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Membraneless channels sieve cations in 
ammonia-oxidizing marine archaea

Andriko von Kügelgen1,2, C. Keith Cassidy3, Sofie van Dorst2, Lennart L. Pagani2, 
Christopher Batters4, Zephyr Ford2, Jan Löwe1, Vikram Alva5, Phillip J. Stansfeld6 & 
Tanmay A. M. Bharat1 ✉

Nitrosopumilus maritimus is an ammonia-oxidizing archaeon that is crucial to the 
global nitrogen cycle1,2. A critical step for nitrogen oxidation is the entrapment of 
ammonium ions from a dilute marine environment at the cell surface and their 
subsequent channelling to the cell membrane of N. maritimus. Here we elucidate the 
structure of the molecular machinery responsible for this process, comprising the 
surface layer (S-layer), using electron cryotomography and subtomogram averaging 
from cells. We supplemented our in situ structure of the ammonium-binding S-layer 
array with a single-particle electron cryomicroscopy structure, revealing detailed 
features of this immunoglobulin-rich and glycan-decorated S-layer. Biochemical 
analyses showed strong ammonium binding by the cell surface, which was lost after 
S-layer disassembly. Sensitive bioinformatic analyses identified similar S-layers  
in many ammonia-oxidizing archaea, with conserved sequence and structural 
characteristics. Moreover, molecular simulations and structure determination of 
ammonium-enriched specimens enabled us to examine the cation-binding properties 
of the S-layer, revealing how it concentrates ammonium ions on its cell-facing side, 
effectively acting as a multichannel sieve on the cell membrane. This in situ structural 
study illuminates the biogeochemically essential process of ammonium binding and 
channelling, common to many marine microorganisms that are fundamental to the 
nitrogen cycle.

The ocean is our planet’s largest biome, where pelagic microbial 
Thaumarchaeota (syn. Nitrososphaerota) represent one of the most 
abundant organisms3. The numerical dominance of marine thaumar-
chaea suggests that they have a major role in global biogeochemical 
cycles1,2. N. maritimus, an intensely studied marine thaumarchaeon, 
grows chemolithoautotrophically by aerobically oxidizing ammonia to 
nitrite1. This organism has also been shown to regenerate oxygen under 
anoxic conditions, and to fix CO2

4,5, placing it in an important position 
in the global nitrogen and carbon dioxide biogeochemical cycles.

Owing to the low concentration of ammonia (NH3) or ammonium 
(NH4

+) ions in the oceans, reported in the 10−8 to 10−9 M range6, marine 
archaea such as N. maritimus have evolved specialized molecular 
machinery to attract ammonium ions on their cell surface to facilitate 
ammonium oxidation at the cell membrane7. N. maritimus, like most 
archaeal cells, is encased by a paracrystalline, proteinaceous surface 
layer or S-layer8–11. Bulk modelling of the N. maritimus S-layer has pre-
dicted that this cellular organelle might have a key role in elevating the 
ammonium concentrations in the pseudoperiplasmic space between 
the S-layer and the cell membrane12,13; however, how this occurs on a 
mechanistic and molecular level is unclear. At the overall morphological 
scale, the N. maritimus S-layer has been reported to have a hexagonal 
arrangement9,12 and is postulated to consist of repeating subunits of 
the proteins Nmar_1547 or Nmar_1201 (two proteins with 91% sequence 

identity), based on transcriptomic and proteomic data14,15. Here, to 
understand the rules governing ammonium binding and enrichment 
by N. maritimus and related marine Thaumarchaeota, we investigated 
the molecular structure of the N. maritimus S-layer using structural, 
biochemical, cellular and bioinformatic methods.

Cryo-ET analysis of the N. maritimus S-layer
To gain insights into this problem, we used electron cryotomography 
(cryo-ET) and subtomogram averaging techniques. We have previously 
applied these methods to determine in situ structures of prokaryotic 
S-layers from in vitro purified specimens containing cellular frag-
ments16–18. Our goal was to solve the structure of the N. maritimus S-layer 
directly from whole cells. Cryo-ET analysis of N. maritimus cells revealed 
an S-layer surrounding the approximately 300-nm-wide elongated cells, 
which contained a compact nucleoid and several cytosolic ribosomes 
(Fig. 1a). Using subtomogram averaging, we mapped the locations of the 
S-layer repeating units on the cell, which were arranged in a hexagonal 
array (Fig. 1b). We found that the S-layer hexamers coated the cells with 
near-perfect continuity along their lengths, while local pentameric 
defects were present on the cell edges, completing the S-layer (Fig. 1b), 
which was confirmed by quantification of hexamer and pentamer posi-
tions relative to the centre of the cell (Fig. 1c).
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Next, we used state-of-the-art cryo-ET imaging and image-processing 
workflows, which have been shown to support high-resolution in situ 
structure determination from purified specimens19. As a result, we 
produced a high-resolution map of the N. maritimus S-layer hexamer 
from intact cells (Fig. 1d, Extended Data Fig. 1, Extended Data Table 1 
and Supplementary Videos 1 and 2). The central region of the S-layer 
hexamer in the map had a resolution of 3.3 Å, with the resolution decay-
ing to around 4.5 Å towards the periphery (Extended Data Fig. 1). The 
subtomogram averaging map contained sufficient details to enable 
us to derive an atomic model of the S-layer (Fig. 1d–g and Extended 
Data Fig. 2). The structure shows that the S-layer is pseudohexagonal 
(Fig. 1f,g) and consists of the repeated interactions of the Nmar_1547 
(hereafter, NmSLP) S-layer protein. Despite the high sequence similarity 
of NmSLP to the other previously predicted SLP, Nmar_1201, a unique 
segment of NmSLP between residues 911 and 977 was clearly resolved 

in our map. This enabled us to identify NmSLP as the primary N. mar-
itimus SLP on cells through direct structure determination (Extended 
Data Fig. 2). This observation confirms previous transcriptomic data 
showing high expression levels of the Nmar_1547 gene compared with 
Nmar_120114. However, we cannot rule out that Nmar_1201 could be 
present at lower copy numbers.

