including 
failure to induce cellular responses and prevent 

recurrent infections. One group developed UPEC 
FimH-based vector constructs as DNA vaccines.154 

In this study, mice immunized with two doses of 
the DNA vaccine displayed heightened IFN-γ, IL- 
12, and IL-17 levels compared to animals in the 
control and protein vaccine groups.154 These mice 
also had significantly higher UPEC clearance from 
bladder post-challenge than the control animals.154 

A later study employed a similar vaccine construct 
design based on the iron receptor IutA.155 

Although vaccine efficacy was not tested in this 
study, mice that received the DNA vaccine had 
increased IFN-γ level than control mice, indicating 
TH1 polarization.155

5. Evolutionary considerations for E. coli 
vaccine development

While much of this review has focused on identify-
ing antigens and immune responses to protect 
against ExPEC, it also must be considered that 
E. coli is a remarkably diverse organism with the 
potential to promote health as well as to cause 
devastating disease. The line that separates these 
commensal and pathogenic lifestyles can be diffi-
cult to determine, and indeed even pathogenic 
strains colonize some people without causing dis-
ease. Because the goal of vaccination is to promote 
protection against infection without compromising 
the health of the host, the challenge of creating 
a vaccine against ExPEC is in targeting pathogenic 
E. coli while leaving its commensal relatives unper-
turbed. This requires a closer look at the phyloge-
netics of the organism.

E. coli is thought to have evolved from an ances-
tral microbe into what are now recognized to be 8 
genetically distinct phylogroups: A, B1, B2, C, D, E, 
F, and G. Broadly speaking, these phylogroups can 
be resolved into two main clusters: one containing 
phylogroups B2, D, F, and G, and the other con-
taining A, B1, C, and E.156 This clustering closely 
mirrors the type of polysaccharide capsule each 
phylogroup carries.63 The A/B1/C/E branch, 
which is associated with the intestinal lifestyle, 
almost always (>97%) carries the group 4 capsule 
(G4C).63,157 By contrast, the B2/D/F branch almost 
always (>90%) carries the group 2 capsule (G2C) 
and is associated with extraintestinal pathogenicity. 
The only exception here is the minor 
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G phylogroup, which is closely related to B2 strains 
but whose ancestor may have acquired G4C genes 
independently. The G2C likely enabled the B2/D/F 
cluster’s divergence into a more distally invasive 
phenotype since it mimics host sugar structures 
and thus cloaks the bacterium from the host 
immune system.63,157 Indeed, cross-reactivity with 
host ganglioside sugars has been reported after 
murine vaccination with the G2C K1 antigen,158 

although in vivo evidence of autoreactivity is lack-
ing. This may help explain the observation that 
anti-K antibodies are less commonly induced by 
ExPEC infection.37 Thus, despite being enriched in 
pathogenic strains, G2C antigens may not repre-
sent optimal vaccine candidates.

While a strain’s preferred niche tends to be 
determined by the type of capsule it carries, its 
virulence factors (VFs) and virulence potential is 
determined by its phylogroup.63,156,159 Each of the 
8 phylogroups have a distinct set of VFs and 
a propensity to cause disease, although each phy-
logroup also includes commensals.63,156,159 Broadly 
speaking, phylogroups A and B1 are more likely to 
follow a commensal lifestyle, while B2 and D follow 
a more pathogenic lifestyle in humans.156,159 The 
C phylogroup, on the other hand, often causes 
infections in avians (APEC) but rarely causes dis-
ease in humans.160 The E phylogroup is considered 
a minor phylogroup because it is less prevalent 
than major phylogroups. However, it is still of 
concern because many diarrheal strains including 
the famed O157:H7 serotype, which causes deadly 
EHEC outbreaks, belong to this phylogroup.161 

Less is known about phylogroups F and G, since 
these appear to be rarer and have only been dis-
covered recently.162,163 Nonetheless, some phy-
logroup F and G sequence types are known to 
cause ExPEC infection.63,156,163

The most common phylogroup implicated in 
ExPEC infections is by far the B2 phylogroup.164 

Clinically, B2 strains are the largest E. coli contri-
butors to UTIs, septicemia, and neonatal meningi-
tis. ExPEC strains of the well-known pandemic 
ST131 sequence type belong to the B2 phylogroup, 
as well as UPEC and NMEC-associated sequence 
types.63,156,165–168 This makes B2 an attractive phy-
logroup for study in vaccinology. Indeed, all B2 
strains carry many of the adherence factors, toxins, 
and protectins associated with infections outside 

the intestines. However, many apparently com-
mensal strains also express these factors. As men-
tioned previously, some groups have applied 
genomics to deconvolute VFs that are highly con-
served among pathogenic strains but minimally 
encoded among commensals.61–63 However, the 
high prevalence of VFs among the B2 lineage 
makes it difficult to classify strains as pathogenic 
or commensal using genomic analysis alone.63 For 
example, the ST131 strain SE15 appears to be 
a harmless commensal, but has lost only four VFs 
when compared to virulent members of the same 
fimH41 subtype.63,169 Another example is the well- 
known E. coli probiotic strain, Nissle 1917, which 
belongs to the normally highly pathogenic and VF- 
laden sequence-type ST73.170–172 It has apparently 
lost only six VFs compared to closely related viru-
lent strains.63,173 Without detailed virulence infor-
mation about closely related strains, both SE15 and 
Nissle 1917 would likely be predicted as pathogenic 
based on the VFs they retain. This suggests that any 
successful method to classify strains as either com-
mensal or pathogenic will need to consider clonal- 
level information about VFs.

