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Abstract

The basal ganglia are known to influence action selection and modulation of movement vigor, 

but whether and how they contribute to specifying the kinematics of learned motor skills is not 

understood. Here, we probe this question by recording and manipulating basal ganglia activity in 

rats trained to generate complex task-specific movement patterns with rich kinematic structure. We 

find that the sensorimotor arm of the basal ganglia circuit is crucial for generating the detailed 

movement patterns underlying the acquired motor skills. Furthermore, the neural representations 

in the striatum, and the control function they subserve, do not depend on inputs from the motor 

cortex. Taken together, these results extend our understanding of the basal ganglia by showing 

that they can specify and control the fine-grained details of learned motor skills through their 

interactions with lower-level motor circuits.

Much of what we do in our daily lives – be it tying our shoelaces or playing sports – 

relies on our brain’s ability to learn and execute stereotyped task-specific motor skills1. The 

basal ganglia (BG), a collection of phylogenetically conserved midbrain structures2, have 

been implicated in their acquisition and proper execution3,4. Yet, despite intense interest 

in deciphering BG function, whether and how they contribute to generating the complex 

movement patterns that underlie many motor skills remains unclear.
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Most studies of BG function do not explicitly probe this realm of motor learning, focusing 

instead on how species-typical actions, i.e. ones natively part of the animal’s behavioral 

repertoire (e.g. locomotion, saccades or ballistic forelimb movements), become associated 

with a particular cue or context5–11. Acquiring a motor skill, such as a tennis serve, 

requires additional trial-and-error learning, an often lengthy process12 that transforms 

actions expressed by the naïve practitioner into highly specialized and kinematically distinct 

task-specific movement patterns13. Our study asks what contribution, if any, the BG make to 

the specification and generation of such learned skills.

BG’s contributions to learned behaviors can be intuitively parsed within the framework 

of reinforcement learning (RL)14. In this scheme, striatum, BG’s input zone, ‘learns’ 

to map information about the ‘state’ of the world/body onto ‘action’ variants that yield 

reward15–18. State information is thought to be conveyed to the striatum by cortex and 

thalamus15,17,18 while BG’s output, from Substantia Nigra pars reticulata (SNr) and Globus 

Pallidus internal segment (GPi), can influence control circuits in the midbrain, brainstem and 

motor cortex19,20 (Figs. 1A, 2A).

We posit that the nature of these BG state-action maps, or ‘policies’, likely depends on 

the specific challenges presented to the animal. For example, learning to express a simple 

species-typical action, like a saccade or a forelimb reach, in response to a particular stimulus 

or behavioral context8,11 (a ‘stimulus-response association’, Fig. 1B), would require neural 

activity patterns associated with the stimulus or context (‘state’) to be mapped to BG output 

activity that increases the likelihood of the rewarding action being expressed21,22. Because 

these simple actions can be generated autonomously by downstream control circuits6,23–25 

(Fig. 1B), the BG are thought to provide a state-specific output signal that helps trigger the 

control module(s) that produce the rewarded action (the ‘action selection’ model)26,27.

Studies have also demonstrated that the BG can modulate the overall ‘vigor’ of ongoing 

actions, i.e. the speed with which they are executed and/or the amplitude of their constituent 

movements6,9,10,24 (Fig. 1C). This implies that the BG can associate state information not 

only with the selection of a particular action, but also produce a signal that adaptively 

controls the gain of that action3,28. Although the ‘vigor’ and ‘action selection’ models 

are often pitted against each other3,28, within a broader RL framework14,15,18 (Fig. 1A) 

they simply represent two different types of associations: one relating a given state to the 

selection of an action, the other relating it to the vigor with which an action is enacted (Fig. 

1B–C).

If indeed the BG have a general capacity to associate input patterns conveying state 

information with output patterns leading to rewarding actions, how complex can these 

learned associations be? In the above two examples, the output signals were relatively low-

dimensional, representing an action-specific go (binary) or gain (scalar) signal respectively 

(Fig. 1B–C). However, the BG circuits are capable of producing far more complex and 

dynamic output than what is minimally required for these functions29–32. Thus, they could 

- in theory at least - contribute to more fine-grained movement control (Fig. 1D) by 

associating continuously evolving state information (e.g. about the pose of the animal) 
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with a time-varying output that, through actions on downstream controllers, improves 

performance16.

To probe whether the BG indeed function to specify the kinematic details of learned skills, 

we trained rats on a timed lever-pressing task that, over weeks of trial-and-error learning, 

results in highly stereotyped task-specific movement patterns with rich kinematic structure13 

(Fig. 1E–F). Combining chronic neural recordings and high-resolution behavioral tracking, 

we found that activity in the sensorimotor region of the striatum reliably encodes the 

fine-grained kinematic structure of the learned movement patterns. Lesions to this arm of 

the striatum, as well as one of BG’s main outputs (GPi), completely erased the learned 

behavior from the rat’s repertoire. While lesioned animals still engaged with the task, their 

movements reverted to a species-typical behavior seen early in learning. Importantly, and 

contrary to the consensus view15,17,33, BG’s contribution to learned movements did not 

depend on motor cortical input to the striatum13. Taken together, our results show that BG 

circuits can store and specify continuous and rich kinematic ‘policies’ underlying learned 

skills and can do so in a motor cortex-independent manner.

Results

DLS, but not DMS, is modulated during skill execution

Probing whether and how the BG contribute to the specification of motor skills requires 

a paradigm that challenges subjects to learn novel movement patterns with complex task-

specific kinematic structure. To this end, we took advantage of a task we had previously 

developed, in which rats are rewarded for pressing a lever twice within a specific time 

interval (inter-press interval or IPI; target: 700 ms, see Methods) (Fig. 1E)13. Over about a 

month of daily training, rats develop highly stereotyped and idiosyncratic movement patterns 

(Fig. 1F) that are then stably executed over long periods of time13.

If the BG do indeed contribute to specifying the fine-grained details of the learned skills, 

we would expect activity in this brain region to reflect time-varying kinematic variables. 

To probe this, we first sought to describe how neurons in the striatum represent the learned 

movement patterns our task trains. We implanted expert rats (n=3) with tetrode drives34 in 

the sensorimotor region of the striatum (dorsolateral striatum, DLS). This BG subregion 

receives input from sensorimotor cortex35,36 (Fig. 2A, Extended Data Fig. 1A–B), has 

been implicated in well-learned stimulus-response associations4,21,22, and is known to be 

preferentially activated during the expert execution of certain motor skills37,38.

In a separate cohort of expert rats (n=3), we recorded from a neighboring striatal region, the 

dorsomedial striatum (DMS), which receives input primarily from prefrontal cortex35,36 

(Fig. 2A, Extended Data Fig. 1A–B). DMS has been implicated in early stages of 

learning37–40 but is generally considered dispensable for the execution of many well-learned 

behaviors38,39. A recent study recording from both DLS and DMS in rats performing simple 

repetitive lever-presses found very similar overall activity profiles in the two regions25. In 

contrast, our task trains animals to generate novel task-specific movement patterns, a process 

we hypothesize engages DLS to a greater degree than DMS. If so, we would expect to see 

distinct activity patterns and encoding schemes in the two striatal subregions.
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We identified the DLS and DMS by anterograde viral tracing from motor and prefrontal 

cortices, respectively (Extended Data Fig. 1). We recorded from large populations of striatal 

neurons over several weeks of training34 (Extended Data Fig. 2A; in total, n=1336 units in 

DLS and n=846 units in DMS from n=3 rats per group; see Methods). To establish whether 

and how striatal activity reflects the kinematic structure of the learned skills, we used high-

speed videography to track each subject’s forelimbs and head41,42 (Fig. 1F, Supplementary 

Videos 1–2).

Although we found DLS and DMS units to have similar average firing rates during the 

task, the firing patterns of DLS units were far more modulated and more reliable across 

trials (Fig. 2B–C, Extended Data Fig. 2B). Putative spiny projection neurons (SPNs; see 

Extended Data Fig. 2A and Methods for cell-type identification criteria) in the DLS also 

had much sparser activity patterns, often spiking only at one specific time-point during the 

learned behavior (Fig. 2B–C). In contrast, SPNs in the DMS as well as putative fast spiking 

interneurons (FSIs, Extended Data Fig. 2A) in both striatal regions showed more distributed 

activity (Fig. 2B–C, Extended Data Fig. 2B).

Average activity in DLS does not reflect action boundaries

The sharp difference in how DLS and DMS activity is modulated during our task (Fig. 

2B–C, Extended Data Fig. 2B) contrasts with the very similar representations seen across 

these sub-regions in repetitive lever-pressing tasks25. This suggests that BG’s contribution 

to learned behaviors, and the striatal activity patterns reflecting it, may depend on the 

particulars of the task.

In instrumental conditioning tasks involving sequences of species-typical actions, DLS 

activity tends to preferentially mark the beginning and end of the rewarded action 

sequence5,7. This could be seen as reflecting a role for the BG in initiating or terminating 

a well-practiced behavior, the details of which are generated in downstream control 

circuits43,44. However, if BG output is, additionally, involved in specifying execution-

level details of the learned behavior, such as its overall vigor6,9,24 (Fig. 1C) or detailed 

kinematics (our hypothesis, Fig. 1D), a more continuous representation in the DLS would be 

expected9,10.

To address the degree to which the neural representations of the continuous skilled 

movement patterns we train conform to either of these scenarios, we first examined how 

activity in DLS neurons is distributed over the length of the behavior (Fig. 2D–E). The 

activity patterns were qualitatively different from those reported in studies on repetitive 

lever-pressing, where pronounced SPN activity is seen around the first and final lever-press 

in a sequence, consistent with ‘start’/’stop’ activity7,25,45 (Fig. 2D–E). Across the population 

of animals, average striatal activity was elevated throughout the learned motor skill and 

did not consistently mark either the first or the last (2nd) lever-press in the sequence 

(Fig. 2D–E, Extended Data Fig. 3A). However, within an animal, average DLS activity 

was non-uniformly distributed (Fig. 2E, Extended Data Fig. 3D–E, see Methods) and this 

pattern was unique to each individual, raising the possibility that the stereotyped movement 

patterns animals learn in our task13 ‘start’ before and ‘stop’ after the 1st and 2nd lever-press 

respectively, and do so to different extents in different animals.
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Since well-practiced motor skills are characterized by low trial-to-trial variability46, we 

defined the boundaries of the skilled behavior (i.e. its ‘start’ and ‘stop’) for each rat as 

the time points at which the trial-to-trial variability of its movement trajectories showed 

a marked decrease or increase, respectively (Extended Data Fig. 3B, Methods). However, 

even at these individual-specific ‘start’ and ‘stop’ times, we did not observe any consistent 

elevation in the activity of DLS SPNs (Extended Data Fig. 3C).

Thus, our recordings did not conform to a model of ‘action selection’ in which the main 

function of the BG is to initiate and terminate the execution of a well-practiced motor 

skill, or ‘chunk’5,7, elaborated in downstream control circuits. However, the non-uniform 

and idiosyncratic population activity in DLS could be consistent with a role for the BG in 

selecting specific action elements within a longer sequence, as has been proposed by recent 

studies of spontaneously expressed naturalistic47,48 and learned49 behaviors. According 

to this variant of the ‘action selection’ model, the DLS should over-represent transitions 

between the distinct, elemental movements in a motor sequence.

Testing this model requires identifying and segmenting the constituent elements of a 

continuous learned movement pattern. To this end, we took advantage of the rats’ tendency 

to converge on multiple closely related solutions to our task (Extended Data Figs. 4A–D, 

Supplementary Video 1, see Methods), which we term “modes”. These modes arise because 

our behavioral task imposes no kinematic constraints on the subjects’ behavior beyond the 

basic requirement to press the lever twice at the target inter-press interval of 700 ms. Thus, 

much like a tennis player converging on slightly different types of serves (e.g. a flat versus 

a slice serve) that aim to achieve the same performance goal (getting an ace), we find that 

individual rats learn and express multiple closely related but qualitatively distinct movement 

patterns, or motor sequences, that match the target IPI (Extended Data Fig. 4A–B).

Comparing pairs of such sequence ‘modes’, we observed that their associated movement 

trajectories systematically differed at particular phases of the behavior but were similar at 

all other times (Fig. 3A, Supplementary Video 1). This indicated that the modes shared 

some common motor elements and differed in others. We designated the times at which 

the trajectories of a pair of modes first became distinct (see Methods, Figs. 3A–C) as 

“choice-points”. These represent the time at which the motor sequences transitioned from a 

common movement to distinct movements particular to each mode. We found no evidence 

for enhanced SPN activity in the DLS at these choice-points (Extended Data Fig. 4E). Taken 

together, our results go beyond the predictions of traditional models of ‘action selection’, 

which posit that the DLS selects entire motor sequences5,7 or their constituent actions47–49.

