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AMP‑RNNpro: a two‑stage 
approach for identification 
of antimicrobials using probabilistic 
features
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Antimicrobials are molecules that prevent the formation of microorganisms such as bacteria, 
viruses, fungi, and parasites. The necessity to detect antimicrobial peptides (AMPs) using machine 
learning and deep learning arises from the need for efficiency to accelerate the discovery of AMPs, 
and contribute to developing effective antimicrobial therapies, especially in the face of increasing 
antibiotic resistance. This study introduced AMP‑RNNpro based on Recurrent Neural Network 
(RNN), an innovative model for detecting AMPs, which was designed with eight feature encoding 
methods that are selected according to four criteria: amino acid compositional, grouped amino acid 
compositional, autocorrelation, and pseudo‑amino acid compositional to represent the protein 
sequences for efficient identification of AMPs. In our framework, two‑stage predictions have been 
conducted. Initially, this study analyzed 33 models on these feature extractions. Then, we selected 
the best six models from these models using rigorous performance metrics. In the second stage, 
probabilistic features have been generated from the selected six models in each feature encoding 
and they are aggregated to be fed into our final meta‑model called AMP‑RNNpro. This study also 
introduced 20 features with SHAP, which are crucial in the drug development fields, where we discover 
AAC, ASDC, and CKSAAGP features are highly impactful for detection and drug discovery. Our 
proposed framework, AMP‑RNNpro excels in the identification of novel Amps with 97.15% accuracy, 
96.48% sensitivity, and 97.87% specificity. We built a user‑friendly website for demonstrating the 
accurate prediction of AMPs based on the proposed approach which can be accessed at http:// 13. 126. 
159. 30/.
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RF  Random forest
XGB  Extreme gradient boosting classifier
EX  Extra-tress classifier
CD-HIT  Cluster database at high identity with tolerance
AAC   Amino acid composition
ASDC  Adaptive skip dinucleotide composition
GAAC   Grouped amino acid composition
CKSAAGP  Composition of K-spaced amino acid pairs
DP  PseAAC of distance-pairs and reduced alphabet
PseKRAAC   Pseudo K-tuple reduced amino acid composition
MORAN  Moran autocorrelation
NMBroto  Normalized Moreau–Broto
MCC  Matthews correlation coefficient
Sn  Sensitivity
Sp  Specificity
K  Kappa score
FS  F1 score
PR  Precision
RE  Recall
AUC   Area under the curve

Antimicrobial peptides (AMPs) are crucial to the immune system, which develops a primordial defense mecha-
nism. They exist in various eukaryotic organisms, including insects, greenery, and  humans1. These peptides have 
virucidal, tumoricidal, fungicidal, and bactericidal  properties2. AMPs have a short length (six to a hundred amino 
acid residues) and play a significant role in treating and preventing infectious diseases by focusing on harmful 
 microorganisms3. AMPs have attained significant interest as a potential replacement of traditional medications 
such as chemotherapy, radiation therapy, fungus-based therapy, viral-based therapy, and so  on4,5. In contrast to 
these traditional methods, AMPs are highly conducive to developing new methods with easier ways against these 
outdated techniques. Most of the researchers are still concerned about the detection of AMPs to discover the 
properties and create drugs based on each property, which are beneficial for the medical environment. Generally, 
AMPs are the walls of microbes and enter their cells to eliminate specific microorganisms. This approach guaran-
tees the decimation of microbes and minimizes the likelihood of developing drug  resistance6. The identification 
of AMPs using traditional biochemical and biological methods is time-consuming and expensive. Therefore, 
researchers have constructed various datasets such as the Antimicrobial Peptide Database (APD), APD3, Data 
Repository of Antimicrobial Peptides (DRAMP), ADAM, LAMP and so on from AMPs and made predictions 
using computational  methods7–13.

In 2017, Meher et al. proposed a sequence-based statistical predictor with the compliance of Chou’s 5-step 
rule to discover the most crucial features associated with the functional activity of AMPs and they named the 
proposed predictor  iAMPpred14. However, they used the correlation coefficient between amino acids and order-
related rational data. Their approach could be a linear relationship, which may not produce satisfactory results 
for complex biological interactions. In 2018, Veltri et al. applied a Deep Neural Network (DNN) approach to 
detect AMPs. The authors used the Bag of Words (BoW) method to obtain numerical values from  peptides15. 
In 2019, Su et al. proposed a Multi-Scale Deep Neural Network (MS DNN). At first, they used a Long Short-
Term Memory (LSTM) approach with different layers. However, their approach provided insufficient results; 
therefore, they fused the MS DNN with the traditional model to find  AMPs16. In the same year, another method 
was proposed by Wei et al.17. The authors used Graph Attention Networks (GAT) to detect peptide sequences 
using Skip-Gram and Word2Vec to create numerical  numbers17. However, they did not consider the information 
derived from each amino acid’s specific location or position within a sequence. In 2021, Xiao et al. constructed 
a two-level predictor called the iAMP-CA2L structure using a Convolutional Neural Network (CNN) and Support 
Vector Machine (SVM) to classify AMPs and instead quasi-classify them into 10 relevant AMP  subcategories18. 
In 2022, Li et al. proposed a deep learning model, named AMPlify, based on Bi-directional Long Short-term 
Memory (Bi-LSTM) to predict the  AMPs19. According to the study, their proposed model suffered from notable 
shortcomings, namely a lower sensitivity which is a greater gap between sensitivity and specificity. In another 
study, Dee et al. built an LMpred predictor based on pre-trained language and deep learning methods to classify 
 AMPs20. However, the authors obtained insufficient performances with this model, and there is still room for 
improvements to detect the AMPs. In 2023, Yen et al. constructed a sAMPpred-GAT model based on the graph 
attention  approach21. However, the model was performed with insufficient performances with complex strategies, 
and as such there are still opportunities to improve the accuracy with lower complexity. Xu et al. proposed an 
iAMPCN framework based on deep-learning methods, where the authors employed a two-stage procedure to 
distinguish AMPs and their  functionalities22. In the same year, another study proposed by Lee et al. developed 
a Bidirectional Encoder Representations from Transformers (BERT)-based framework called AMP-BERT23. In 
another study, Söylemez et al. designed an AMP-GSM framework to detect AMPs based on grouping, scoring, 
and modeling  stages24. Panwar et al. developed a GEU-AMP50 framework based on Artificial Neural Network 
(ANN) and multiple machine-learning algorithms to detect the  AMPs25. In another study in the same year, Yang 
et al. constructed an AMPFinder model based on a deep-learning  approach26.