At the sequence level, NmSLP is arranged into ten immunoglobulin- 
like (Ig-like) domains (Fig. 1f,g). The first eight domains were well 
resolved in our 3.3–4.5-Å-resolution subtomogram averaging map. 
By contrast, the last two domains appeared less ordered, with the local 
resolution decaying towards the C terminus of NmSLP, away from the 
centre of the S-layer hexamer (Extended Data Figs. 1 and 2). At the N ter-
minus, the C6 symmetry of the hexamer is broken, revealing a distinctly 
two-fold symmetric central pore (Extended Data Fig. 2). Each monomer 
of NmSLP in the S-layer adopts a rough ‘cashew’ shape, facilitating 
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Fig. 1 | The molecular structure and assembly of the N. maritimus S-layer in 
intact cells. a, A denoised36,37 tomographic slice through a N. maritimus cell 
shows ultrastructural details of this marine archaeon (annotated). Inset: top 
and side views of the subtomogram average of the S-layer. Scale bars, 500 Å 
(main image) and 100 Å (inset). Cellular tomography was performed at least  
27 times (Extended Data Table 1). b, Map of the subtomogram positions in the 
cellular S-layer showing the presence of pentameric defects at the edge of  
the cell. Scale bar, 500 Å. c, A histogram of subtomogram positions from all 
tomograms relative to the three-dimensional centre of the cell body (n = 41,303 

hexamers (grey) and n = 203 pentamers (pink); one out of two biological 
replicates shown). d, The subtomogram averaging map enables derivation of  
a molecular model directly from cellular data. Amino acid residue side chains 
resolved are marked. See also Extended Data Figs. 1 and 2. e, A ribbon model of 
the cashew-shaped NmSLP monomer is shown in two orthogonal views. f,g, The 
structure of the S-layer hexamer displayed in two orthogonal views shows that 
NmSLP monomers are arranged as an array of Ig-like domains; each domain (D) 
is coloured differently (a schematic is shown below). The first eight Ig-like 
domains are resolved in the cryo-ET and subtomogram averaging map.
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several interactions around the hexamer of NmSLP (Fig. 1e–g). Domain 
4, nestled within domain 3 and linked by short connectors, is slightly 
raised relative to the base of the cashew-shaped Ig-array of NmSLP, 
projecting towards the extracellular milieu.

Although the amino acid residues (37–1499) from the first eight 
Ig-like domains could be unambiguously built into the subtomogram 
averaging map, several unexplained densities were observed, ema-
nating from surface-exposed asparagine residues (Extended Data 
Fig. 2). Given that archaeal SLPs are known to be heavily glycosylated20, 
we hypothesized that these densities might correspond to glycans. 
Another notable set of unexplained densities was observed near the 
negatively charged amino acid residue side chains of Asp73 and Glu74 
at the central C2 pore, as well as between NmSLP monomers around the 
hexamer (Extended Data Fig. 2). Considering that positively charged 
ions have been previously observed bound to S-layers21,22, we hypoth-
esized that these additional densities on the N. maritimus S-layer could 
potentially correspond to bound cations, although the resolution of 
the map prevented us from unambiguously assigning their chemical 
identities.

Cryo-EM shows a porous S-layer
The N. maritimus S-layer has previously been predicted through bulk 
biophysical modelling to help attract ammonium ions12. Considering 
the tight sheath formed by the S-layer around cells (Fig. 1b,c), providing 
an extremely large surface area for interaction with the marine environ-
ment, we postulated that the S-layer functions as a negatively charged 
ammonium trap. This would facilitate the movement of cations such 
as ammonium towards the cell membrane, specifically to the sites of 
ammonium oxidation. To test these hypotheses with higher resolution 
structures, in which ion and other densities would be better resolved, 
we purified N. maritimus cell envelopes for cryo-electron microscopy 
(cryo-EM) analysis. We then used single-particle techniques, as applied 
previously to two-dimensional S-layer sheets for structure determina-
tion18,23, to solve a 2.7-Å-resolution structure of the S-layer (Fig. 2a, 
Extended Data Fig. 3 and Extended Data Table 2).

The single-particle structure was very similar (root mean squared 
deviation of 2.21 Å for the full composite model, 0.54 Å for residues 
35–455 (refined in C2) and 1.39 Å for residues 466–1498 (refined in C6))  
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Fig. 2 | Cryo-EM structure of isolated N. maritimus S-layer sheets. a, In vitro 
cryo-EM structure (global resolution, 2.7 Å) of isolated S-layer sheets from  
N. maritimus. The colour scheme for ribbon diagrams is the same as in Fig. 1; 
domains of one NmSLP are marked. b–j, Magnified views of the pores lined  
with negatively charged residues, which are ubiquitous in the S-layer sheet.  

The location of the pores is given in the titles of the panels. k, The sharpened38 
cryo-EM map shows 17 glycans decorating each NmSLP; the map shown at a 
lower contour level in two different orientations. A schematic of the glycan 
locations on the NmSLP sequence is shown below.
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to the subtomogram averaging structure (Fig. 2, Extended Data Fig. 4 
and Supplementary Video 3), enabling us to extend our structure 
by modelling the ninth Ig-like domain, reaching up to residue 1616 
out of 1734 (Fig. 2a and Extended Data Fig. 3). The last Ig-like domain 
remains unresolved in our map, with only disordered, diffuse density 
observed beyond the ninth Ig-like domain of NmSLP in the pseudop-
eriplasmic space, indicating flexibility relative to the rigid part of the 
S-layer. The NmSLP hexamer in the single-particle structure appears 
to be slightly expanded compared with the subtomogram averaging 
structure (Supplementary Video 3), perhaps due to differences in the 
S-layer curvature.

The N. maritimus genome also encodes a homologue for a cell- 
anchoring SlaB protein (Extended Data Fig. 5a,b and Supplementary 
Table 1) that is known to bind the S-layer of the archaeon Sulfolobus 
acidocaldarius to the cell membrane24. However, proteomic data on 
N. maritimus indicate that this protein is considerably less abundant 
in the cell than NmSLP15. We speculate that the last (tenth), unresolved 
Ig-like domain of NmSLP may have a role in anchoring the S-layer to 
molecules present on the cell envelope, therefore partially reducing 
the need for stoichiometric anchoring by a SlaB or a SlaB-like protein 
in N. maritimus.

In our single-particle structure, the subunit contacts between 
NmSLP hexamers (Fig. 2b–j) were better resolved compared with in 
our subtomogram averaging map (Fig. 1). Notably, several contact 
sites, both between hexamers and within each hexamer, contain pores 
lined predominantly by rows of negatively charged amino acid residues 
(Fig. 2b–j). These pores are relatively small (around 5 Å) but are compat-
ible with the size of small chemical species, fitting with the idea that 
the pores of the S-layer may function as cation channels. Owing to the 
repeating pattern of the S-layer, these pores span the entirety of the 
N. maritimus cell surface. Supporting the anticipated cation-binding 

properties of the S-layer, a bioinformatics comparison of the amino acid 
composition of NmSLP with that of the N. maritimus proteome and all 
archaeal proteins revealed a substantial increase in aspartic acid resi-
dues (10.9% in NmSLP versus 6.1% in the N. maritimus proteome versus 
7.3% in all archaea). Concurrent with this, the percentages of lysine and 
arginine residues are reduced (1.7% and 2.2% in NmSLP versus 8.4% and 
3.4% in the N. maritimus proteome versus 3.8% and 5.9% in all archaea), 
resulting in an S-layer that is highly negatively charged.

Overall, our structure shows that the NmSLP monomers densely 
populate the S-layer sheet. This arrangement is reminiscent of the 
S-layer in the Dead Sea archaeon Haloferax volcanii, which is com-
posed of an SLP called csg, which also consists of tandemly repeated 
Ig-like domains18. Such arrays of Ig-like domains have been observed in 
archaeal18,25, monoderm bacterial22,26 and diderm bacterial S-layers23,27. 
Although these SLPs share some structural similarities, they diverge 
notably at the sequence level, as well as at the overall organizational 
level containing different number of domains (Extended Data Fig. 5c), 
enabling them to assemble into unique two-dimensional sheets23,24, 
each with distinctly different glycosylation patterns and cell anchor-
ing mechanisms.