Ensemble DLS activity encodes task-related movement kinematics

We argued that the continuous activity patterns in the DLS could instead reflect a role for 

the BG in specifying the detailed kinematics of ongoing movements (Fig. 1D). In support 

of this, we found moderate but significant correlations between average DLS activity and 

the time-varying speed profile of the forelimbs (Extended Data Figs. 3D,F), implying that 

non-uniformity in DLS activity is driven, in part at least, by fluctuations in levels of overall 

movement over the course of the skilled behavior.
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To probe the relationship between DLS activity and kinematics in more detail, we revisited 

our mode analysis, comparing the distance between the trial-averaged DLS ensemble 

representations of pairs of modes as a function of time in the motor sequence (Figs. 3C–F, 

Methods). We found that the neural representations across the sequence modes were most 

distinct after the choice-point (Figs. 3C,F–G), with their peak divergence coinciding with the 

time at which the movements associated with each mode were most divergent.

These results indicate that DLS activity reflects kinematic aspects of the learned movement 

patterns we train, but they do not reveal which specific kinematic variables are represented 

or whether DLS activity is encoding trial-by-trial and moment-by-moment fluctuations in 

these variables. To address this, we examined whether and how time-varying movement 

kinematics explained fluctuations in DLS spiking activity (Fig. 4A–B). We used a 

generalized linear model framework (Fig. 4C) to probe which kinematic parameters were 

encoded in the activity of individual DLS units or – for comparison– in the far less task-

modulated DMS units.

If the DLS does indeed specify the kinematic policies (state-action mappings) that underlie 

skilled behavior, we would expect neural activity to encode both the continuously evolving 

state of the body, reflected in the time-varying position of multiple effectors like the 

forelimbs and head, as well as the actions performed by the animal, reflected in the velocity 
and acceleration of the effectors (Fig. 4C). Indeed, we found that the kinematic details of the 

learned movement patterns could predict the instantaneous activity of individual DLS units, 

sampled in 25 ms bins (Fig. 4D). Importantly, we found that encoding models employing 

a combination of state- (position) and action-related (velocity, acceleration) variables from 

multiple tracked body parts outperformed models that were restricted to specific kinematic 

variables or body parts (Fig. 4D, Extended Data Figs. 5A–B). Consistent with the low 

task-modulation in DMS, we found that all movement-related variables were encoded to a 

much lesser extent in the activity of DMS units (Fig. 4D, Extended Data Fig. 5B).

If the BG specify the learned kinematic structure of acquired skills, as we hypothesize, 

we should also be able to decode time-varying movement kinematics from populations of 

DLS or DMS units. To test this, we trained a multilayer neural network decoder (Fig. 4E) 

to predict the instantaneous velocity of the rats’ forelimbs and head during the task (see 

Methods). We could accurately predict the fine-grained details of the learned movement 

patterns from simultaneously recorded DLS units (Fig. 4F–G). In stark contrast, we could 

not decode kinematics to any meaningful extent from DMS units (Fig. 4F–G).

Movement encoding is independent of motor cortex

Most models of the DLS’s role in learned behaviors propose that information about ‘state’ is 

conveyed by cortex15,17,18. Yet, the motor cortex is not necessary for executing the skills we 

train13 (Fig. 1F). Therefore, if the kinematic representations we observe in the DLS reflect a 

control function, they ought to be independent of motor cortex.

To probe this, we recorded DLS activity in expert rats after lesions to motor cortex (Fig. 

5A, n=914 units in total from n=3 rats). Consistent with our earlier report13, lesions did 

not affect execution of the learned skills (Extended Data Fig. 6A). DLS units in motor 
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cortex-lesioned rats had similar firing rates to those in intact rats (Extended Data Fig. 

6B) and were, as a population, active over the duration of learned behavior (Fig. 5B–C). 

However, there were subtle, but significant differences between the activity of DLS units in 

lesioned and intact rats, with the activity patterns of DLS units in lesioned rats being slightly 

less modulated, sparse, and precise (Extended Data Fig. 6B).

Furthermore, detailed time-varying kinematics were less effective at predicting the 

instantaneous activity of individual DLS units in motor cortex-lesioned animals (Fig. 5D). 

Note, however, that the relative contribution of both state- and action-related variables (Fig. 

5D, Extended Data Fig. 6C) to the overall prediction was similar for DLS units in the 

two cohorts. This suggests an across-the-board reduction in encoding capacity rather than a 

qualitative change in the kinematic representation, consistent with removal of motor cortical 

inputs causing single neurons in DLS to become more variable.

Whatever the cause of this neural variability, if the DLS plays an essential role in controlling 

the details of the learned behavior, its population activity should reflect action-related 

kinematics as well with and without motor cortex. To probe this, we decoded instantaneous 

forelimb and head velocity from the spiking activity of DLS units in motor cortex-lesioned 

animals (Fig. 5E–F). Decoding accuracy was similar to intact animals across a range of 

ensemble sizes (Fig. 5F), consistent with DLS having similar amounts of information about 

the execution-level kinematic details of the behavior with and without motor cortex.

DLS is necessary for expert performance

While our neural recordings are highly suggestive of the DLS specifying execution-level 

details of the learned skills, the kinematic coding we observe could simply reflect 

sensorimotor input35,36 without contributing causally to the behavior. To directly test DLS’s 

causal contributions to the specification and execution of the learned skills, we lesioned 

it bilaterally in expert animals (Methods; Fig. 6A, Extended Data Fig. 1B, n=7 rats). For 

comparison, we lesioned the DMS (Fig. 6A, Extended Data Fig. 1B, n=5 rats), whose 

neurons are markedly less correlated with the animals’ movements (Fig. 4), in a separate 

cohort. To control for the surgery procedure, we also performed control injections into the 

DLS in another group of animals (Fig. 6A, n=5 rats).

We found that DLS lesions drastically impaired the animals’ performance. Although rats 

were still actively engaged in the task, they generated fewer lever-presses (Extended Data 

Fig. 7) and their IPIs decreased relative to pre-lesion and became, on average, far more 

variable (Fig. 6A, Extended Data Fig. 7). This, in turn, led to a significant drop in the 

fraction of ‘successful’ trials, defined here as the IPI being within 20% of the target (700 

ms, Fig. 6B). Notably, post-lesion performance and engagement were indistinguishable from 

early stages of learning (Fig. 6A, Extended Data Fig. 7), and did not recover to pre-lesion 

levels even after extended additional training (Extended Data Fig. 7), suggesting that DLS 

is also essential for (re)learning the task. In contrast, lesions of the DMS did not affect 

performance beyond the surgery-related effects we saw after control injections (Figs. 6A–B, 

Extended Data Fig. 7).
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In addition to mastering the prescribed IPI target (700 ms), animals in our task learn to 

not press the lever after unsuccessful trials for at least 1.2 seconds (the inter-trial interval, 

ITI) – a requirement for initiating a new trial (Fig. 1E). As animals learn the structure of 

the task, they develop separate strategies for timing the IPI and ITI intervals (Figs. 6A,C), 

as evidenced by distinct peaks in the overall distribution of times between lever-presses 

(Fig. 6C). After DLS lesions, however, the mean ITI duration was not only reduced (Figs. 

6A–B, Extended Data Fig. 7), but the distinction between IPIs and ITIs was completely lost 

(Figs. 6C–D). Interestingly, the temporal structure of the animals’ lever-pressing behavior 

reverted to what is seen in early stages of training (Figs. 6C–D). Thus, in contrast to DMS 

lesioned and control animals, DLS lesioned animals could neither adhere to the previously 

acquired task structure nor relearn the distinction between the different task intervals (Fig. 6, 

Extended Data Fig. 7).

It has been proposed that motor deficits in striatum-related disorders, like Parkinson’s 

disease (PD), are not caused by loss of striatal function but rather by altered dynamics in 

striatum leading to aberrant BG output50,51. In support of this idea, lesions of the GPi, one 

of the main BG output nuclei, have proven an effective treatment for dyskinesias in PD50,51. 

This raises the question of whether impairments observed after DLS lesions are due to loss 

of instructive DLS activity, or, alternatively, to aberrant BG output that disrupts task-related 

activity in downstream control areas50,51. To distinguish between these possibilities, we 

lesioned the GPi (also called the entopeduncular nucleus), in an additional group of animals 

(Extended Data Fig. 8A, n=5 rats). This manipulation affected task performance in a similar 

way to DLS lesions (Extended Data Fig. 8A–D). Taken together, these results show that the 

sensorimotor BG are required for producing the motor skills we train.

DLS lesions disrupt execution of the learned skills

While performance impairments after DLS lesions suggest that its activity is indeed causal 

to the control of the behaviors we train, DLS’s specific function remains unclear. On the 

one hand, performance could suffer from changes to the speed or amplitude of the learned 

movement patterns – deficits consistent with the DLS controlling the overall ‘vigor’ of 

the actions3,51. On the other hand, it could be due to an inability to generate the learned 

movement patterns altogether, an outcome that would support our hypothesis that the BG 

specify the learned kinematic structure of acquired skills by acting on motor controllers in 

downstream circuits20,52,53. To arbitrate between these possibilities, we used video-based 

behavioral tracking41,42 to compare the detailed kinematics of task-associated movement 

patterns before and after bilateral DLS and DMS lesions (see Methods).

In line with our analyses of performance metrics, learned movement patterns were faithfully 

reproduced after DMS lesions, suggesting that the associative arm of the BG does not 

contribute meaningfully to the execution of the acquired motor skills. (Fig. 7B,D,F). In 

contrast, task-related movement patterns of DLS-lesioned rats changed dramatically (Fig. 

7A, Supplementary Video 2). While still fairly stereotyped, none of the post-lesion trials 

resembled the pre-lesion behavior (Fig. 7A,E, Supplementary Video 2). Instead of the highly 

idiosyncratic task-specific movement patterns characteristic of expert animals, the behaviors 
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expressed after DLS lesions were surprisingly similar across our cohort of rats and mostly 

consisted of repetitive lever-pressing (Fig. 7C, Supplementary Video 2).

A possible explanation for this lesion-induced change could be that animals default to 

behaviors that are less vigorous and energetically demanding24. However, we did not 

observe a significant difference in movement vigor (average and peak speeds of lever-press 

movements) after DLS lesion (Extended Data Fig. 9A).

DLS lesions cause a reversion to a species-typical behavior

To better understand the nature of the post-lesion deficits, we analyzed the forelimb 

movement trajectories associated with individual lever-presses. In expert animals, these 

are highly idiosyncratic and distinct for the first and second lever-press in a sequence 

(Fig. 8A,B). Following DLS lesions, however, the forelimb trajectories of all lever-press 

movements, both across first and second presses (Fig. 8A, Supplementary Video 2) and 

across animals, were very similar (Fig. 8B, Supplementary Video 2) – a dramatic change 

from before the lesions (Fig. 8A,B).

This, together with the fact that performance decreased to levels seen early in training (Fig. 

6, Extended Data Fig. 8A), led us to speculate that the DLS lesioned animals revert to a 

BG-independent species-typical lever-pressing strategy, perhaps produced by control circuits 

in the brainstem54.

If rats indeed have an innate and favored means of pressing the lever, we argued that they 

would use it early in training as a substrate for the trial-and-error learning process that 

follows. To probe this, we compared the forelimb trajectories associated with lever-presses 

early in learning and after DLS lesions for a subset of animals (Fig. 8C, Supplementary 

Video 2). We found the movements to be very similar across all animals (Fig. 8C, Extended 

Data Figure 9B, Supplementary Video 2), further supporting the notion that animals revert to 

species-typical lever-pressing after DLS lesions.

This result could also be seen to support a role for the BG in selecting the learned behavior, 

which itself is stored and generated in downstream control circuits. Since DLS lesions 

would interfere with this putative selection process, animals might ‘default’ onto a more 

instinctual, species-typical lever-pressing behavior. We believe this ‘selection’ model is not 

a plausible explanation for several reasons. First, DLS activity during our task did not 

show the hallmarks of action selection (e.g. prominent phasic activity at action boundaries) 

(Fig. 2D–E, Extended Data Figs. 3,4)5,7,45,47,48. Second, we observed a complete loss of 

the learned behavior after DLS lesions (Figs. 7E, 8) instead of changes in its expression 

frequency predicted by a selection model39,55. To probe this idea further, we also examined 

animals with small DLS lesions (<25% of DLS, Extended Data Fig. 10A, n=3 rats) 

which we had excluded from prior analysis (Methods). While their task performance was 

significantly impaired, they performed better than animals with large lesions (Extended Data 

Fig. 10B). If the DLS selects the learned motor pattern over a ‘default’ innate one, this 

superior performance should manifest as an increased frequency with which the learned 

behavior is selected. However, analyzing the task-related movements of animals with small 

DLS lesions revealed that they neither expressed the repetitive species-typical behavior nor 
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their pre-lesion learned one (Extended Data Fig. 10C–I). Rather, their movement kinematics 

were altered in idiosyncratic ways, a result far more compatible with the DLS specifying 

execution-level details of the learned behaviors than with it simply selecting a downstream 

motor module.

Discussion

We set out to probe whether and how the BG contribute to the execution of task-specific 

learned movement patterns. We found that neurons in the sensorimotor striatum represent 

the kinematic details of learned movement patterns (Figs. 3–4), representations that are not 

contingent on input from motor cortex (Fig. 5) and that reflect a causal role for the BG in the 

generation of the acquired skills (Figs. 6–8).