Phylogroup D is also associated with ExPEC 
pathotypes, and it is the second most isolated phy-
logroup in this category behind B2 phylogroup.156 

When found to be pathogenic, strains from the 
D lineage are usually either members of InPEC or 
UPEC pathotypes.156,174 Phylogroup D strains can 
exist as harmless commensals, but like B2 strains, 
their pathogenicity can be difficult to predict using 
just genomic analysis because even commensals 
often carry proteins known to impact extraintest-
inal virulence.63

In Figure 5, a heatmap that cross-references 
a database of 396 known virulence genes against 
1,348 complete E. coli genomes shows the diversity 
of the E. coli pan-virulome. The diversity high-
lighted here makes it difficult to find vaccine tar-
gets with broad efficacy against multiple types of 
pathogenic E. coli without having off-target effects 
on commensal E. coli. Some clear trends can be 
seen between the phylogroups associated with 
ExPEC infections (B2, D, and sometimes F) com-
pared to phylogroups that are considered more 
commensal-like (A and B1). The former group 
has an overabundance of iron acquisition genes, 
capsule genes, fimbriae, autotransporters, and 
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toxins (Figure 5). However, many of these genes 
have low conservation and low prevalence among 
ExPEC strains, making them ineligible as potential 
vaccine targets. For the rational design of an 
ExPEC vaccine, it is crucial for researchers to 
screen through not only the genome, but transcrip-
tome and proteome for ExPEC-enriched targets 
that are absent or less abundant in commensal 
E. coli (Computational Approaches, Figure 2). 
This approach, combined with in vitro experiments 
and animal studies, will be promising for develop-
ing an effective and specific vaccine.

6. Concluding remarks

Despite nearly four decades of research since the 
initial ExPEC vaccine trial,13 an FDA-approved vac-
cine for ExPEC remains elusive. Developing an 
effective vaccine has been challenging due to several 
intrinsic characteristics of the organism, including: 
(1) extensive strain diversity, (2) functional redun-
dancy of virulence factors, (3) challenges in differ-
entiating commensal and pathogenic strains, (4) 
intracellular reservoirs, and (5) immune resistance 
conferred by polysaccharide capsules and other 
mechanisms. Notwithstanding, advancements in 

Figure 5. Pan-Virulome of Escherichia coli. 1,348 Escherichia coli strains were cross-referenced against 396 Escherichia coli virulence 
factor references (described previously in https://pubmed.ncbi.nlm.nih.gov/33941580/) using BLAST. Hits were limited to a single best 
hit for each virulence factor using -culling_limit 1 and -max_hsps 1 and hits under 100 base pairs were filtered out of the results. 
Heatmap was generated using ComplexHeatmap suite in R studio using the Percent Identity results from the BLAST search. Yellow 
represents high identity compared to reference, while magenta represents low identity compared to reference. Grey indicates no hit 
was found. The heatmap was split vertically by phylogroup (A, B1, B2, C, D, E, F, G) and horizontally by virulence factor class. 
Hierarchical clustering was performed on both columns and rows separately using Euclidean distance method. Clustering was 
performed first within group (i.e. by phylogroup and virulence class) and then between groups. The following acronyms were used in 
this figure: LEE: Locus of Enterocyte Effacement; Non-LEE T3SS: Non-Locus of Enterocyte Effacement Encoded Type 3 Secretion System 
Dependent Effectors; Misc: Miscellaneous Virulence Factors; T6SS: Type 6 Secretion System.
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vaccine technology and an improved understanding 
of the immunologic response to ExPEC infection 
may help overcome these challenges. For example, 
the basic vaccine development approach for ExPEC 
has shifted from traditional whole-cell vaccine for-
mulations toward subunit vaccines that target spe-
cific antigens. This shift has been fuelled by 
expanded serotype surveillance56 and the power of 
genomics for identifying conserved virulence 
factors.63 The subunit approach is currently being 
evaluated in two vaccine candidates undergoing 
clinical trials: the ExPEC9V vaccine currently in 
Phase III trials (NCT04899336) and the FimH vac-
cine planned for Phase II.77 Further preclinical 
research has yielded significant strides in optimizing 
subunit vaccine immunogenicity and selectively 
activating immune compartments that confer pro-
tection. In light of this progress, this review aimed 
to synthesize the current body of literature on 
ExPEC vaccine development and to critically eval-
uate the long history of ExPEC vaccine trials.
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