In total, 17 glycan densities per monomer of NmSLP were also resolved 
in the single-particle map (Fig. 2k and Extended Data Fig. 4). Although 
these densities do not support direct derivation of the chemical struc-
ture of the glycans, they project away from the cell surface at asparagine 
residues, which are followed by a threonine or serine residue at the +2 
position (Fig. 2k). Enshrouding the outer domains of the proteinaceous 
NmSLP S-layer, these glycans form a thick shell, encasing the cell in a 
sugar-rich coat (Fig. 2k). The mesh-like arrangement of the glycans 
probably provides protection, potentially shielding the cell from 
phages28. It might also enhance the hydrophilicity of the cell surface, 
making it suitable for marine environments. Most of these glycans are 
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located in the N-terminal segment of NmSLP, primarily in outermost 
domains 1, 2 and 4, with a single glycan present in domain 6 (Fig. 2k).

Ammonium binding of the S-layer
We confirmed that the concentration of ammonium ions in the medium 
strongly influences the growth of N. maritimus (Supplementary Fig. 1a), 
as shown previously4,9. To directly measure ammonium ion binding 
to the cell surface, we performed isothermal titration calorimetry 
(ITC), titrating a medium containing NH4Cl against whole N. mariti-
mus cells. As expected, growing N. maritimus cells showed strong 
and robust ammonium binding (Fig. 3a,b and Supplementary Fig. 1b; 
n = 3). We subsequently performed cryo-ET analysis of the same sam-
ple after ITC measurements, revealing normal cell morphology with 
an intact S-layer coating the cells (Fig. 3c,d; n = 150). As ammonium is 
the sole energy source for these growing cells, ammonium ions must 
somehow reach the cell for oxidation; we therefore inferred that the 
measured ammonium binding occurs either directly to the S-layer 
or to the underlying cell after passage through the S-layer (Fig. 3c,d). 
We then perturbed the S-layer by pretreating the cells with ethylene 
glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), which 
is known to impair several prokaryotic S-layers16. N. maritimus cells 
that were pretreated with 2.5 mM EGTA showed altered ammonium 
binding (Fig. 3a,b and Supplementary Fig. 1b; n = 3), concurrent with 
observed gaps and partial S-layer disruptions seen in cryo-ET in a het-
erogeneous population (Fig. 3e; n = 83). Near-complete disruption 
of the S-layer with 5 mM EGTA entirely abolished ammonium binding 
(Fig. 3a,b and Supplementary Fig. 1b; n = 3), leading to rounding up 

of cells with exposed, uncoated membranes (Fig. 3f; n = 152). These 
experiments indicate that an intact S-layer is critical for ammonium 
binding and may also be important for cell shape maintenance in  
N. maritimus in a calcium-dependent manner.

To examine the biochemically observed ammonium-binding prop-
erties of the S-layer structurally, we purified S-layer sheets in vitro, 
at a higher concentration of ammonium (2.5 mM compared to 1 mM 
NH4Cl) and resolved a 3.1-Å-resolution cryo-EM structure of the S-layer 
enriched in ammonium ions. Compared with our original cryo-ET 
structure (Supplementary Fig. 1c–f), this ammonium-enriched S-layer 
structure showed an increased number of unexplained densities at 
several S-layer pores, indicative of ammonium ion binding to the nega-
tively charged amino acid residues lining these pores (Supplementary 
Fig. 1c–f).

To further investigate the ability of the lattice to bind to cations, 
we performed atomistic molecular dynamics (MD) simulations of the  
N. maritimus S-layer in the presence of ammonium (Fig. 4a, Methods, 
Extended Data Fig. 6 and Supplementary Fig. 2), using a framework that 
has recently been shown to yield strong agreement with X-ray crystal-
lography and cryo-EM studies of cation binding to S-layers21. Analysis 
of residue-based ammonium occupancies over the course of three 
500 ns simulations using PyLipID29 clearly identified the primary acidic 
residues that mediate ammonium binding (Supplementary Table 2 and 
Supplementary Video 4). Moreover, mapping the high-ammonium 
occupancy (>50%) residues onto the hexamer structure revealed 
multiple acidic residue clusters in excellent agreement with the pores 
identified in our cryo-EM and cryo-ET maps (Fig. 4b and Extended 
Data Fig. 7). These observations are compatible with the idea that the 
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a, MD simulations support ammonium-ion binding at the S-layer pores. Residue- 
based ammonium occupancies during the 0.1 M NH4

+ MD simulations are 
plotted onto the S-layer structure on a relative scale from white to purple.  
b, The distribution of negatively charged residues (shown in red) in the S-layer 
matches well with the MD simulations showing predicted ammonium-binding 
residues (Extended Data Fig. 6). c, A histogram of negatively charged residues 
along the S-layer, overlaid onto the ammonium-ion positions in the 0.1 M NH4

+ 

MD simulations (distance was calculated from the closest, membrane-proximal 
amino acid residue in the S-layer structure). For the averaged ammonium-ion 
residence from three independent MD simulations (averaged over the last 
400 ns of each simulation), the error bars denote ±1 s.d. (Supplementary Fig. 2). 
d, The mean local charge of NmSLP plotted along the sequence shows a gradual 
but continual increase in negative charge. The z position of the NmSLP residues, 
derived from the S-layer structure, is indicated, with the ninth Ig-like domain 
forming the base of the S-layer, proximal to the cell membrane.



Nature | Vol 630 | 6 June 2024 | 235

multiple pores in the S-layer sheet, lined with negatively charged resi-
dues, facilitate the movement of ammonium ions across the S-layer. 
Furthermore, in our simulations, we also found that ammonium ions 
could be replaced with sodium ions, suggesting that the S-layer might 
not discriminate between different small positively charged ions for 
binding (Supplementary Fig. 2).

Collectively, our structural data reveal that the S-layer of N. maritimus  
functions as a multichannel exchanger for ammonium ions, featur-
ing negatively charged residues that line several pores in the S-layer 
(Fig. 2b–j). In this context, it is interesting that the negative charge of 
the S-layer increases when moving from the extracellular environment 
toward the cell membrane (Fig. 4c), specifically from the N to the C 
terminus of each NmSLP. This charge gradient probably facilitates 
the movement of ammonium ions through the S-layer towards the 
cell membrane. Our MD simulations support this hypothesis, show-
ing an accumulation of ammonium ions at the cell-facing side of the 
S-layer (Fig. 4c, Supplementary Fig. 2 and Supplementary Video 4). 
To ensure that these observations did not depend on the amount of 
ammonium present, we conducted further MD simulations of the 
S-layer system in 0.05 M or 0.2 M ammonium, reproducing in both 
cases strong ammonium binding by the S-layer and relative accumu-
lation of ammonium ions towards the cell-facing side of the S-layer 
(Supplementary Fig. 2).