The BG’s diverse contributions to learned behaviors

These results inform a longstanding debate concerning BG’s role in the generation of 

learned behavior. The debate has centered on two dominant models – ‘action selection’ (Fig. 

1B) and ‘vigor modulation’ (Fig. 1C) – that have often been pitted against each other. Our 

discovery of a ‘control’ function for the BG could be seen as yet another theory (Fig. 1D) 

to fuel the debate and further muddy the picture of what the BG do. Yet, we do not view 

these theories as incompatible or antagonistic, but rather as examples of a more general role 

for the BG in learning and enacting state-action policies. Through such a unifying lens, the 

‘competing’ theories of BG function simply reflect different types of state-action policies, 

the particulars of which depend on the learning and control challenges posed by a given task.

If an animal is rewarded for producing a species-typical behavior in a particular context, the 

BG can learn to map context-specific inputs (e.g. a cue) to an output that helps ‘activate’ the 

right control module in downstream circuits (‘action selection’). Indeed, neural recordings 

in animals trained to produce repetitive sequences of species-typical actions, such as lever-

pressing or locomotion, show BG activity bracketing the rewarded behavior5,7,25, with a 

subset of neurons showing elevated activity throughout. However, these neurons do not 

seem to distinguish between individual actions in the sequence or reflect their detailed 

kinematics25,43,45. Furthermore, silencing the sensorimotor BG in these tasks does not erase 

the trained behavior from the subject’s repertoire, but rather alters the probability with which 

it is selected39,55. This is consistent with the BG biasing the initiation and termination 

of over-trained behavioral ‘chunks’4,43, the details of which are elaborated in downstream 

circuits25.

If, on the other hand, the task requires animals to modulate the speed and/or amplitude 

of movements or action sequences already in their repertoire9,10,24 (Fig. 1C), BG output 

can produce a signal that acts on the appropriate control circuits to modify the gain of the 

behavior. In these cases, average activity in the striatum tends to be more uniform across 

the behavior, with levels of activity reflecting the vigor of the ongoing action9,10 but not its 

detailed kinematics10. Furthermore, while manipulations of BG activity during such tasks 

can interfere with the adaptive regulation of movement vigor they tend to leave the behaviors 

otherwise intact9,10,24.
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In contrast to the aforementioned paradigms, our timed lever-pressing task challenges 

animals to adaptively change the kinematic structure and sequential order of their 

movements13 (Fig. 1E–F). Thus, what starts out as a BG-independent lever-pressing 

behavior (Fig. 8C) is shaped, through trial-and-error learning, into an idiosyncratic 

continuous movement pattern that is unique to an animal and kinematically distinct from the 

initial behavior (Figs. 1F, 7–8, Supplementary Video 2). DLS activity continuously encodes 

this new and task-specific kinematic structure (Figs. 3–4) and is essential for generating 

it (Figs. 7–8). These findings are qualitatively distinct from how the DLS represents and 

contributes to species-typical behaviors5,7,9,10,25,39,45 and strongly support a model in which 

the DLS specifies the detailed kinematics of learned motor skills.

Challenging our animals in new ways revealed that the BG can do more than bias the 

expression and/or the vigor of existing actions. When the task demands it, the sensorimotor 

arm of the BG (including the DLS) becomes engaged and learns to specify and control the 

fine-grained kinematic structure of the learned skills. These task-related differences in BG 

function highlight the importance of carefully considering the specific challenges inherent to 

a particular task and interpreting the results with those in mind.

BG can function independently of motor cortex

Given that cortex is widely assumed to be the principal source of state information to 

the BG15,17,18 and that – for learned behaviors at least – motor cortex is thought to be 

a main target of BG’s output35,56, our finding that BG’s contribution to skilled motor 

output survives motor cortical lesions inspires a re-evaluation of how cortical and subcortical 

circuits interact during skilled behaviors.

For example, how do the BG implement state-action policies underlying skilled behavior 

in the absence of motor cortex? The necessary state information could, in principle, be 

provided by other cortical areas, such as somatosensory cortex36, yet a recent study suggests 

that thalamic inputs may play the more critical role in expert animals57. In terms of 

influencing motor output, the BG most likely act on motor circuits in the brainstem and 

midbrain2,52. These projections, from thalamus to striatum and from the BG to subcortical 

motor control circuits, are part of a phylogenetically older ‘BG-subcortical pathway’20.

This pathway is often thought of as a ‘hardwired’ circuit that functions to produce innate 

behavioral sequences, such as grooming20,58,59. Not unlike the behaviors we train, grooming 

comprises complex and fairly stereotypical movements that aren’t contingent on motor 

cortex58. DLS activity reflects the structure of such grooming sequences48 and focal lesions 

of the DLS disrupt their stereotypy59. Similar inferences about the role of the striatum 

in organizing action sequences have been drawn from a recent study probing exploratory 

behaviors in freely behaving mice47.

However, there are important differences in how the DLS encodes naturally expressed 

action sequences and how it represents the motor skills we train in our task. In grooming 

and exploratory behaviors, DLS activity preferentially represents the transition between 

individual motor elements47,48. In contrast, we see a more continuous representation that 

reflects the time-varying kinematics of the ongoing movements. Similarly, DLS lesions 
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disrupt the syntax of innate action sequences without affecting the kinematics of the 

individual elements47,59. Though they are less frequent, ‘normal’ grooming sequences can 

be seen even after DLS lesions59, suggesting that while the BG may bias transitions between 

the different motor elements, they do not specify their kinematics. In contrast, DLS lesions 

completely abolished the movement patterns acquired in our task, replacing them with 

species-typical lever-press movements similar to those expressed early in learning (Figs. 

7,8). Thus, while learned behaviors are likely to recruit the same control circuits and 

mechanisms that generate robust species-typical sequential behaviors60, they utilize them in 

more flexible and elaborate ways. Rather than merely selecting innate action elements, our 

results suggest that the BG provide an instructive signal to the brainstem and midbrain motor 

controllers, allowing their interactions to adapt, shape, and sequence innate motor elements 

into novel task-specific motor skills.

Comparing the mammalian and avian BG’s role in skilled behavior

Reassuringly, our discovery of a ‘control’ function for the BG mirrors what is seen in 

songbirds, where the song-specialized BG (Area X) affect the birds’ vocal output in 

spatiotemporally very specific ways29,30. In juvenile birds, Area X controls much of the 

microstructure of the bird’s vocalizations31; in adults, it contributes temporally specific 

error-correcting modifications29. This, similar to our findings, suggests an instructive role 

for the BG in specifying the precise kinematic structure of motor output16 (Fig. 1D).

Although BG output may play a similar role in the control of skilled behaviors across 

species, our study demonstrates that its role in the generalist mammal may be more 

pronounced than in the highly specialized songbird. Indeed, the behavioral specifications 

Area X provides, however fine-grained, are ultimately transferred to a dedicated (and 

plastic) song-control circuit downstream of the BG30,31. In contrast, the mammalian brain 

may not have the luxury of reprogramming lower-level control modules for every new 

task since this could interfere with other behaviors contingent on these same circuits. This 

may explain why the output of the large and plastic mammalian BG remains necessary for 

specifying the detailed structure of well-learned motor skills, especially when these rely on 

more ‘hardwired’ subcortical control circuits.

In summary, our study probed the function of the BG through the lens of a learned behavior 

with rich and idiosyncratic kinematic structure. Our results extend our understanding of their 

function to include an important role in specifying the execution-level kinematic details of 

learned movement patterns. The specifics of how this function is implemented in subcortical 

neural circuitry remain to be elucidated.

Methods

Animals

The care and experimental manipulation of all animals were reviewed and approved by the 

Harvard Institutional Animal Care and Use Committee. Experimental subjects were female 

Long Evans rats (n=9 for striatal recordings and n=28 for lesion experiments; Charles 

River Laboratories; RRID: RGD_2308852). Rats were 3–10 months old at the start of 
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training.10,11,52 Because the behavioral effects of our circuit manipulations could not be pre-

specified before the experiments, we chose sample sizes that would allow for identification 

of outliers and for validation of experimental reproducibility. Animals were excluded from 

experiments post-hoc if the lesions were found to be outside of the intended target area or 

affected additional brain structures (see Lesion section). The investigators were not blinded 

to allocation during experiments and outcome assessment, unless otherwise stated.

Statistical tests applied to neural data were non-parametric and did not assume normality. 

To the extent feasible, these tests employed resampling methods such as randomization and 

bootstrapping. Statistical tests used in behavioral analyses used parametric statistical tests 

such as ANOVA and the Student’s t-test (see Supplementary Information for more details). 

The data distribution for these analyses was assumed to be normal but this was not formally 

tested. All statistical tests were two-sided. All statistics on behavioral data pooled across 

animals is reported in the figures as mean ± SEM. Multiple comparison tests were used 

where justified. The null hypothesis for all applied tests was that the means of the probed 

metric were equal between the compared groups/time-points, i.e. that there are no systematic 

or consistent differences between the compared groups/time-points.

No statistical methods were used to pre-determine the number of subjects in our study but 

our sample sizes are similar to those reported in previous publications9,10,45. The subjects 

were randomly allocated to experimental groups. Data collection and analysis were not 

performed blind to the conditions of the experiments, except for histological verification of 

lesion location and sizes. Units with very low firing rates (<0.25 Hz) during task execution 

were excluded from many analyses (see for ‘Criteria for unit selection’ for details). Animals 

were excluded from experiments post-hoc if the lesions were found to be outside of the 

intended target area or affected additional brain structures (see “Quantification of lesion 

size” for details).

Behavioral Training

Rats were trained in a lever-pressing task as previously described13. Water-restricted 

animals were rewarded with water for pressing a lever twice within performance-dependent 

boundaries around a prescribed interval between the presses (IPI = 700 ms). In addition, 

animals had to withhold pressing for 1.2 s after unsuccessful trials before initiating a new 

trial (inter-trial interval: ITI). All animals were trained in a fully automated home-cage 

training system61. Animals were only used for manipulations or recordings after they had 

reached our learning criteria (mean IPI = 700 ms ± 10%; CV of IPI distribution < 0.25 for a 

3000-trial sliding window) and a median ITI > 1.2 s, indicating that they had learned the task 

structure and stabilized their performance.

Electrophysiological recordings

Microdrive construction, surgical and recording procedures were as previously described34. 

Once rats reached asymptotic (expert) performance on the timed lever-pressing task, 

we performed surgery to implant microdrives containing arrays of 16 tetrodes into the 

dorsolateral striatum (n=3 rats) or dorsomedial striatum (n=3). In an additional cohort of 

animals (n=3), we performed recordings in the dorsolateral striatum after motor cortex 
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lesion. For this, we performed two-stage bilateral lesions of motor cortex as previously 

described13 (see lesion surgeries below). During the surgery for the second motor cortex 

lesion, we also implanted the microdrive in the dorsolateral striatum. After making a 4 to 

5 mm diameter craniotomy and removing the dura, we slowly lowered the 16-tetrode array 

to a depth of 4.5 mm. Electrodes were targeted to a location 0.5 mm anterior and 4 mm 

lateral to bregma for dorsolateral striatum and 0.3 mm anterior and 2 mm lateral to bregma 

for dorsomedial striatum and were implanted unilaterally in the striatum contralateral to the 

dominant forelimb in the lever-pressing task.

After 7 days of recovery, rats were returned to their home-cages, which had been outfitted 

with an electrophysiology recording extension. The cage was placed in an acoustic isolation 

box, and training on the task resumed. Behavioral data was acquired using high-speed 

imaging (at 120 Hz) from 2 cameras (Flea 3, Point Grey) placed on either side of the training 

cage. Neural and behavioral data was recorded continuously (24/7) for 12–16 weeks. We 

occasionally advanced the recording microdrive by distances ranging from ~160–320 μm 

approximately 2–4 times over the recording lifetime.

At the end of the experiments, animals were anesthetized and anodal current (30 μA for 30 

s) passed through select electrodes to create micro-lesions at the electrode tips. Terminal 

locations for the stimulated electrodes were subsequently determined as described in the 

Histology section.

Lesion surgeries

Bilateral striatal lesions, targeting either the motor cortex-recipient part (DLS) or the non-

motor cortex input receiving part (DMS), and GPi/EP lesions were performed in two stages. 

Once animals had reached asymptotic task performance (see Behavioral Training), the first 

striatal lesion was performed contralateral to the paw used for the first lever-press in the 

acquired behavior. After lesion and recovery (10 days), animals returned to training until 

their performance stabilized (at least 14 days after lesion). Subsequently, the ipsilateral 

striatal lesion was performed and after recovery animals were returned to training.

Lesions were performed as previously described13. Anesthetized animals (2% isoflurane in 

carbogen) were placed in a stereotactic frame. After incision of the skin along the midline 

and cleaning of the skull, Bregma was located and small craniotomies for injections were 

performed above the targeted brain areas. A thin glass pipette connected to a micro-injector 

(Nanoject II, Drummond) was lowered to the injection site and an excitotoxin was injected. 

For striatal lesions quinolinic acid (0.09M in PBS (pH=7.3), Sigma-Aldrich) was injected 

in 4.9 nl increments to a total volume of 175 nl per injection site, at a speed of < 0.1 

ul/min. For GPi lesions ibotenic acid (1% in 0.1M NaOH, Abcam) was injected in 4.9 nl 

increments to a total volume of 400 nl per injection site. After injection, the glass pipette 

was retracted by 100 μm and remained there for at least 3 min before further retraction to 

allow for diffusion and to prevent backflow of the drug. After all injections were performed, 

the skin was sutured and animals received painkillers (Buprenorphine, Patterson Veterinary). 

Animals recovered for 10 days before being reintroduced to training.

For injection coordinates, according to Paxinos62, see Supplementary Table 1.
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Motor cortex lesions for the cohort of animals in which we performed electrophysiological 

recordings in the dorsolateral striatum were performed analogous to striatal lesions and as 

previously described13. We injected ibotenic acid (1% in 0.1M NaOH, Abcam) in 4.9 nl 

increments to a total volume of 92 nl per injection site.

For injection coordinates, according to Paxinos62, see Supplementary Table 2.

Control surgeries

To test for nonspecific effects of surgery and striatal injections on behavior, we performed 

1-stage control surgeries according to the procedure described above, bilaterally injecting 

different non-toxic solutions, either fluorophore-coated latex microspheres (red excitation 

[exc.] = 530 nm, emission [em.] = 590 nm and green exc. = 460 nm, em. = 505 nm) referred 

to as retrobeads (Lumafluor)63,64 or Adeno-associated viruses (AAVs) for non-specific 

expression of GFP (Penn Vector Core) into DLS. This allowed for post-hoc evaluation of 

the targeting of our control injections. Animals were returned to training after 10 days of 

recovery.

To determine which regions of the striatum receive input from either motor cortex or 

prefrontal cortex (PFC) we injected AAVs for non-specific expression of GFP (Penn Vector 

Core) in either motor cortex or PFC. Injections were done in 9.2 nl increments, evenly 

spaced while slowly retracting the injection-pipette for a total volume of 300 nl per site and 

1.5 μl per hemisphere for motor cortex, and 500 nl per site and 1 μl per hemisphere for PFC. 

After surgery, we allowed for at least 4 weeks of viral expression before histological analysis 

(see Histology).

For injection coordinates, according to Paxinos62, see Supplementary Table 3.

Histology

At the end of the experiment, animals were euthanized (100 mg/kg ketamine and 10 mg/kg 

xylazine), transcardially perfused with 4% paraformaldehyde (PFA), and their brains were 

harvested for histology to confirm lesion size and location, or electrode implantation site. 

The brains were sectioned into 80 or 100 μm slices using a vibratome (Leica), mounted and 

stained with cresyl violet to reconstruct either lesion size or electrode location. In a subset 

of animals, immunofluorescence staining was performed instead of cresyl violet staining. 

After slicing, sections were blocked for 1 h at room temperature in blocking solution (1% 

BSA, 0.3% TritonX), stained overnight at 4°C with primary antibodies for NeuN (to stain 

for neuronal cell bodies; 1:500 in blocking solution; Millipore MAB377) and GFAP (to 

stain for glia cells; 1:500 in blocking solution; Sigma G9269) and then with appropriate 

fluorescently-coupled secondary antibodies (1:1000 in blocking solution; anti-Mouse, Alexa 

Fluor 647 conjugate, A-21236 and anti-Rabbit, Alexa Fluor 488 conjugate, A-11034, both 

Thermo Fischer Scientific) for 2 h at room temperature.

To determine the extent of motor cortex and PFC projections in the striatum, 

immunofluorescent staining was performed in the same way, but for NeuN (see above) 

and GFP (1:1000 in blocking solution, Thermo Fischer A111122 and 1:1000 anti-Rabbit, 
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Alexa Fluor 488 conjugate, A-11034, Thermo Fischer Scientific) to amplify the signal from 

the viral GFP expression.

Images of whole brain slices were acquired at 10x magnification with either a VS210 Whole 

Slide Scanner (Olympus) or an Axioscan Slide Scanner (Zeiss).

Quantification of lesion size

To determine the extent and location of striatal lesions, we analyzed several sections (4–

6) spanning the anterior-posterior extent of the striatum, allowing for an estimate of the 

overall lesion size. Lesion boundaries were determined throughout the striatum and adjacent 

areas, blind to the animals’ identity and performance. Boundaries were marked manually 

based on differences in cell morphology and density (loss of larger neuronal somata and 

accumulation of smaller glial cells). The extent of the striatum was determined based on 

the Paxinos Rat Brain Atlas62, using anatomical landmarks (external capsule, ventricle) and 

cell morphology and density. Additionally, we marked the GPe in posterior sections, since 

mistargeted injections may lead to its partial lesioning, disrupting the output both of the DLS 

and DMS.

In addition to overall lesion size, we also determined the lesioned fractions of the DLS/

DMS. Since DLS and DMS are not clearly defined, we made use of their differential 

input patterns from motor cortex and PFC, respectively, to estimate their extent. We 

used viral expression of GFP in motor cortex or PFC to visualize their respective axonal 

projection patterns in the striatum (n=3 each; see Control surgeries). Areas with axonal 

labeling in all animals were considered as motor cortex-input/PFC-input receiving. We used 

these identified boundaries of DLS and DMS to determine the lesioned fractions in the 

experimental animals. Based on these estimates we excluded animals with lesions affecting 

less than 50% of the respective target area or more than 10% of the non-targeted part of 

the striatum (n=4 rats) from the main analysis. Of these animals, we used n=3 rats with 

small DLS lesions (<25% of DLS lesioned) for a comparison to the effects of large DLS 

lesions (Extended Data Fig. 10). In addition, we excluded animals with lesions affecting a 

significant part of the GPe (>30%; n=3 rats).

Kinematic Tracking

To determine the movement trajectories of the animals’ forelimbs and head in our task, we 

made use of recently developed machine learning approaches, using deep neuronal networks 

to determine the position of specific body parts in individual video frames41,42.

Task-videos were acquired at 120 Hz by cameras pointing at the lever from either side and 

saved as snippets ranging from 1 s before the first lever-press to 2 s after the last lever-press 

in a trial. We randomly selected about 500 frames from each perspective, balanced across 

pre- and post-manipulation conditions and manually labeled the position of the forelimbs 

and head in each frame, using custom-written Matlab code. This data was used to train 

individual neural networks for each animal.

We trained ResNet-50 networks that were pretrained on ImageNet, using DeeperCut (https://

github.com/eldar/pose-tensorflow)41 in Python 2.7 (Python Software Foundation). Training 
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was performed using default parameters (1 million training iterations, 3 color channels, with 

pairwise terms, without intermediate supervision). Data augmentation was performed during 

training by rescaling images from a range of 85% to 115%.

The trained neural network was then used to predict the position of the body parts in all 

frames in all trials. The position of a body part in a frame is given by the peak of the 

network’s output score-map. Frames in which the body part was occluded were identified as 

having a low peak score. For both the training and the subsequent predictions we used GPUs 

in the Harvard Research Computing cluster.

Because the two forelimbs could often be confused for each other in the neural network’s 

predictions from a single frame, we took advantage of correlations across time to constrain 

the predictions. For each forelimb, the predicted score-maps for all frames in a single trial 

video were passed through a Kalman filter using the Python toolbox filterpy. Specifically, 

a constant-acceleration Kalman smoother was used which assumes that the forelimb on 

adjacent frames will have the same acceleration (zero jerk) plus a small noise term. Only 

frames with a weak neural-network prediction score were adjusted by the Kalman filter; 

otherwise the original neural-network prediction was used as the forelimb position.

The tracking accuracy was validated post-hoc by visual inspection of at least 50 predicted 

trajectories per animals. Initial training with lower frame numbers often led to inaccurate 

tracking results. After settling on a number of 500 training frames, none of the trained 

networks was discarded.

Missing frames in the trajectories, e.g. due to temporary occlusions of the forelimbs, 

were linearly interpolated for a maximum of 5 consecutive frames. Trajectories with 

longer occlusions were discarded. One animal was excluded from trajectory analysis, since 

the quality of the recorded videos was not sufficient for high-quality tracking due to 

inappropriate lighting conditions and long-lasting occlusions of the forelimbs

Neural data analysis

Spike-sorting—We used our custom-designed spike-sorting algorithm Fast Automated 

Spike Tracker (FAST)34 to parse the raw neural data collected over weeks and months of 

continuous recordings, and isolate the spiking activity of populations of single units in an 

efficient and high-throughput manner. Extensive details and validation of our spike-sorting 

procedure can be found in a previous publication from our group34.

Unit type identification

Isolated units were classified as putative spiny projection neuron (SPN) or fast spiking 

interneuron (FSI) types on the basis of their spike-waveform features – including peak width 

(full width at half maximum) and time-interval between spike peak and valley – as well as 

their mean firing rates, averaged over a unit’s recording lifetime65,66. Units with peak width 

>150 μs, peak-valley interval >500 μs and mean firing rate ≤10 Hz were classified as SPNs 

(76.1%), while units with peak width ≤150 μs, peak-valley interval ≤500 μs and mean firing 

rate ≥0.1 Hz were classified as FSIs (15.5%). Leftover units that did not meet any of these 

criteria (8.5%) were excluded from all neural analyses.
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Criteria for unit selection

For all analyses, the sole criterion for unit inclusion was whether its average firing rate 

during the “trial” period equaled or exceeded a threshold value of 0.25 Hz. The duration 

of the trial period depended on the analysis. For PETH analyses, it ranged from 1 s prior 

to the 1st lever-press until 2 s following this event. For the encoding and decoding analyses 

which depended on accurate movement tracking, the trial period was narrower and ranged 

from 0.2 s prior to the 1st lever-press until 0.2 s after the 2nd lever-press. The reason 

for this narrower window was that we were able to reliably track rats’ movements only 

during this period since the field of view of our high-speed cameras was restricted to the 

vicinity of the lever. Of the total striatal units (SPNs and FSIs) recorded in the DLS, DMS 

and motor-cortex lesioned DLS, these criteria eliminated 31%, 49% and 36%, respectively, 

from the trial-averaged PETH analyses, and 47%, 56% and 46%, respectively, from the 

trial-by-trial encoding analyses.

Peri-event time histograms (PETHs)

We computed peri-event time histograms (PETHs) of unit firing rates, aligned to the first 

lever-press of the timed lever-pressing task. Even though our spike-sorting algorithm tracks 

units across multiple days, we only considered trials recorded on a single day, in order to 

avoid confounds due to possible day-by-day instability in single unit representations. For 

each unit, we chose the recording day with the most behavioral trials, pooling from up to 

2 consecutive behavioral sessions. To restrict our analysis of neural activity to periods of 

stereotyped behavior, we selected only rewarded trials that followed previously rewarded 

trials (to control for the rat’s starting position), and these trials’ inter-press intervals had to 

be within 20% of the target inter-press interval of 0.7 s (to ensure movement stereotypy). 

To account for the remaining variation in the length of the behavior, we linearly warped all 

spike-times that occurred between the 1st and 2nd lever-press by a factor: IPIt/0.7 where IPIt

is the inter-press interval (in seconds) on that trial67.

PETHs were computed separately for each sequence mode (see section ‘Identification of 

sequence modes’), for the period ranging from 1 s prior to until 2 s following the 1st 

lever-press of the behavior. We discretized the warped spike train in 25 ms bins to yield 

time-varying spike counts, which were then summed over trials to yield the PETH. To 

compute the Z-scored PETH, we used a bootstrap approach to generate 1e6 “shuffled” 

PETH bins by sampling, with replacement, from the pool of all spike counts (pooled over 

all times in the learned behavior and across all trials) used to compute the observed PETH. 

We computed the mean and standard deviation of these shuffled PETH bins and used these 

to Z-score the observed PETH. We smoothed the Z-scored PETH with a Gaussian kernel (σ 
= 25 ms) before plotting, or before calculating its maximum or minimum value which we 

termed the Z modulation of that unit.

Trial-by-trial correlations of neural activity

To calculate trial-by-trial correlations for a given neuron, we binned all spikes recorded 

within the period 1 s prior to and 2 s following the 1st lever-press into 25 ms bins on 

individual trials and then smoothed the spike-count vector with a Gaussian kernel (σ = 

25 ms). We then calculated the correlation coefficients between the smoothed spike-count 
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vectors for pairs of trials and averaged these measurements over all pairwise combinations 

of trials in which the unit spiked at least once.

Sparseness index

We calculated the sparseness index as previously described68. We first calculated PETHs (25 

ms bins) for each unit during the period ranging from 1 s prior to and 2 s following the 1st 

lever-press, as described above. Histograms were divided by the total number of spikes to 

yield the spiking probability within each bin (pi). We then computed the sparseness index 

(SI)69 as:

SI = 1 +
∑i = 1

N pilog pi

log N

where N indicates the number of bins in the histogram. This index is 1 (maximal sparseness) 

when the activity is restricted to a single time bin and 0 if the spikes are evenly distributed 

across the time bins.