The observed increase in negative charge at the structural level is 
also mirrored at the sequence level. There is a continuous and sub-
stantial increase in negative charge from the N to the C terminus of 

the NmSLP protein sequence (Fig. 4d), with the membrane-proximal 
C terminus being highly negatively charged. Using sensitive sequence- 
based homology searches and structure prediction, we found that 
Ig-domain-containing SLPs with a charge gradient are common across 
all described groups of ammonia-oxidizing archaea (AOA), suggesting 
similar S-layer arrangements in these species (Extended Data Fig. 7). 
Although the overall domain organization of such AOA and other 
archaeal SLPs could be similar (Extended Data Fig. 5a,b), the number 
of Ig-like domains and the charge distribution in each SLP vary, pos-
sibly reflecting differences in the function of these S-layers in binding 
positively charged molecules and ions (Extended Data Fig. 7d).

Molecular modelling of the cell surface
Together, our data enabled us to construct a molecular model of the 
N. maritimus cellular S-layer (Fig. 5a,b). Subtomogram position map-
ping of the S-layer hexamers and pentamers demonstrates that the 
S-layer coats the cell surface with near-perfect continuity (Fig. 5a,b), 
a characteristic that is also observed in other archaeal S-layers18. 
The continuous S-layer is heavily glycosylated, possibly protecting 
the cell from phages in the harsh marine environment. The dome- 
shaped structure of the S-layer hexamer probably supports flexibility, 
allowing NmSLP to coat different parts of the cell membrane with 
varied curvature. The S-layer is closed around cells by pentameric 
positions, which also appear to be composed of NmSLP (Extended 
Data Fig. 8). At the technical level, this study highlights the power 
of modern structural biology—molecular structures obtained from 
whole-cell cryo-ET, in conjunction with in-cell biochemistry and  
MD simulations, can provide key biochemical and mechanistic 
insights. With advancements in data collection and image-processing  
methodologies19,30,31, we anticipate that such in situ structural tech-
niques will significantly enhance our molecular understanding of 
cells (Supplementary Fig. 3).

Conclusion
Our data are consistent with a scenario in which ammonium and other 
cations are bound and enriched at the cell surface by the negatively 
charged S-layer (Fig. 5c). The S-layer provides an extremely large 
surface area for interaction with the surrounding marine environ-
ment, where it acts as a multichannel cation exchanger and, due to 
its gradually increasing negative charge, leads to the accumulation 
of ammonium ions on the cell-facing side of the S-layer. An ‘ammo-
nium sink’ exists at the cell membrane, where the integral membrane 
machinery, ammonia monooxygenase32,33, converts NH4

+ to NO2
− with 

hydroxylamine (NH2OH) as an intermediate34. This activity probably 
establishes an ammonium concentration gradient, extending from 
the membrane-proximal, ammonium-rich side of the S-layer to areas 
of lower concentrations near the cell membrane. A previous biophysi-
cal model has outlined how such a sink could function12, potentially 
initiating a chain of ammonium uptake that provides energy to the 
cell (Fig. 5c). This passive charge gradient of the S-layer could explain 
why marine AOA exhibit a 200-fold greater affinity for ammonia com-
pared with ammonia-oxidizing bacteria7, which generally lack S-layers. 
This increased affinity enables AOA to thrive in low-ammonia marine 
environments. The energy-efficient, passive enrichment mechanism 
is particularly advantageous in the resource-limited, harsh conditions 
that are found in the ocean depths. Moreover, as S-layers similar to 
that of N. maritimus are found in nearly all AOA, including those in soil 
ecosystems (Extended Data Fig. 5a,b), this ammonium enrichment 
mechanism is probably conserved among these organisms35, contrib-
uting to the biogeochemically important nitrogen cycle (Supplemen-
tary Fig. 3). A comprehensive understanding of these biogeochemical 
processes is critical for preserving the vital ecological functions that 
sustain life on Earth.
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lattice coats nearly the entire outer surface of N. maritimus cells. A small part of 
the lattice map (black dashed line) has been cut out from the top of the cell for 
clarity. The pseudohexagonal lattice is joined together by pentameric defects 
(Extended Data Fig. 8). Scale bar, 500 Å. Cellular tomography was performed at 
least 32 times (Extended Data Table 1). b, A model of the S-layer lattice is shown 
as a space-filling representation with the same colour scheme as in Fig. 1.  
c, The ion-exchanging model for the N. maritimus S-layer. The highly negatively 
charged S-layer entraps ammonium ions, and these ions may move along 
multiple pores in the lattice, aided by increasing negative charge along the 
lattice. Once beyond the S-layer, the ammonium ions can diffuse to the 
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Methods

Growth of N. maritimus cells
A culture of N. maritimus (SCM1) was provided by F. Elling and A. Pear-
son. Continuous cultures of SCM1 were grown on modified synthetic 
crenarchaeota medium supplemented with 1 mM NH4Cl, as previously 
described7,40 at 28 °C in a standing incubator that was covered to prevent 
excessive exposure to light. The growth of SCM1 N. maritimus cells was 
monitored using a NO2

−-detection assay reported previously1. The 
same assay was used to follow SCM1 growth with differing ammonium 
concentrations.

Purification of N. maritimus cell envelopes
Native cell envelopes were purified from N. maritimus by adapting a 
previously described protocol23. A total of 12 l of N. maritimus cultures 
was prepared and late-log-phase cells were collected by centrifugation 
(10,000g, 4 °C, 30 min) and frozen and stored at −80 °C until further 
experimentation. The cell pellet from a 1 l culture was carefully resus-
pended in 3 ml lysis buffer (50 mM HEPES/NaOH pH 7.5, 500 mM NaCl, 
50 mM MgCl2, 10 mM CaCl2, 1% (w/v) CHAPS, supplemented with 1× 
cOmplete protease inhibitor cocktail (Roche)). The cell suspension was 
incubated for 1 h on ice, and then lysed using sonication (10×, 5 s pulse, 
amplitude strength 10%). The sonicated sample was subsequently 
centrifuged (80,000g, 4 °C, 1 h), forming a very small white pellet at 
the bottom of the centrifugation tube. The pellet was resuspended 
into 40 µl of the same buffer and used for cryo-EM experiments. For 
the ammonium-enriched sample, the buffer was supplemented with 
2.5 mM NH4Cl.

Cryo-EM and cryo-ET sample preparation
For cryo-EM and cryo-ET grid preparation, previously reported pro-
tocols were used18,23,41. In brief, 2.5 µl of the specimen was applied to a 
freshly glow discharged Quantifoil R2/2 Cu/Rh 200 mesh grid, adsorbed 
for 60 s, blotted for 4–5 s and plunge-frozen into liquid ethane in the 
Vitrobot Mark IV (Thermo Fisher Scientific), while the blotting chamber 
was maintained at 100% humidity at 10 °C. For tomography, the speci-
men was additionally supplemented with 10 nm gold conjugated with 
protein A. The grids were clipped and stored under liquid nitrogen until 
cryo-EM data collection was performed.