Testing non-uniformity of population activity

To determine whether the average activity of DLS SPN units was non-uniformly distributed 

over the learned behavior, we averaged Z-scored PETHs (calculated at 25 ms resolution) 

over the population of recorded units and then measured the non-uniformity of this 

population-averaged activity by calculating its standard deviation over time. The standard 

deviation of the population-averaged activity was computed separately for each sequence 

mode (see section ‘Identification of sequence modes’), then averaged across all modes 

identified for a given rat and finally across DLS recordings (n=3 rats). We only considered 

sequence modes for which we had recorded at least 50 units. The population averaged 

standard deviation was compared to the distribution expected by chance if the PETHs of 

individual neurons were jittered in time relative to each other (n=1e4 permutations).

Processing of kinematic data for neural data analysis

We smoothed the raw trajectories (position traces) of markers on the forelimbs and the head 

(see section Kinematic Tracking) using a cubic smoothing spline (function csaps in Matlab, 

smoothing parameter = 0.1). To account for possible movement in camera position from 

one session to the next, we subtracted from each trace the average position of that marker 

at the time of the 1st lever press in that session. Following this, we computed the velocity 

and acceleration of each marker in both horizontal and vertical dimensions. All kinematic 

features were down sampled by averaging to match the timescale at which neural data was 

binned (25 ms bins).

Statistics of event (lever-press, start/stop, choice-point) aligned average activity

To determine whether average SPN or FSI activity in the DLS was significantly modulated 

at the time of either the 1st or 2nd lever-presses, or at the start or stop (as quantified by 

analysis of trial-to-trial variability in movement trajectories), or at choice-points within the 

behavior, we considered the population averaged Z-scored activity (in 25 ms bins) within a 
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±0.2 s window centered on the event of interest. We chose the range of this analysis window 

based on the specifics of our motor task and established knowledge of the timescales over 

which BG activity is reported to influence movement. Due to the rapid succession of salient 

events in the interval pressing task such as the 1st and 2nd lever presses (0.7 s interval) 

and reward delivery (typically within 0.3–0.4 s following the end of the skilled behavior), 

we restricted the window size to ±0.2 s such that an activity peak, if it did exist, could be 

unambiguously linked to a particular task-related event. This window is also larger than the 

timescale over which many prior studies observe average striatal activity peaking relative to 

the start or end of a learned behavior5,25,70.

The average activity across SPNs and FSIs was calculated separately for each mode (see 

section Identification of sequence modes) for which we recorded at least 50 units, then 

averaged across modes within each rat and then across all rats in which we recorded from 

DLS. In case of choice-points, we also averaged together the Z-scored activity of the pair 

of modes being compared. This average trace was compared to a distribution of average Z-

scored activity expected by chance if the events occurred at random times within the skilled 

behavior (ranging from 1 s before and 2 s after the 1st lever-press, n=1e4 permutations). The 

confidence interval was adjusted for multiple comparisons (for the n=5 bins within 0.1 s of 

the event) using the Šidák correction.

Correlations between measures of neural activity and behavior

Correlations between measures of neural activity, such as population-averaged activity or 

distance between ensemble representations, and measures of behavior, such as average 

forelimb speed or discriminability between trajectories of pairs of sequence modes, were 

obtained by computing the correlation coefficient for every sequence mode (or pairs of 

modes) and then averaging these across all modes (or mode pairs) for every rat, and finally 

across all rats (n=3 DLS rats). To determine if these correlation coefficients were statistically 

significant, we compared the observed average correlation coefficient to a null distribution 

generated by randomly jittering the temporal relationship between the measure of neural 

activity and the measure of behavior at the level of individual sequence modes / mode pairs 

(n=1e4).

Quantifying distance between ensemble neural representations of sequence mode pairs

For this analysis, we considered only pairs of modes in which we had recorded at least 50 

units in total. Note that different units in this dataset could be recorded on different days – 

i.e. they constituted a pseudo-population. For each unit and sequence mode, we computed 

1st lever press aligned PETHs of trial-averaged spike counts (in 25 ms bins) ranging over 

a period 0.3 s prior to and 1 s after the 1st lever-press. Before averaging, we square-root 

transformed the spike counts to stabilize their variance and prevent high firing rate units 

from dominating the analysis. As before, we only considered trials whose IPIs were within 

20% of the target and we linearly time-warped spikes between the two lever-presses to 

account for residual variation in the IPI. We then performed principal component analysis 

(PCA) on the matrices of population activity (neurons versus time) concatenated across the 

two modes along the time dimension. We restricted our analysis to the subspace defined 

by the principal components that accounted for at least 90% of the total variance (6 ± 
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2 PCs, n=3 rats, mean ± SD). We computed the Euclidean distance between the neural 

trajectories corresponding to each mode as a function of time, Z-scored with respect to their 

time-averaged trial-by-trial variation (quantified using neural trajectories computed from 

randomly split halves of the trials within each mode).

Encoding analysis

We used generalized linear models (GLMs) to determine the extent to which the 

instantaneous activity of striatal units could be predicted from the kinematics of the 

movement patterns. For each unit, we measured spike counts (25 ms bins) within the trial 

period ranging from 0.2 s before the 1st lever-press until 0.2 s after the 2nd lever-press. 

When fitting the GLMs, we used an exponential link function and modeled the observed 

spike counts with a Poisson distribution. 75% of the trials in each session were used 

for training the GLM, and the remaining 25% were held out for testing. We used elastic-

net regularization (90% L1, 10% L2) to prevent over-fitting. The optimal value of the 

regularization penalty parameter (λ) was determined for each neuron separately using 5-fold 

cross-validation within the training set of trials. GLMs were fit to data using the software 

package “Glmnet for Matlab (2013)” (http://www.stanford.edu/~hastie/glmnet_matlab/)71.

Kinematic regressors for the encoding models included the horizontal and vertical 

components of the position, velocity and acceleration of contra- and ipsilateral forelimbs 

and the head. Since the kinematic variables were sampled at 120 Hz, 3 consecutive samples 

of these measurements were used to predict the co-incident 25 ms spike count bin. Goodness 

of fit for the encoding model was measured by a log-likelihood based measure termed the 

pseudo-R2 72.

pR2 = 1 − ℒsat − ℒmodel
ℒsat − ℒnull

Here ℒmodel is the log-likelihood of observing spike-count data given the GLM’s predictions, 

ℒsat is the log-likelihood of a “saturated” model that has as many parameters as observations, 

and ℒnull is the log-likelihood of the data given a “null” model that only fits the average spike 

count in the dataset. Since our spike sorting method allows for tracking the same units across 

multiple session, we fit separate encoding models in each session and then, for each unit, 

reported the average encoding pseudo-R2 across sessions.

Decoding analysis

Following previous work73, we used a feedforward neural network with two hidden layers 

to predict the time-varying vertical and horizontal velocity components of the forelimbs 

and the head, sampled at 25 ms intervals, using 75 ms of co-incident spiking activity 

(binned into 25 ms bins) from ensembles of striatal neurons (including both SPNs and 

FSIs). The network comprised two fully connected hidden layers of 400 units each with 

a rectified linear activation function. While training the network we used dropout on the 

two hidden layers (dropout probability = 0.05). We used the Adam optimizer to train the 

neural network. We measured the accuracy of decoding using 4-fold cross-validation. For 
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this analysis, we only considered behavioral sessions in which there were at least 10 (or 

15) simultaneously recorded units that fired at least 1 spike in total across all trials within 

the trial period (from 0.2 s before and 0.2 s after the 1st lever-press and 2nd lever-press, 

respectively). In these sessions, we fit decoding models using the activity of up to n=20 

randomly sampled ensembles of size 5 to 10, as well as 15 striatal units. In each session, 

only trials corresponding to the most frequent sequence mode were considered for this 

analysis. Decoding accuracy measured in each ensemble was then averaged across all 20 

ensembles of the same size and then averaged across the relevant sessions in each rat’s 

dataset.

Behavioral data analysis

Identification of sequence modes—Close examination of task-related kinematics 

revealed that individual rats often solve the interval pressing task using multiple unique, 

but related, movement patterns that we refer to as “sequence modes”. To systematically 

identify these sequence modes, we performed unsupervised clustering of all task-associated 

kinematics recorded from individual rats. This kinematic data included horizontal and 

vertical components of position, velocity, and acceleration of both forelimbs, recorded 

during a period ranging from 0.2 s preceding the first lever-press to 0.2 s following the 

second lever-press, for all trials in which the rat performed at least two lever-presses within 

1.2 s. To account for trial-to-trial variability in inter-press intervals, we linearly time-warped 

(i.e. resampled) kinematic data recorded between the two lever-presses to a target interval 

of 0.7 s. The variance of each kinematic feature (position, velocity, or acceleration) was 

standardized by dividing by its standard deviation estimated across all time-points and 

horizontal and vertical components for both forelimbs. After pre-processing, we performed 

2-dimensional t-distributed stochastic neighborhood embedding (t-SNE)74 of the kinematic 

data associated with each trial (all kinematic features and components, forelimbs and time-

points). We then applied density peak clustering75 to identify putative sequence modes. In 

the final step, we manually corrected for over-clustering by the density peak algorithm by 

examining the task-aligned kinematic traces for each cluster and combining those which had 

very similar kinematics that were judged to lie along a continuum.

Identifying the start and end of the skilled behavior—This analysis was restricted 

to trials whose inter-press intervals were within 20% of the target inter-press interval of 0.7 

s and was performed separately for each sequence mode. To account for residual trial-to-trial 

variability in the inter-press interval, we resampled the traces between the 1st and 2nd lever-

press to have the same number of samples (i.e. the trajectories were linearly time-warped). 

To quantify trial-to-trial variability in these movement trajectories, we calculated the average 

standard deviation of task-aligned horizontal and vertical position traces of both forelimbs 

and the head, as a function of time within the skilled behavior. We then identified the times 

at which the standard deviation of the trajectories exceeded a threshold value either before 

the 1st lever-press (“start”) or after the 2nd lever-press (“stop”). The threshold was set to 

twice the average standard deviation of the trajectory between the two lever-presses.

Identifying choice-points from movement trajectories of sequence mode pairs
—The continuous and stereotyped nature of the skilled behaviors we train, makes their 
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segmentation difficult using previously established criteria such as ‘pauses’ in motor 

output76,77 or a reduction in stereotypy78. Instead, we identified choice-points by comparing 

pairs of sequence modes. We quantified the time-varying separation between the movement 

trajectories recorded during execution of distinct modes (see section Identification of 

sequence modes) as the cross-validated (10-fold) accuracy of a quadratic discriminant model 

trained on the instantaneous positions of the forelimbs and the head. For this analysis, we 

only considered trials whose IPIs were within 20% of the target (0.7 s) IPI. We linearly time-

warped the movement trajectories to account for residual trial-to-trial variation in the IPI. 

We restricted this analysis to the same sessions in which we performed the accompanying 

neural analysis (see below). We designated the time at which the discriminability (classifier 

accuracy) first exceeded 70% as the “choice-point” between the two modes and the time of 

peak classifier accuracy as the time of “peak discriminability”.

Performance metrics

Performance metrics were determined based on the timing of lever-presses in our task. The 

inter-press interval (IPI) was determined as the time between the 1st and 2nd press in a trial, 

the inter-trial interval (ITI) as the time between the last press in an unsuccessful trial and the 

next occurring lever-press. The CV was calculated across 25 trials and the moving average 

was low pass-filtered with a 50-trial boxcar filter. The fraction of trials close to the target IPI 

was calculated using the same windows and filters. Trials were labeled as close to the target 

if they were in the IPI range of 700 ms ± 20%.

Calculation of JS divergence

As a measure for the dissimilarity of the IPI and ITI distributions in individual animals, 

we calculated the Jensen-Shannon (JS) divergence of the distributions. The JS divergence 

is a symmetric derivative of the Kullback-Leibler divergence (KLD). We calculated the JS 

divergence (JSD) as:

JSD IPI ITI = 1/2KLDIPI IPI M + 1/2KLDITI ITI M

where M = IPI + ITI /2

KLDIPI = ∑ IPI log IPI
M

KLDITI = ∑ ITI log ITI
M

Trajectory analysis for behavioral experiments

We compared the trajectories of both forelimbs of all tracked animals before and after DLS 

or DMS lesions (Fig. 7,8). We focused on the position of the forelimbs in the vertical 

dimension, in which the movements in our task are more pronounced than in the horizontal 

dimension. To be able to compare the stereotypy of the trajectories for the learned movement 

patterns, we sub-selected trials which were successful and rewarded, and which occurred 
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after unrewarded trials. This allowed us to compare trials with the same start and end 

positions. This is necessary, since animals move down to, and back up from, a reward port 

underneath the lever after successful trials13. We further sub-selected trials only from the 

most common, dominant sequence mode (see Identification of Sequence Modes above), so 

that trajectories were comparable. We plotted the average of the selected trajectories before 

and after the manipulation, calculated the SEM (Fig. 7A,B) and plotted a projection of 

all selected trials (Fig. 7A,B). To calculate the correlations between the individual trials, 

we linearly time-warped the trajectories to the same duration by interpolating between 

the lever-presses. Since the lever-presses themselves have stereotyped trajectories, largely 

independent of the trial duration, we interpolated only the trajectories from 100 ms after the 

first to 100 ms before the second lever-press to preserve the shape of the presses. From these 

time-warped trajectories we calculated trial-to-trial correlations separately for both forelimbs 

and averaged the correlations for each trial (Fig. 7A,B). These correlations were averaged 

for the individual conditions within animals and those means were averaged across animals 

and plotted with the SEM (Fig. 7A,B).

To compare the trajectories across animals, we linearly time-warped all trajectories and 

normalized their amplitude to their individual maximum amplitude (Fig. 7C,D). To calculate 

the correlations across animals, we first calculated the average pair-wise correlations across 

all trials within individual animals, and then averaged these across the individual animals 

(Fig. 7C,D).

The distributions of correlation coefficients between individual forelimb trajectories before 

and after lesions (Fig. 7E,F, Extended Data Fig. 10G) were calculated as follows: The 

pair-wise correlations between individual trajectories before or after the lesion and the 

mean trajectory of each of the animal’s pre-lesion sequence modes were calculated (same 

trial selection criteria as for other analyses: IPI range 700 ± 200 ms, rewarded trials after 

unrewarded trials). For each trial, the highest correlation to a pre-lesion mode was selected 

to determine the probability distribution of the maximum pre-pre and pre-post correlations. 

Shown in the figures are the average probability distributions across animals.

We separately compared the lever-press movements, defined as the trajectory in the range 

of ±150 ms around a detected lever-press (Fig. 8A) and performed the same analysis as 

for the full trajectories in Fig. 7. To compare the lever-presses across animals before and 

after DLS lesion, we normalized the trajectories to their individual maximum amplitude and 

plotted their overlay (Fig. 8B). As above, we calculated the average pairwise correlations for 

all lever-presses in all trials of all animals across the conditions (pre- and post-lesion) and 

averaged them first by lever-press (i.e. animal 1 press 1, animal 1 press 2, etc.) and then 

by condition (Fig. 8B). To compare the lever-presses after the lesion to the presses early in 

training, we additionally sub-selected trials as described above from the first 2000 trials of 

training. And performed the same analysis (Fig. 8C; Extended Data Fig. 9B). These results 

were also compared to the lever-presses of animals with small DLS lesions (Extended Data 

Fig. 10H,I).
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Extended Data

Extended Data Fig. 1. Striatal subdivisions, recording sites and extent of lesions.
A. Virally-mediated fluorescent labeling of axons originating in either motor cortex (MC) or 

prefrontal cortex (PFC) to determine the outlines of the MC-recipient dorsolateral striatum 

(DLS) and of the PFC-recipient dorsomedial striatum (DMS), respectively. Based on the 

distinct projection patterns we estimated the extent of the DLS and DMS, respectively, along 

the anterior-posterior axis of the striatum.

B. DLS/DMS outlines, recording sites and lesion extents. The outlines of the DLS and 

DMS determined in A along the anterior-posterior axis are indicated by red and green 

lines, respectively. Locations of recording electrode implantation sites in DLS and DMS are 

marked with arrowheads. Numbers indicate individual animals. For some animals several 

recording locations were determined, due to individual tetrode bundles of our recording 

arrays spreading apart during implantation. The extents of MC lesions in three recorded 

animals are marked in different shades of grey for individual animals and the dotted lines 

indicate the area in MC targeted for lesions. The extents of the DLS and DMS lesions are 

marked as shaded red and green areas, respectively. Lighter areas indicate the extent of 

the largest lesion across animals at a given anterior-posterior position, darker areas indicate 

the extent of the smallest lesion. Blue dotted lines indicate the target area for PFC tracing 

injections.
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Extended Data Fig. 2. Classification of striatal units and statistics of task-aligned FSI activity in 
DLS and DMS.
A. Classification of single units recorded in striatum into putative spiny projection neurons 

(SPNs, maroon) and fast spiking interneurons (FSIs, blue). (Left) Spike waveform features 

such as peak-width and peak-to-valley interval, as well as average firing rates were used in 

combination to classify units as SPNs or FSIs. Grey dots indicate unclassified units (8.5%) 

that were excluded from further analysis. (Right) Population averaged spike waveforms for 

putative SPNs (top) and FSIs (bottom). Data presented as mean ± SD across units. All 

waveforms were rescaled to unit amplitude prior to averaging.

B. Average firing rate during the trial-period (p=3e-3), maximum modulation of Z-scored 

firing rate during the trial-period (p=0.01), sparseness index (p=0.13) and average trial-to-

trial correlation of task-aligned spiking (p=1e-3) in putative FSIs recorded in the DLS 

(red, n=171) and DMS (green, n=138). Bars and error-bars represent mean and SEM, 
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respectively, across units. P-values measure the two-sided probability that two datasets have 

the same mean and are computed by bootstrapping difference in means (n=1e4 bootstraps).

Extended Data Fig. 3. Population-averaged activity in the DLS at the beginning and end of the 
skilled behavior.
A. Average Z-scored activity of putative SPN (top) or FSI (bottom) populations recorded 

in the DLS around the time of the 1st (solid line) and 2nd (dashed lined) lever-presses (n=3 

rats). Grey shading represents 95% confidence interval, corrected for multiple comparisons, 

of the distribution of Z-scored activity expected by chance if lever-presses occurred at 

random times (n=1e4 randomizations).

B. Trial-to-trial variability of an example rat’s task-aligned movement trajectories. (Top) 

Trajectories of the rat’s forelimb (vertical component) in an example session corresponding 

to a specific sequence mode (see Extended Data Fig. 4). Each line denotes a trial. (Bottom) 

Normalized trial-by-trial variability (see Methods) of movement trajectories of the rat’s 
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forelimbs and head. Times at which this measure exceeds a value of 2 (dashed lines) are 

designated the start or stop time of the motor sequence. On average, starts occurred 0.42 

± 0.46 s prior to the first lever-press and stops occurred at 0.35 ± 0.02 s after the second 

lever-press (mean ± SD, n=3 rats).

C. Average Z-scored activity for populations of SPNs (top) or FSIs (bottom) recorded in the 

DLS around the start (solid line) and stop (dashed lined) of the skilled behavior (n=3 rats). 

Grey shading represents 95% confidence interval, corrected for multiple comparisons, of the 

distribution of Z-scored activity expected by chance if start/stop occurred at random times 

(n=1e4 randomizations).

D. Average Z-scored activity for populations of SPNs recorded in the DLS of three example 

rats during execution of a representative sequence mode (red lines). Superimposed are 

trial-averaged forelimb speed profiles (black, averaged over both contra- and ipsi-lateral 

forelimbs), from the same individuals.

E. Non-uniformity of the average Z-scored activity profiles of DLS SPNs, measured by their 

standard deviation, was averaged across sequence modes and then across rats (red line, n=3 

rats). Grey histogram shows distribution expected by chance if SPNs showed independent 

activity (generated by randomly jittering the Z-scored PETHs of individual units prior to 

averaging, n=1e4 randomizations), and p-value quantifies the two-sided probability that this 

explains the data.

H. Correlation coefficient between average speed profiles and average activity of DLS SPN 

populations (both shown in panel D), averaged across sequences modes and then across rats 

(red line, n=3 rats). Grey histogram shows the statistic distribution under the null hypothesis 

(no relationship between the variables) computed by randomization (n=1e4 permutations), 

and p-value quantifies the two-sided probability that this explains the data.

Dhawale et al. Page 28

Nat Neurosci. Author manuscript; available in PMC 2024 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 4. Identification of sequence modes and population-averaged activity in the 
DLS at choice points between modes.
A. Two-dimensional t-distributed stochastic neighborhood embedding (tSNE) of task-

aligned kinematic trajectories for a subset of trials from an example rat. Each point 

represents a trial and colors represent distinct modes identified by a semi-automated 

unsupervised clustering algorithm (see Methods). On average we identified 5 ± 2 modes 

(mean ± SD) per rat (n=9 rats).

B. Task-aligned horizontal and vertical components of the position and velocity of a single 

forelimb averaged across trials within each sequence mode shown in panel A. Shading 

represents standard deviation across trials.

C. Task-aligned kinematic variables including forelimb position (left) and velocity (right) 

for a random subset of 20,000 trials performed by the example rat, sorted by sequence mode 

(indicated by colors, as in panels A-B). Kinematics have been time-warped to account for 

trial-by-trial variability in the interval between the 1st and 2nd lever-presses.
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D. Pairwise correlations between the kinematics of the trials shown in C, sorted by sequence 

mode.

E. Average Z-scored activity for populations of SPNs (top) or FSIs (bottom) recorded in 

the DLS around the time of choice-points (left) or at peak discriminability between the 

trajectories corresponding to pairs of modes (right). Z-scored activity is averaged across 

units and modes in a mode pair, then across all mode-pairs in each rat and then across 

rats (n=3 rats). Grey shading represents 95% confidence interval, corrected for multiple 

comparisons, of the distribution of Z-scored activity expected by chance if these events 

occurred at random times.

Extended Data Fig. 5. Comparison between encoding of different kinematic features by striatal 
neurons.
A. Scatter plots comparing the goodness of fit, measured using the pseudo-R2 (see 

Methods), between encoding models that use a combination of all kinematic variables 
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(position, velocity and acceleration) versus those that use only position (left), velocity 

(middle) or acceleration (right) variables to predict the activity of DLS SPNs (top) and 

FSIs (bottom). p<1e-4 for all SPN kinematic comparisons and p=4e-3, <1e-4, <1e-4 

for FSI kinematic encoding comparisons to position, velocity and acceleration variables, 

respectively. P-values are computed by bootstrapping paired difference in means (n=1e4 

bootstraps) and quantify the likelihood that two distributions have the same mean.

B. Goodness of fit, measured by pseudo-R2 (see Methods), for encoding models that use 

detailed kinematics (position, velocity and acceleration) of all tracked effectors and those 

that only use kinematics of the contralateral forelimb, ipsilateral forelimb, both forelimbs or 

the head to predict spiking activity of putative SPNs (left) and FSIs (right) in the DLS (red, 

n=492 SPNs and 164 FSIs from 3 rats) and DMS (green, n=213 SPNs and 123 FSIs from 

3 rats). Boxes denote 1st, 2nd (median) and 3rd quartiles, while whiskers show the 5th and 

95th percentile of the distribution. p<1e-4 for all encoding comparisons between SPNs in 

DLS and DMS, and p=1e-4, 6e-3, 0.49, 4e-3, 1e-4 for comparisons between FSI encoding 

in the DLS and DMS of all effectors, contra-, ipsi-, both forelimbs and head, respectively. 

P-values measure the probability that the two datasets have the same mean and are estimated 

by bootstrapping difference in means (n=1e4 bootstraps).
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Extended Data Fig. 6. Characterization of task performance and DLS representations after 
motor cortex lesion.
A. Comparison of performance measures before and after motor cortex (MC) lesion (n=3). 

IPI: Inter-Press Interval, CV of IPI: Coefficient of Variation of the IPI, IPI close to target: 

Fraction of trials close to target IPI (700 ms ± 20%), ITI: Inter-Trial Interval. Pre-Lesion: 

last 2,000 trials before lesion, post-Lesion: first 2,000 trials after lesion. Dots indicate 

individual animals and bars show means ± SEM. For statistical details see Supplementary 

Table 7.

B. (Top) Comparing task-aligned activity statistics, including average firing rate during the 

trial-period (p=0.09), maximum modulation of Z-scored firing rate during the trial-period 

(p<1e-4), sparseness index (p=0.02) and average trial-to-trial correlation of task-aligned 

spiking (p<1e-4), between putative SPNs recorded in the intact (red, n=683, replotted from 

Fig. 2C) and MC-lesioned (blue, n=379) DLS. (Bottom) Average firing rate during the 

trial-period (p=0.01), maximum modulation of Z-scored firing rate during the trial-period 
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(p=5e-4), sparseness index (p=0.08) and average trial-to-trial correlation of task-aligned 

spiking (p=0.05) in putative FSIs recorded in the intact (red, n=171, replotted from Extended 

Data Fig. 2B) and MC-lesioned (blue, n=153) DLS. Bars and error-bars represent mean and 

SEM, respectively, across units. P-values measure the probability that two datasets have the 

same mean and are computed by bootstrapping difference in means (n=1e4 bootstraps).

C. Goodness of fit, measured by pseudo-R2, for encoding models that use kinematics of all 

tracked effectors and those that only use kinematics of the contralateral forelimb, ipsilateral 

forelimb, both forelimbs or the head to predict spiking activity of putative SPNs (left) and 

FSIs (right) in the DLS of intact (red, n=492 SPNs and 164 FSIs from 3 rats, replotted 

from Extended Data Fig. 5B) and MC-lesioned (blue, n=279 SPNs and 169 FSIs from 3 

rats) animals. Boxes denote 1st, 2nd (median) and 3rd quartiles, while whiskers show the 

5th and 95th percentile of the distribution. p<1e-4, =4e-3, <1e-4, <1e-4 for comparisons 

between SPN encoding in the intact and MC-lesioned DLS of all effectors, contra-, ipsi-, 

both forelimbs and head, respectively. p=0.04, 0.66, 0.04, 0.04 for comparisons between FSI 

encoding in the intact and MC-lesioned DLS of all effectors, contra-, ipsi-, both forelimbs 

and head, respectively. P-values measure the probability that the two datasets have the same 

mean and are estimated by bootstrapping difference in means (n=1e4 bootstraps).