Cryo-ET and cryo-EM data collection
Cryo-ET data. For high-resolution in situ structure determination of the 
S-layer, a pipeline for high-throughput data collection was adopted42. In 
brief, a Titan Krios microscope was used to collect tilt-series data with 
a dose-symmetric tilting scheme43. Tilt series were collected at a pixel 
size of 1.327 Å, with a total dose of ~121 e− Å−2 applied over entire series 
collected between ±60° with 3° tilt increments. A total of 160 tilt series 
were collected with a defocus range of between −2 and −5 µm target  
defocus, and the samples were subjected to 0.9 s of exposure per tilt 
video containing 10 frames each (Extended Data Table 1). For visualiza-
tion of the cellular ultrastructure, tilt-series images were acquired using 
the SerialEM software44 at a pixel size 3.468 Å with a defocus range of −3 
to −10 µm, ±60° oscillation, 1° increments with a total dose of ~172 e− Å−2 
as well as at a pixel size of 1.33 Å with a defocus range of −4 to −10 µm, 
±60° oscillation, 2° increments with a total final dose of ~160 e− Å−2.

Cryo-EM single-particle data. Single-particle cryo-EM data were 
collected as described previously16,18,23 on the Titan Krios G3 micro-
scope (Thermo Fisher Scientific) operating at 300 kV fitted with 
a Quantum energy filter (slit width 20 eV) and a K3 direct electron  
detector (Gatan) with a sampling pixel size of 0.546 Å running in count-
ing super-resolution mode. For the N. maritimus purified sheets sample, 
a total of 12,557 videos over three sessions was collected with a dose rate 
of around 3.5 e− per super-resolution pixel per s on the camera level. The 
sample was subjected to 4.2 s of exposure, during which a total dose 

of around 48–51 e− Å−2 was applied, and 40 frames were recorded per 
video (Extended Data Table 2).

Subtomogram averaging of whole cells for structure 
determination
To obtain initial lattice maps, a previously described strategy was 
used16, in which tilt-series alignment using gold fiducials and tomogram 
generation was performed using IMOD45 and initial contrast transfer 
functions (CTFs) were estimated using CTFFIND446. Tomograms for 
visualization were generated using the simultaneous iterative recon-
struction technique (SIRT) implemented in Tomo3D47 and denoised 
using Cryo-CARE36,37. Subtomogram averaging was performed using 
custom scripts written in MATLAB, described in detail elsewhere42,48. For 
initial cryo-ET structure determination, we used previously published 
methods17, with the major difference being the use of a recently devel-
oped 3D-CTF correction method for tomographic data49. The roughly 
aligned subtomogram coordinates were then imported into RELION-4 
for further analysis19. We used the tilt series after video frame alignment 
from the initial analysis above, without additional preprocessing, along 
with the tilt-series alignments performed within IMOD, CTF parameters 
from CTFFIND446 and the Euler angle assignments and subtomogram 
coordinates from the original analysis to proceed with refinement. 
The imported parameters into RELION-4 were used for multiple cycles 
of pseudosubtomogram generation and realignment as described 
recently19. Accounting for per-particle motions with additional cycles of 
pseudosubtomogram improvements and realignments increased the 
resolution of the NmSLP hexamer to 3.4 Å in C6 symmetry. Relaxation 
of the symmetry50,51 led to an improved (3.3 Å) resolution overall, and 
3.2 Å at the pseudohexameric axis, but decreased the resolution (~4.5 Å) 
at the periphery of the hexamer (Extended Data Table 1 and Extended 
Data Fig. 1). For spatial analysis of hexameric and pentameric S-layer 
positions with respect to the cell centre, the distance of each position 
from the cell centre was normalized by the maximally distanced hex-
amer/pentamer in every cell in the tomogram.

Cryo-EM single-particle analysis
For S-layer structure from two-dimensional sheets, cryo-EM data 
processing was performed as described previously for S-layers in our 
laboratory18,23. Videos collected at the scope were clustered into optics 
groups based on the XML metadata of the data-collection software EPU 
(Thermo Fisher Scientific) using a k-means algorithm implemented in 
EPU_group_AFIS (https://github.com/DustinMorado/EPU_group_AFIS). 
Imported videos were motion-corrected, dose-weighted and Fourier 
cropped (2×) with MotionCor252 implemented in RELION-3.153. CTFs 
of the resulting motion-corrected micrographs were estimated using 
CTFFIND446. Initially, side views of S-layer sheets were first manu-
ally picked along the edge of the lattice using the helical picking tab 
in RELION while setting the helical rise to 60 Å. Top and tilted views 
were manually picked at the central hexameric axis. Manually picked 
particles were extracted in 4× downsampled 128 × 128 px2 boxes and 
classified using reference-free 2D classification inside RELION-3.1. 
Class averages centred at a hexameric axis were used to automatically 
pick particles inside RELION-3.1. Automatically picked particles were 
extracted in 4× downsampled 128 × 128 px2 boxes and classified using 
reference-free 2D classification. Particle coordinates belonging to 
class averages centred at the hexameric axis were used to train TOPAZ54 
in 5× downsampled micrographs using the neural network architec-
ture conv127. For the final reconstruction, particles were picked using 
TOPAZ and the previously trained neural network above. Furthermore, 
top, bottom and side views were picked using the reference-based 
autopicker inside RELION-3.1, which TOPAZ did not readily identify. 
Particles were extracted in 4× downsampled 128 px × 128 px boxes 
and classified using reference-free 2D classification inside RELION-3.1. 
Particles belonging to class averages centred at the pseudohexameric 
axis were combined, and particles within 30 Å were removed to prevent 

https://github.com/DustinMorado/EPU_group_AFIS


Article
duplication after alignment. All of the resulting particles were then 
re-extracted in 4× downsampled 128 × 128 px2 boxes. All of the side 
views and a subset of the top and bottom views were used for initial 
model generation in RELION-3.1. The scaled and low-pass filtered 
output was then used as a starting model for 3D auto refinement in a 
512 × 512 px2 box. Per-particle defocus, anisotropy magnification and 
higher-order aberrations55 were refined inside RELION-3.1, followed by 
three rounds of focused 3D autorefinement. Bayesian particle polish-
ing was performed subsequently in a 640 px × 640 px box55 followed 
by autorefinement and symmetry relaxation50,51. The final map was 
obtained from 354,860 particles and post-processed using a soft mask 
focused on the central hexamer, yielding a global resolution of 2.7 Å 
according to the Fourier shell correlation criterion between two inde-
pendently refined half-maps at a threshold value at 0.143 (ref. 56) and a 
local resolution of up to 2.5 Å (Extended Data Fig. 3 and Extended Data 
Table 2). The two-dimensional sheet-like arrangement led to anisotropy 
in resolution, with lower resolution perpendicular to the plane as esti-
mated by directional FSCs57. Further details are provided in Extended 
Data Table 2 and Extended Data Fig. 3.