Extended Data Fig. 7. Task performance after DLS, but not DMS, lesions is impaired, resembles 
performance early in training, and does not recover.
Comparison of performance measures at different stages before and after lesions of DLS 

(n=7 rats), DMS (n=5), and control injections (n=5). IPI: Inter-Press Interval, CV of IPI: 

Coefficient of Variation of the IPI, IPI close to target: Fraction of trials close to target IPI 

(700 ms ± 20%), ITI: Inter-Trial Interval. Early: first 2,000 trials in training, pre-lesion: 

last 2,000 trials before lesion, post-lesion: first 2,000 trials after lesion, late: trials 10,000 

to 12,000 after lesion. Presses/session: Average number of lever-presses per session. Early: 

first 10 sessions in training, pre-lesion: last 20 sessions before lesion, post-lesion: first 20 

sessions after lesion, late: sessions 50 to 70 after lesion. Dots indicate individual animals and 

bars show mean ± SEM. For statistical details see Supplementary Table 8. *p < 0.05, **p < 

0.01, ***p < 0.001.
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Extended Data Fig. 8. Lesions of the GPi/EP affect task performance similarly to DLS lesions.
A. Representative example of the effect of a GPi (EP) lesion on task performance. Left: 

Example histological image of a unilateral GPi lesion, showing the comparison between 

the lesioned and the intact GPi. Experimental animals underwent bilateral GPi lesions (see 

Methods). Right: IPIs and ITIs for an example animal early in training, before and after 

bilateral GPi lesion. Population data shown in panel B.

B. GPi lesions (n=5 rats) have long-lasting effects on various measures of performance (cf. 

Extended Data Fig. 7). DLS performance as shown in Extended Data Fig. 7, here shown for 

comparison. Dots indicate individual animals and bars show mean ± SEM.

C. Left: Example distributions of IPI and ITI interval lengths early in training, and before 

and after GPi lesion.

D. JS Divergence of IPI and ITI distributions for all GPi-lesioned animals (n=5 rats). 

Dots indicate individual animals and bars show mean ± SEM. For statistical details see 

Supplementary Table 9. *p < 0.05, **p < 0.01.

Dhawale et al. Page 34

Nat Neurosci. Author manuscript; available in PMC 2024 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 9. DLS lesions do not affect lever-press vigor, but lead to regression to a 
common lever-pressing behavior.
A. Comparison of mean and peak lever-press speeds before and after DLS lesion (see Fig. 

8). Speeds were averaged over 1st and 2nd lever-presses. Dots indicate individual animals 

and bars show mean ± SEM. No significant differences were detected. For statistical details 

see Methods.

B. The comparison of 1st and 2nd lever-presses across animals early in training and after 

DLS lesion (see Fig. 8C) was extended to additional animals. The post-lesion lever-presses 

of the 2 DLS-lesioned animals which were not included in Fig. 8C (due to lack of 

trajectories for the early presses) were added. In addition, the trajectories of the early lever-

presses of 2 of the DMS-lesioned animals (shown in Fig. 7) were added. The remaining 

animals were re-plotted from Fig. 8C. (Column 1) Forelimb movement trajectories for 

the 1st and 2nd presses early in training (green) and after DLS lesion (red), overlaid for 

all tracked animals (early in training: DLS-lesioned animals n=4, DMS-lesioned animals 

n=2; post-lesion: DLS-lesioned animals n=6). (Column 2) Pairwise correlations between 

press trajectories of all animals early in training and after DLS lesion. Shown are average 

trial-to-trial correlations across individual presses (animal 1 press 1, animal 1 press 2, etc.). 

(Column 3) Averages of across animal correlations per condition. Shown are correlations 

between all presses early, all presses after DLS lesion and between all presses early and 

all presses after lesion (early-post). Mean ± SEM. For statistical details see Supplementary 

Table 10. ***p < 0.001.
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Extended Data Fig. 10. Small lesions of the DLS affect performance and movement kinematics 
but do not, in contrast to large DLS lesions, cause animals to revert to species-typical lever-
pressing behaviors.
A. Fraction of DLS lesioned. Red: Animals with large DLS lesions, included in Figs. 6–8. 

Yellow: Animals with small DLS lesions (excluded from prior analysis).

B. Average performance across animals (large DLS lesions n=7 rats; small DLS lesions n=3, 

Control n=5), normalized to pre-manipulation performance. Fraction of trials with IPIs close 

to target (700 ms ± 20%). Shading represents SEM. Partially replotted from Fig. 6B.

C. Comparison of average forelimb trajectories (vertical position) before and after small 

DLS lesions for all animals (from trials within a range of mean IPI ± 30 ms). The forelimb 

performing the 1st lever-press is regarded dominant (n=3 rats).

D. Forelimb vertical displacement in randomly selected trials (200 per animal) of all animals 

before and after small DLS lesions. Trials are sorted by IPI and normalized to minimum 
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and maximum displacement for each animal. Black lines mark the 1st, grey lines the 2nd 

lever-press.

E. Pairwise correlations between trials shown in D, averaged per animal.

F. Averages of correlations shown in E by condition (averages of all pre-to-pre, post-to-post 

and pre-to-post correlations). Mean ± SEM.

G. Distributions of correlation coefficients between individual forelimb trajectories before 

(blue) and after (black) small DLS lesion, and the animal’s pre-lesion modes (see Methods). 

Probability distributions were computed for each rat and then averaged (n=3). Fraction of 

trials with correlations >0.85 (Mean ± SEM): pre 0.53 ± 0.24, pre-post 0 ± 0.

H. Comparison of forelimb trajectories associated with 1st and 2nd lever-presses across 

animals with large and small DLS lesions. Pairwise correlations between press trajectories 

of animals early in training, of animals after large (replotted from Extended Data Fig. 9B) 

and of animals after small DLS lesions. Shown are average trial-to-trial correlations across 

individual presses (animal 1 press 1, animal 1 press 2, etc.) (n=6 rats early, n=6 large DLS 

lesions (partially overlapping, see Extended Data Fig. 9B), n=3 small DLS lesions).

I. Averages of across animal correlations for selected conditions. Left: correlations between 

all presses early (dark green dotted square in H) and all presses after large DLS lesions 

(dark red dotted square in H) as in Extended Data Fig. 9B. Right: correlations between all 

presses early and all presses after small DLS lesions (small-early; light green dotted square 

in H) and between all presses after large DLS lesions and all presses after small DLS lesions 

(small-post; light red dotted square in H). All comparisons show statistically significant 

differences with p<0.001, except the comparison small-early to small-post. Mean ± SEM. 

For statistical details see Supplementary Table 11.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
A hypothesized function for the BG in specifying the detailed kinematics of learned motor 

skills.

A. Simple schematic of the BG and how they influence motor output by modulating 

downstream control circuits. The BG receive state information about environment, ongoing 

actions and internal states from cortical and thalamic inputs. Whether and how BG influence 

motor output will depend on the learned mapping (orange box) between inputs carrying state 

information and outputs influencing control circuits in midbrain/brainstem and motor cortex 

(blue, cyan and light blue boxes represent actions specified in downstream control modules). 

These maps, or ‘policies’, are acquired through a process of reinforcement learning and 

encode relationships between states and actions that predict reward.

B. Action selection: BG learn to map states to actions and generate output patterns that help 

initiate a particular action (a1 or a2) (pre-specified in downstream circuits, blue boxes) in 

each state (red/purple arrows).

C. Vigor modulation: Similarly, BG can learn to generate output that alters the gain (g), 

or ‘vigor’, of an action specified in downstream circuits in a state-dependent manner. Two 

scenarios are sketched out for low (gL) and high (gH) gain respectively.

D. Kinematic control: A putative ‘control’ function for the BG tested in this study. This 

model assumes that BG output can influence motor output in spatiotemporally precise ways 

by interacting with downstream controllers, and that BG can learn and store ‘kinematic 

policies’ that specify novel adaptive movements and actions. This model requires the BG 

to associate incoming state information and outgoing activity patterns on a much finer 

timescale and with more specificity than assumed for prior models.

E. Behavioral paradigm to probe the BG’s role in motor skill execution13. Rats are rewarded 

for pressing a lever twice with a specific target interval (inter-press interval - IPI). After 
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unsuccessful trials, animals can only initiate a new trial after refraining from pressing the 

lever for a given inter-trial interval (ITI).

F. Over the course of training, animals develop stereotyped movement patterns to solve the 

task. These learned behaviors are preserved in largely unaltered form after motor cortex 

lesions13. Shown are forelimb trajectories in the vertical dimension from four randomly 

selected trials in each condition.
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Figure 2: 
Units in DLS, but not DMS, are strongly modulated throughout the execution of a learned 

motor skill.

A. Simplified schematic of the motor circuits relevant to this study. The BG can affect the 

execution of learned behaviors by influencing motor cortex through the cortico-BG-thalamo-

cortical loop, and/or via direct projections to brainstem and midbrain motor centers. The 

dorsolateral (DLS) and dorsomedial (DMS) striatum define the sensorimotor and associative 

arms of the BG, respectively.

B. (Top) Schematic of multi-tetrode array recordings from DLS (left) and DMS (right) 

in behaving animals. (Bottom) Spike rasters of 7 simultaneously recorded putative spiny 

projection neurons (SPNs) and 2 putative fast spiking interneurons (FSIs) from the DLS and 

DMS, shown over 10 trials, aligned to the 1st lever-press. Grey shaded region indicates mean 

inter-press period for the example session.

C. Comparing task-aligned activity statistics, including average firing rate during the 

trial-period (p=0.19), maximum modulation of Z-scored firing rate during the trial-period 

(p<1e-4), sparseness index (p<1e-4) and average trial-to-trial correlation of task-aligned 

spiking (p<1e-4), between putative SPNs recorded in the DLS (red, n=683) and DMS 
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(green, n=283) of 3 rats. Bars and error-bars represent mean and SEM, respectively, across 

units. P-values measure the two-sided probability that two datasets have the same mean and 

are computed by bootstrapping difference in means (n=1e4).

D. Peri-event time histograms (PETHs) of Z-scored activity of SPNs recorded in DLS (left) 

and DMS (right) of example rats during execution of a representative sequence mode (see 

also Extended Data Fig. 4). Units have been sorted by the time of their peak activity, in a 

cross-validated manner. The sorting index, calculated from PETHs from half the trials for 

each unit, was used to sort PETHs from the remaining trials. Triangles indicate time of the 

second lever-press.

E. Z-scored firing rates averaged over populations of SPNs (top) and FSIs (bottom) recorded 

in DLS (left, red) and DMS (right, green). Thin, shaded dashed lines represent averages 

across sequence modes for individual rats, and thick, solid line indicates the grand average 

across rats (n=3 per group). Colored shading represents SEM across rats. Grey shaded 

region represents the target inter-press interval.
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Figure 3: 
Ensemble unit activity in the DLS reflects continuous kinematics of the learned movement 

patterns.

A. Comparison between trial-aligned trajectories of the forelimbs (ipsi- and contra-lateral 

to the recording site) and head of an example rat when performing two distinct sequence 

modes (color-coded, see Methods and Extended Data Fig. 4). Data is presented as mean ± 

SD across trials. Symbols indicate time of the 1st (circle) and 2nd (triangle) lever-presses 

and times at which the trajectories of distinct modes are first (square, see panel C) and 

most (star) discriminable. Inset shows zoom-in of representative single-trial trajectories 

(contralateral forelimb, vertical component) around the time of the choice-point.

B. Mode-specific movement trajectories of the example rat projected into the subspace 

defined by the top three principal components of trajectories of both forelimbs and the head. 

Symbols as in A. Arrows indicate flow of time.
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C. (Black line) Discriminability between the movement trajectories of the two modes shown 

in panels A-B by a quadratic classifier over time in the trial. (Red line) Distance between 

mode-specific neural trajectories over time in the trial, Z-scored by the time-varying distance 

between trajectories computed within the same mode (see Methods). Symbols as in A.

D. Trial-averaged activity patterns (PETHs) of 9 example DLS units during execution of the 

two sequence modes. Symbols as in A.

E. Mode-specific neural trajectories of ensemble unit activity in the DLS of an example rat 

plotted in the subspace defined by the top three principal components. Symbols as in A.

F. Average Z-scored distances between neural trajectories corresponding to pairs of modes 

at different points in the behavior. Lines indicate neural distances averaged across all 

mode-pairs within each rat and then across rats (n=3). Grey shading represents the 95% 

confidence interval, corrected for multiple comparisons, of the distribution of Z-scored 

distances expected by chance if these events occurred at random times within the learned 

behavior (n=1e4 permutations).

G. Correlation coefficient (indicated by red dashed line) between trajectory discriminability 

of pairs of sequence modes and the Z-scored neural distance between their ensemble 

representations in the DLS (see panel C), averaged across mode-pairs and then across 

rats (n=3). Grey histogram shows the statistic distribution under the null hypothesis (no 

relationship between the variables) computed by randomization (n=1e4 permutations), and 

p-value quantifies the two-sided probability that this explains the data.
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Figure 4: 
DLS, but not DMS, encodes detailed task-related movement kinematics.

A-B. Trial-by-trial covariation of movement kinematics and neural activity during a 

representative behavioral session for an example rat. Time of 2nd lever-press is indicated 

by black triangles and red lines.

A. Trajectories of the contralateral (top) and ipsilateral (middle) forelimbs and the head 

(bottom) on individual trials in the session. Trials are sorted by the inter-press interval and 

belong to the same sequence mode.

B. Raster plots showing spiking activity of 3 example SPNs (middle) and FSIs (right) on the 

same trials.

C-D. Encoding analyses.

C. Schematic of encoding analysis. Generalized linear models were used to measure the 

degree to which kinematic state-related (position) and action-related (velocity, acceleration) 
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variables (top) predict spiking of individual striatal units (bottom left). Light and dark 

shades indicate horizontal and vertical components of movement, respectively. (Bottom 

right) Observed (left) and predicted (right) spike counts of an example SPN. Arrows indicate 

example trial shown on the bottom left.

D. Goodness of fit, measured by pseudo-R2 (see Methods), for encoding models that use 

detailed kinematic information about position (Pos.), velocity (Vel.) and acceleration (Acc.), 

or a combination of these (All Kin.), to predict the time-varying, trial-by-trial activity of 

putative SPNs (top) and FSIs (bottom) recorded in DLS (red, n=492 SPNs and 164 FSIs 

from 3 rats) and DMS (green, n=213 SPNs and 123 FSIs from 3 rats). Boxes denote 1st, 2nd 

(median) and 3rd quartiles, while whiskers show the 5th and 95th percentile of the pseudo-R2 

distributions. p<1e-4 for all encoding comparisons between SPNs in DLS and DMS, and 

p=1e-4, 2.4e-3, 1.8e-3, 0.016 between FSI encoding in the DLS and DMS of all kinematic, 

position, velocity and acceleration variables, respectively. Pseudo-R2 is measured on trials 

(25%) not used for training the encoding models. p-values measure the probability that the 

two datasets have the same mean and are estimated by bootstrapping difference in means 

(n=1e4 bootstraps).

E-G. Decoding analyses.

E. Schematic of decoding analysis. A feedforward neural network predicted the velocity 

(horizontal and vertical components) of the forelimbs and head from the spiking activity of 

groups of simultaneously recorded striatal units.

F. (Top) Vertical component of velocity of the contralateral forelimb for all trials in a 

representative session for a DLS- (left) and DMS-implanted (right) rat. Trials are aligned to 

the first lever-press and sorted by the inter-press interval. (Bottom) Cross-validated velocity 

predictions of the neural network decoder.

G. Cross-validated accuracy with which instantaneous velocity can be decoded by a neural 

network decoder from spiking activity of groups of DLS (red) or DMS (green) units, 

quantified by the fraction of variance in the observed velocity explained by the predictions 

(R2). Decoding accuracy was averaged over all sessions within individual rats (thin lines) 

and then across rats in each group (thick lines; n=3 each). For a subset of rats with 

larger recording yields, we extended the analysis to groups of 15 units (n=2 each). Data is 

presented as mean ± SEM across rats. p=0.03 for comparison between decoding of velocity 

from 10 units in DLS and DMS rats by 2-sided Kolmogorov-Smirnov test.
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Figure 5: 
Kinematic encoding in DLS is independent of motor cortex.

A. (Top) Schematic shows recording targeting the DLS of a motor cortex (MC)-lesioned 

rat. (Bottom) Trial-aligned spike rasters for 7 simultaneously recorded putative SPNs and 

2 putative FSIs over 10 trials. Grey shaded region indicates mean inter-press period for the 

example session.

B. Z-scored PETHs for SPNs recorded in the DLS of an example MC-lesioned rat. Units are 

sorted by the time of peak activity, in a cross-validated manner. Triangles indicate time of 

the 2nd lever-press.

C. Z-scored firing rates averaged over all SPNs (top) and FSIs (bottom) recorded in the DLS 

of MC-lesioned rats. Thin, shaded dashed lines represent averages across sequence modes 

for individual rats, and thick, solid line indicates the grand average across rats (n=3). Blue 

shading represents SEM across rats. Grey shaded region represents the target inter-press 

interval.

D. Accuracy of encoding models that use detailed kinematic information about position, 

velocity and acceleration, or a combination of all these, to predict the time-varying, trial-by-

trial activity of putative SPNs (top) and FSIs (bottom) recorded from the DLS in intact (red, 

n=492 SPNs and 164 FSIs from 3 rats, replotted from Fig. 4D) and MC-lesioned rats (blue, 

n=279 SPNs and 169 FSIs from 3 rats). Boxes denote 1st, 2nd (median) and 3rd quartiles, 
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while whiskers show the 5th and 95th percentile of the pseudo-R2 distributions. p<1e-4 for 

all encoding comparisons between SPNs in intact and MC-lesioned rats, and p=9e-4, 0.28, 

0.09, 0.01 for comparisons between FSI encoding in intact and MC-lesioned DLS for all 

kinematic, position, velocity and acceleration variables, respectively. p-values measure the 

probability that the two datasets have the same mean and are estimated by bootstrapping 

difference in means (n=1e4 bootstraps).

E. (Top) Vertical component of velocity of the contralateral forelimb for all trials in a 

representative session for a DLS-implanted MC-lesioned rat. Trials are aligned to the 1st 

lever-press and sorted by the inter-press interval. (Bottom) Cross-validated predictions of 

instantaneous velocity by a neural network decoder from the co-incident activity of all 

simultaneously recorded units.

F. Cross-validated accuracy (fraction of explained variance: R2) with which instantaneous 

velocity can be decoded by a neural network decoder from groups of DLS units recorded 

in intact (red, replotted from Fig. 4G) and MC-lesioned (blue) rats. Decoding accuracy was 

averaged over all sessions within individual rats (thin lines) and then across rats in each 

group (thick lines; n=3 each). For a subset of rats with larger recording yields, we extended 

the analysis to groups of 15 units (n=2 intact and n=3 MC-lesioned rats). Data is presented 

as mean ± SEM across rats. p=0.97 for comparison between decoding of velocity from 10 

DLS units in intact and MC-lesioned rats by 2-sided Kolmogorov-Smirnov test.

Dhawale et al. Page 50

Nat Neurosci. Author manuscript; available in PMC 2024 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 
Lesions of DLS, but not DMS, degrade the performance in our timed lever-pressing task.

A. Representative examples of performance in the timed lever-pressing task (see Fig. 1E) 

in animals subjected to different manipulations (DLS lesion, DMS lesion, DLS control 

injection). (Left) Histological images of the manipulations. (Right) Heatmaps of the 

probability distributions of IPIs and ITIs for the example animals early in training, and 

before and after the manipulations. Population data shown in panel B.

B. Average performance across animals (DLS n=7 rats; DMS n=5, Control n=5) for 

manipulations as in A, normalized to performance before the manipulation. (Left) Fraction 

of trials with IPIs close to the target (700 ms ± 20%). (Right) Fraction of trials with ITIs 

above the threshold of 1.2 s. Shading represents SEM.

C. Distributions of interval lengths between lever-presses for the animals shown in A early 

in training, and before and after the manipulations.

D. Dissimilarity between the IPI and ITI distributions across animals early in training, 

and before and after the manipulations. Shown is the Jensen-Shannon (JS) divergence as 

a measure of dissimilarity, with lower values indicating higher overlap between the two 

interval distributions. Dots represent individual animals (DLS n=7, DMS n=5, Control n=5), 

bars represent mean ± SEM. For statistical details see Supplementary Table 4. **P < 0.01, 

***P < 0.001.
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Figure 7: 
Lesions of DLS, but not DMS, lead to loss of idiosyncratic learned movement patterns and 

regression to lever-pressing behaviors common across animals.

A. Within animal comparison of forelimb trajectories associated with the task before and 

after DLS lesions. (Row 1) Average forelimb trajectories (vertical position) of an example 

rat before and after DLS lesion (calculated from trials within a range of mean IPI ± 30 ms). 

Black arrows indicate the 1st press, grey arrows the 2nd press. The forelimb performing the 

1st lever-press is regarded as dominant. (Row 2) Vertical forelimb displacement in individual 

trials before and after DLS lesion for both limbs, sorted by IPI and normalized to minimum 

and maximum displacement. Black lines mark the 1st, grey lines the 2nd press. (Row 3) 

Pairwise correlations of the forelimb trajectories in row 2 after linear time-warping of the 

trajectories to a common time-base (see Methods). (Row 4) Averages of within animal 

correlations as shown in row 3 across animals (n=6 rats) by condition (averages of all 
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pre-to-pre, post-to-post and pre-to-post correlations). Dots indicate individual animals, bars 

show mean ± SEM. For statistical details for all panels see Supplementary Table 5. *P < 

0.05, **P < 0.01.

B. Same as A, but for DMS lesions (n=5 rats).

C. Comparison of forelimb trajectories across animals before and after DLS lesion. (Row 

1) Comparison of average trajectories (as in A) of all animals before and after DLS lesion 

(n=6 rats, blue and red shades indicate individual animals). (Row 2) Forelimb displacement 

in randomly selected trials (80 per animal) of all animals before and after DLS lesion 

for dominant and non-dominant forelimbs, sorted by IPI and normalized to minimum and 

maximum displacement for each animal. Black lines mark the 1st lever-press, grey lines the 

2nd press. (Row 3) Pairwise correlations between the trials shown in row 2, averaged per 

animal. (Row 4) Averages of the correlations shown in row 3 by condition (averages of all 

pre-to-pre, post-to-post and pre-to-post correlations). Mean ± SEM. ***P < 0.001.

D. Similar to C, but for DMS lesions (n=5 rats).

E. Distributions of correlation coefficients between individual forelimb trajectories before 

(blue) and after (black) DLS lesion, and the animal’s pre-lesion modes (see Methods). 

Probability distributions were computed for each rat and then averaged (n=6). Fraction of 

trials with correlations >0.85 (Mean ± SEM): pre 0.58 ± 0.1, pre-post 0 ± 0.

F. Similar to E, but for DMS lesions (n=5 rats). Fraction of trials with correlations >0.85 

(Mean ± SEM): pre 0.51 ± 0.08, pre-post 0.53 ± 0.14.
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Figure 8: 
DLS lesions cause a loss of idiosyncratic learned lever-press movements and regression to 

movements common across animals and similar to presses early in learning.

A. Comparison of 1st and 2nd lever-presses within animals before and after DLS lesion. 

(Column 1) Average movement trajectories for the 1st and 2nd press before and after DLS 

lesion in an example animal (same as the animal shown in Fig. 7A). Black and grey arrows 

indicate the time of the 1st and 2nd press, respectively. (Column 2) Pairwise correlations 

between lever-presses of the example animal before and after DLS lesion. (Column 3) 

Averages of within animal correlations across animals (n=6 rats) and conditions. Shown are 

correlations between forelimb trajectories before and after DLS lesion between the same 

presses (Intra-Press: 1st to 1st and 2nd to 2nd) and between different presses (Inter-Press: 1st 

to 2nd). Also shown are correlations between the before and after lesion conditions (All) 
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across all 1st and 2nd presses. Dots indicate individual animals, bars show mean ± SEM. For 

statistical details for all panels see Supplementary Table 6.*P < 0.05, **P < 0.01.

B. Comparison of 1st and 2nd lever-presses across animals before and after DLS lesions. 

(Column 1) Forelimb movement trajectories for the 1st and 2nd press before and after DLS 

lesion, overlaid for all tracked animals (n=6 rats, blue and red shades indicate individual 

animals). (Column 2) Pairwise correlations between press trajectories of all animals before 

and after DLS lesion. Shown are average trial-to-trial correlations across individual presses 

(animal 1 press 1, animal 1 press 2, etc.). (Column 3) Averages of across animal correlations 

per condition. Shown are correlations between all presses before and all presses after DLS 

lesion. Also shown are correlations between all presses before and all presses after lesion 

(pre-post). Mean ± SEM. ***P < 0.001.

C. Comparison of 1st and 2nd lever-presses across animals early in training and after DLS 

lesion. (Column 1) Forelimb movement trajectories for the 1st and 2nd presses early in 

training (green) and after DLS lesion (red, replotted from panel B), overlaid for all tracked 

animals (n=4 rats, subsample of rats in B, for which trajectories were available early in 

training). (Column 2) Pairwise correlations between press trajectories of all animals early in 

training and after DLS lesion. Shown are average trial-to-trial correlations across individual 

presses (animal 1 press 1, animal 1 press 2, etc.). (Column 3) Averages of across animal 

correlations per condition. Shown are correlations between all presses early and all presses 

after DLS lesion. Also shown are correlations between all presses early and all presses after 

lesion (Early-post). Mean ± SEM.
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