Data visualization, analysis and model building
For model building, a previously described strategy was used18,23. For 
the single-particle cryo-EM map, the original 640 × 640 × 640 voxel 
box was cropped into a 320 × 320 × 320 voxel box. In both the cryo-ET 
and cryo-EM maps, and the protein backbone of NmSLP was manu-
ally traced as a poly-alanine model through a single NmSLP subunit 
using Coot58. Side chains were assigned at clearly identifiable positions 
which allowed deduction of the protein sequence register. The model 
was then placed into the hexameric map as six copies and subjected 
to several rounds of refinement using refmac559 inside the CCP-EM 
software suite60 and PHENIX61, followed by manually rebuilding in 
Coot58. At the N terminus, the C2 maps were better resolved compared 
to the C6 maps at the C termini of NmSLPs; therefore, multimap atomic 
model refinement was performed in servalcat62. Model validation 
was performed in PHENIX and CCP-EM, and data visualization was 
performed in UCSF Chimera63, UCSF ChimeraX64 and PyMOL65. To 
analyse lattice interfaces, multiple copies of the hexameric struc-
ture were placed in the cryo-EM map prepared with a larger box size. 
Figure panels containing cryo-EM or cryo-ET images were prepared 
using IMOD and Fiji66. Lattice maps of S-layers for visual inspection 
were plotted inside UCSF Chimera63 with the PlaceObject plugin67 
and model coordinates were plotted inside UCSF ChimeraX64 with 
the sym function and the BIOMATRIX PDB file header or directly using 
the ArtiaX plugin68. The SPA and STA maps were postprocessed using 
deepEMhancer38 for visualization of the N-glycan densities (Fig. 2k and 
Extended Data Fig. 4g–h,k–l). Composite maps from focused refine-
ments of the two-fold (C2) and six-fold (C6) symmetrized maps were 
generated using refmac559 and PHENIX61 and then converted using 
mtz2mrc implemented in PHENIX61.

Bioinformatic analysis
A previously described strategy for detection and analysis of SLPs was 
used18,23. All sequence similarity searches were performed in the MPI 
Bioinformatics Toolkit69 using BLAST70 and HHpred71. BLAST searches 
were performed against the nr_arc database, a specialized subset of 
the NCBI non-redundant protein sequence database filtered specifi-
cally for archaeal sequences, using the default settings to identify 
homologues of NmSLP in archaea. The searches were seeded with the 
protein sequence of N. maritimus SLP. The domain organization of 
several obtained matches and many experimentally characterized 
SLPs (Supplementary Table 1) were analysed using HHpred searches 
with the default settings over the PDB70 and ECOD70 databases, which 
are versions of the PDB and ECOD databases filtered for a maximum 
pairwise identity of 70%, and using structural models built using Alpha-
Fold (v.2.2.0)72. Signal peptides were predicted using SignalP (v.6.0)73. 

The mean local charge of the protein sequences was calculated using 
the EMBOSS charge tool74, using a window length of 7.

ITC analysis
ITC measurements were made using Malvern Panalytical ITC200 instru-
ments at 25 °C in SCM buffer without ammonium chloride. Experiments 
were performed at a reference power of 10 µcal s−1 and with injections 
at 300 s intervals to capture the large exothermic heats and broad peak 
profiles. The ITC cell contained N. maritimus at an optical density at 
600 nm (OD600) of 1.0 and the syringe contained 10 mM ammonium 
chloride in the SCM buffer. In total, ten injections, with the first injec-
tion corresponding to 0.5 µl, followed by nine injections of 1 µl were 
performed, resulting in a final ammonium chloride concentration of 
0.475 mM in the ITC cell. N. maritimus cells were pretreated with 0, 2.5 
or 5 mM EGTA for 30 min, and were then centrifuged at 16,000g for 
15 min and resuspended in SCM medium lacking ammonium chloride 
to recover before adjusting to an OD600 of 1.0. Control measurements 
of injections of ammonium chloride into buffer were performed and 
these heats were small and close to the values seen for buffer into buffer 
control experiments. This control heat was subtracted from the N. mar-
itimus experiments before peak integration using Malvern Panalytical 
PEAQ software. Experiments were performed three times with differ-
ent batches of N. maritimus prepared from cells in log-growth phase 
in SCM medium with 1 mM ammonium chloride as nutrient source. 
These cultures were centrifuged and resuspended in SCM buffer lack-
ing ammonium chloride before adjusting to an OD600 of 1 and loading 
into the ITC cell.

MD simulations
The NmSLP hexamer structure was prepared for atomistic MD simula-
tion using VMD (v.1.94)67. The system was first solvated with TIP3P water 
molecules and 0.5 M NaCl to mimic the salinity of sea water. Next, 312 
ammonium ions (0.1 M NH4

+) were randomly distributed throughout 
the solvent, along with an equal number of chloride counter ions to 
maintain a charge neutral system. Simulation parameters for NH4

+ 
were derived through analogy with existing CHARMM parameters 
for methylammonium. Note that, to better help identify specific ion 
binding sites, no structural ions apparent from the NmSLP cryo-EM 
and cryo-ET structures were included. The resulting system contained 
566,371 atoms, including 136,236 protein atoms, 141,657 water mol-
ecules, 2,246 sodium ions, 1,358 chloride ions and 312 ammonium ions, 
within a hexagonal box of dimensions x = y = 217 Å, z = 150 Å and axial 
angles α = β = 90°, γ = 60°. The geometry of the simulation box was cho-
sen so that the molecular interfaces observed between neighbouring 
hexamers in our tomography data would be reproduced through the 
interactions of the NmSLP hexamer with its periodic images in the x–y 
plane. The system was then subjected to a series of conjugant gradient 
energy minimizations followed by three 500 ns MD simulations. To 
prevent potential distortions in the NmSLP hexamer due to the absence 
of structural ions offsetting its highly negative charge, protein atoms 
(excluding hydrogens) were harmonically restrained during simulation. 
Unless otherwise indicated, analyses were performed after disregard-
ing the first 100 ns of each simulation to ensure equilibrium sampling. 
To assess the robustness of the observed ammonium-binding pattern, 
we further constructed hexamer systems containing ammonium at 
concentrations of 0.05 M (156 NH4

+ ions) and 0.2 M (624 NH4
+ ions) 

using an identical procedure, and these systems were subjected to a 
single 500 ns production simulation. Note that lower concentrations 
of ammonium ions could not be used due to few total ammonium ions 
in the box in every simulation. All simulations were conducted using 
NAMD (v.2.14)68 and the CHARMM36 force field38. Production simula-
tions used the NPT ensemble with conditions maintained at 1 atm and 
310 K using the Nosé–Hoover Langevin piston and Langevin thermostat, 
respectively. The r-RESPA integrator scheme was used with an integra-
tion time step of 2 fs and SHAKE constraints applied to all hydrogen 



atoms. Short-range, non-bonded interactions were calculated every 
2 fs with a cut-off of 12 Å; long-range electrostatics were evaluated 
every 6 fs using the particle-mesh-Ewald method. Further details are 
provided in Supplementary Table 3.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Maps have been deposited at the Electron Microscopy Data Bank under 
accession codes EMDB-16482, EMDB-16483, EMDB-16484, EMDB-16486, 
EMDB-16487, EMDB-16489 and EMDB-16492. Model coordinates have 
been deposited at the Protein Data Bank under accession codes 8C8L, 
8C8K, 8C8M, 8C8N, 8C8O and 8C8R. Further details are provided in 
Extended Data Tables 1 and 2. Source data are provided with this paper.
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Extended Data Fig. 1 | Subtomogram averaging (STA) of the N. maritimus 
S-layer. a, Fourier shell correlation (FSC) curves of the STA reconstruction.  
b-c, Local resolution of two-fold symmetrised (C2) N. maritimus S-layer plotted 
onto the cryo-ET STA map, shown from the top and from the side. d, 3-D Fourier 
shell correlation (FSC) curves of the STA reconstruction. e, Local resolution of 
two-fold symmetrised (C2) N. maritimus S-layer shown from the bottom, from 

the inside of the cell. f, Local resolution of six-fold symmetrised (C6) N. maritimus 
S-layer map shown from the side. g, Particle distribution from the 0° projection 
image. h, Processing schematic from tomographic reconstructions to high 
resolution reconstruction of the S-layer. Scale bars for panels (b), (c), (e) and  
(f): 10 Å.



Extended Data Fig. 2 | Structure determination from whole-cell cryo-ET 
data. a, The STA map of the S-layer (isosurface shown) was used to build a model 
of NmSLP (ribbon) directly from cellular data. (See also Fig. 1(b–e)). b-i, Examples 

of cryo-ET density and the built model for the Ig-like domains one to eight 
(D1-D8) of one NmSLP subunit. The local resolution decreases from the central 
two-fold axis of the NmSLP hexamer (see Extended Data Fig. 1).
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Extended Data Fig. 3 | Single particle analysis of isolated N. maritimus 
S-layer sheets. a, Cryo-EM image of isolated N. maritimus cell envelopes show 
repeating units of the pseudo-hexagonal (tilted) S-layer. Insets – characteristic 
top and side views observed in class averages. This single image is representative 
from a data set containing 12,557 images from three independent data 
collections (see Extended Data Table 2). b, FSC estimation of the resolution  
of the unsymmetrized (C1), two-fold (C2) and six-fold (C6) symmetrised maps. 

c-e, Local resolution of the C2 cryo-EM map estimated in RELION, plotted into 
the density, shown in from the top (c), side (d) and bottom (e). The resolution  
of outer domains (D8-D9) is slightly lower. f, Directional 3D-FSC between two 
random halves of the data57. g, Angular distribution of the particles in the data 
set, shown on a relative scale (purple denotes low and yellow denotes high).  
h, Histogram of local resolutions in voxels of the cryo-EM map (C2-symmetrised). 
Scale bars: (a) 500 Å, Inset 200 Å; (c-d) 20 Å.



Extended Data Fig. 4 | Comparison of the STA and SPA N. maritimus S-layer 
reconstruction. a, Close-up view of the STA map with the built NmSLP model 
(domain 1) showing resolved large and small side chains. b, Close-up view of the 
SPA map in the same view as shown in panel (a). c-d, Close-up view of the STA 
map (c) and (d) of domain 3 of the NmSLP with resolved small and bulky side 

chains. e-f, Close-up views of the N-glycan densities of the STA map (a) and  
SPA map (f) in domain 1. g-h, The density of the N-glycans is enhanced in the 
sharpened38 map (Methods) of the same region. i-l, Close-up views of some of 
the N-glycan densities of the STA (i,k) and SPA map ( j,l) of domain 4.
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Extended Data Fig. 5 | Bioinformatic analysis of Ig-like domain-containing 
archaeal SLPs. a, Cartoon schematic of the domain architecture of SLPs in 
Nitrososphaerota. In addition to the main SLP, a minor SlaB homologue is 
encoded in the genome of most Nitrososphaerota. The SlaB protein exhibits a 
C-terminal transmembrane domain which potentially anchors the main S-layer 
canopy to the membrane. b, Cartoon schematic of the domain architecture of 
SLPs in Thermoproteota and Euryarchaeota. The domain architecture of AOA 
SLPs vary considerably from haloarchaea. c, Cluster map of Ig-like domain- 
containing archaeal SLPs. This map was created by collecting homologues of 

various representative Ig-like domain-containing SLPs and clustering them 
using CLANS75 based on the strength of their all-against-all pairwise BLAST 
P-values, with a threshold set at 1-e8. Each protein sequence in the map is 
depicted as a dot, and sequences within the same taxonomic class are denoted 
by the same colour. The intensity of the line colour indicates the significance  
of sequence similarities, with darker lines representing higher significance. 
Although comprising Ig-like domains, archaeal SLPs are extremely divergent in 
their sequences.



Extended Data Fig. 6 | Molecular dynamics simulation of ammonium ion 
diffusion across the multi-channel, charged S-layer. a, Unit cell design for MD 
simulation of the S-layer lattice. The unit cell (simulation box, outlined in yellow) 
was constructed to simulate an infinite two-dimensional sheet. b, Ammonium 
ion densities (ammonium occupancy during a single simulation shown as golden 
density) plotted onto the structure shown in ribbon representation. For further 
details on ammonium binding residues, please see Supplementary Table 2 and 

Supplementary Fig. 2. c-k, Pores in the S-layer (shown in Fig. 2), with pore 
residue side chains coloured by occupancy of ammonium ions (colour bar 
shown in panel k). l, Occupancy profile for the modelled NmSLP sequence; 
residues binding to ammonium ions (high occupancy) are shown as large 
letters. Residue indices corresponding to domains 1 to 9 are depicted by 
coloured lines below the plot.
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Extended Data Fig. 7 | Charge distribution across archaeal S-layers. a, The 
predicted net charges of archaeal SLPs at neutral pH (7.4) show that N. maritimus 
is highly charged, supporting its function as a cation and ammonium trap.  
The net charge was calculated using Isoelectric Point Calculator 2.076. b, The 
electrostatic charge of the N. maritimus S-layer is illustrated on the surface 
model. c, Residues in the N. maritimus S-layer with >50% ammonium occupancy 

in MD simulations from pyLipID analysis (left), compared with highlighted 
negatively charged residues in the S-layer (middle), show a remarkable overlap 
(right). d, The mean local charge of the SLPs from AOAs and other archaea, 
plotted along the sequence, shows a gradual but continual increase in negative 
charge specifically in AOAs, but not in other archaea.



Extended Data Fig. 8 | Whole cell tomography of N. maritimus and S-layer 
lattice maps. a-f, Gallery of lattice maps of the S-layer from subtomogram 
averaging plotted onto denoised36,37 N. maritimus cellular tomograms (only 
one slice shown in each case). The S-layer lattice coats nearly the entire outer 
surface of N. maritimus cells. A region has been cut out from each lattice map 

on top of the cell for clarity. The hexagonal lattice is joined together by 
pentameric defects, and linear lattice dislocations are also occasionally 
observed. Scale bars: 500 Å. Cellular tomography was performed at least  
32 times (see Extended Data Table 1).
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Extended Data Table 1 | Cryo-ET data collection, refinement, and validation statistics

 
 Nmar_NmSLP_cryoET N. maritimus S-layer 

lattice maps 
N. maritimus S-layer lattice 
maps 

Data collection    
Microscope Titan Krios Titan Krios Titan Krios 
Detector K2 (Gatan) K3 (Gatan) K3 (Gatan) 
Software SerialEM40 SerialEM40 SerialEM40 
Magnification    105,000 64,000 26,000 
Voltage (kV) 300 300 300 
Slit width (eV) 20 20 20 
Defocus range (μm) -2 to -5 -2 to -10 -3.5 to -10 
Pixel size (Å) 1.327 1.33 3.468 
Total exposure (e–/Å2) 121.36 159. 170.9 
Exposure per tilt (e–/Å2) 2.96 2.62 1.425 
Total number of tilts 41 61 121 
Frames per tilt-movie 10 10 3 
Tilt increment ±3° ±2° ±1° 
Tilt-series scheme dose-symmetrical dose-symmetrical dose-symmetrical 
Tilt range ±60° ±60° ±60° 
Tilt-series collected 160 27 32 
Tilt-series used 153 27 32 
Data processing   
Software tilt-series alignment IMOD41 IMOD41 IMOD41 

Software CTF estimation CTFFIND442 CTFFIND442 CTFFIND442 
Software initial angle 
assignment AV3-TOM AV3-TOM AV3-TOM 

Software tilt-series refinement RELION4.019 RELION4.019 RELION4.019 
Software final angle assignment RELION4.019 RELION4.019 RELION4.019 
Software reconstruction RELION4.019 RELION4.019 RELION4.019 
Initial particle images (no.) 138,532   
Final particle images (no.) 108,621   
Pre-cropped Box-size (px) 640 x 640 x 640   
Final Box-size (px) 200 x 200 x 200   
Pixel size final rec. (Å) 1.327   
Symmetry imposed C2 C6   
Map resolution (Å) 
    FSC threshold 

3.35 
0.143 

3.4 
0.143 

  

Map resolution range (Å) 3.2-5.0 3.1-4.8   
Map sharpening B factor (Å2) -66.19 -72.45   
3DFSC sphericity# 0.94 Not performed   
EMDB code 16487 16489   
Composite map EMDB 16492   
Model Refinement     
Initial model used (PDB code) None None   
Software PHENIX59 PHENIX59   
Model resolution (Å) 
    FSC threshold 

3.6 
0.5 

3.9 
0.5 

  

Model composition 
    Residue range 
    Domain range 
    Non-hydrogen atoms 
    Protein residues 
B factors (Å2) 
    Protein 

 
37-445 
D1-D2 
18,347 
2,508 
 
74.25 

 
446-1498 
D3-D8 
47,310 
6,318 
 
91.26 

  

R.m.s. deviations 
    Bond lengths (Å) 
    Bond angles (°) 

 
0.002 
0.503 

 
0.002 
0.476 

  

 Validation 
    MolProbity score 
    Clashscore 
    Poor rotamers (%) 
    Cβ outliers (%) 
    CABLAM outliers (%) 

 
1.74 
8.26 
0.00 
0.00 
1.41 

 
1.62 
8.88 
1.14 
0.00 
1.72 

  

 Ramachandran plot 
    Favoured (%) 
    Allowed (%) 
    Disallowed (%) 

 
95.79 
4.21 
0.00 

 
97.53 
2.47 
0.00 

  

PDB code 8C8N 8C8O   
Composite PDB code  8C8R   

 



Extended Data Table 2 | Cryo-EM data collection, refinement, and validation statistics
 

 NmSLP in vitro isolated S-layer NmSLP high NH4+ 
Data collection  
Microscope Titan Krios Titan Krios Titan Krios Titan Krios Titan Krios 
Detector K3 (Gatan) K3 (Gatan) K3 (Gatan) K3 (Gatan) K3 (Gatan) 
Software EPU EPU EPU EPU EPU 
Magnification    81,000 81,000 81,000 81,000 81,000 
Voltage (kV) 300 300 300 300 300 
Electron exposure (e–/Å2) 48.5 50.782 51.543 49.863 49.863 
Slit width (eV) 20 20 20 20 20 
Defocus range (μm) -1 to -3 -1.5 to -2 -1 to -1.75 -0.5 to -1.75 -0.75 to -2 
Acquisition Mode Super-res Super-res Super-res Super-res Super-res 
Pixel size (Å) 0.546 0.546 0.546 0.546 0.546 
Stage tilt 0º 33º 0º 0º 30º 
Movies collected 2,615 3,700 6,242 6,636 2,799 
Movies used 2,575 3,620 5,455 6,636 2,799 
Frames per movie 40 40 40 40 40 
Data processing  
Software picking TOPAZ52 TOPAZ52 TOPAZ52 TOPAZ52 TOPAZ52 
Software reconstruction RELION3.1 RELION3.1 RELION3.1 RELION3.1 RELION3.1 
Initial particle images (no.) 926,803 574,714 470,391 1,323,405 776,676 
Final particle images (no.) 120,579 119,603 114,678 175,787 41,881 
Rescaled Box-size Class2D (px) 128 x 128 128 x 128 128 x 128 128 x 128 128 x 128 
Final refinement Box-size (px) 640 x 640 x 640 640 x 640 x 640 
Pixel size final reconstruction (Å) 1.092 1.092 
Final Box-size (px) 640 x 640 x 640 640 x 640 x 640 
Final particle images (no.) 354,860 217,668 
Symmetry imposed C1 C2 C6 C2 C6 
Map resolution (Å) 
    FSC threshold 

3.04 
0.143 

2.71 
0.143 

2.87 
0.143 

3.05 
0.143 

3.26 
0.143 

Map resolution range (Å)  2.5 – 3.66 2.5-3.90 2.85-5.01 2.87-4.36 
Map sharpening B factor (Å2) -46.2 -41.4 -59.2 -52.5 -63.77 
EMDB code  16483 16482 16486  
Composite EMDB code  16484   
Model Refinement      
Initial model used (PDB code)  None  None   
Software  Refmac557 Refmac557   
Model resolution (Å) 
    FSC threshold 

 2.9 
0.5 

3.1 
0.5 

  

Model composition 
    Residue range 
    Domain range 
    Non-hydrogen atoms 
    Protein residues 

  
37-1364 
D1-D7 
59,076 
7,962 

 
1365-1616 
D8-D9 
11,430 
1,518 

  

B factors (Å2) 
    Protein 

  
76.62 

 
118.80 

  

R.m.s. deviations 
    Bond lengths (Å) 
    Bond angles (°) 

  
0.014 
1.687 

 
0.013 
1.619 

  

 Validation 
    MolProbity score 
    Clashscore 
    Poor rotamers (%) 
    Cβ outliers (%) 
    CABLAM outliers (%) 

  
1.71 
7.99 
0.76 
0.33 
1.98 

 
1.55 
10.8 
0.63 
0.00 
0.80 

  

 Ramachandran plot 
    Favoured (%) 
    Allowed (%) 
    Disallowed (%) 

  
95.95 
4.05 
0.00 

 
98.07 
1.93 
0.00 

  

PDB Code  8C8L 8C8K   
Composite PDB code  8C8M   
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