Therefore, according to the above survey of recent studies, there is still a significant potential for improving the 
accuracy and robustness of AMP localization with the availability of a wide range of computational approaches 
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in this field. In this study, we applied a novel approach called AMP-RNNpro to detect AMPs. The advancement 
of our approach includes the following steps:

1. This study applied CD-HIT to reduce the redundancy of the combined dataset containing 10,600 sequences, 
which are extracted with eight feature encoding methods.

2. We applied 33 models in each feature extraction and selected six best models with their overall performance.
3. To benefit from the individual strengths of each model, we generated the probabilistic features from these 

six models and integrated them to form the input layer as 48D of our meta-model.
4. This study introduced SHAP-based features, which are essential for the detection the AMPs and targeting 

therapeutic departments.

Our model, AMP-RNNpro, significantly outperforms other state-of-the-art methods. We have developed an 
efficient prediction framework based on our proposed model; the model can be accessed at http:// 13. 126. 159. 30/.

Methods
Workflow of the study
This study introduces a novel approach to identifying AMPs based on a comparatively larger dataset constructed 
and acquired through a comprehensive literature review. Our procedural methodology is depicted in Fig. 1. We 
have applied the CD-HIT to reduce the redundancy of the sequences to obtain a more furnished dataset. Eight 
feature extraction methods have been employed on the finalized dataset. We trained and tested machine-learning 
approaches by utilizing 33 methods on each of the eight feature encodings. The performance of the models 
was rigorously tested using independent tests and tenfold cross-validation strategies. To construct the second-
ary dataset, we selected six models based on their overall performances: K-nearest Neighbor (KNN), Random 
Forest (RF), Extreme Gradient Boosting Classifier (XGB), Extra-trees Classifier (EX), and two meta-classifiers, 
Voting Classifier (Voting), and a Recurrent neural network (RNN) based approach called AMP-RNNpro. All 
the models and relevant parametric variables were derived using Scikit-learn, a freely available data-mining 
library for  Python27,28. Based on the eight feature encoding methods, we generated probabilistic values from the 
selected models, yielding 48 dimensional (48D) features fed into the final predictor. In the secondary dataset 
(48D probabilistic values), there have been more positive values than negative ones. Consequently, we used a 

Figure 1.  Overview of AMP-RNNpro method (A) Dataset collection, preprocessing phase, and feature 
encoding. (B) Applying these feature encodings on independent test and cross-validation methods with 
33 individual models, then selecting six best models from 33 models. (C) Probability feature construction, 
deployment of RNN as the final predictor, and illustration of outcomes.

http://13.126.159.30/
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balancing strategy called the Synthetic Minority Oversampling Technique (SMOTE) for the negative  class29. 
Afterward, we fed the balanced dataset into six models, and according to the comparison results of these models, 
the AMP-RNNpro model has emerged as our meta-model of choice, given that it has taken 48D features as input 
and provided the most efficient outcomes. Finally, our methodology incorporates SHapely Additive exPlanation 
(SHAP) techniques to illustrate the top 20  features30, which significantly contribute to our model’s performance.

Dataset description
We collected four datasets for this study. Initially, we collected XUAMP data as our first dataset from Xu et al.3. 
The authors constructed their dataset by merging samples from several repositories such as the  DRAMP11, 
DRAMP 2.031,  LAMP13,  YADAMP32, etc. They selected 3072 samples with a sequence homology of less than 40%. 
As we constructed numerous datasets, we collected the second dataset from Yan et al.21. The authors created the 
DBAASP non-redundant independent test dataset by curating positive classes from  DBAASPV333 and negative 
classes from the UniProt  databases34. In the DBAASP dataset, the authors obtained 356 samples, with the positive 
samples reducing the redundancy by 90% homology and the negative dataset by 40% homology. Accordingly, 
we gathered another dataset  LAMP13 and  DRAMP11. As mentioned, the XUAMP dataset has already been used 
to build their databases with a 40% threshold. In the current study, we merged all the datasets and applied the 
Cluster Database at High Identity with Tolerance (CD-HIT)35 with an 80% threshold and 5-word size. This 
procedure was conducted to reduce redundancy and increase efficiency in both the training and test datasets. 
This comprehensive selection of datasets guarantees a thorough and accurate evaluation of the capabilities of 
the proposed technique under various circumstances. Table 1 lists the statistical information of the datasets.

Generally, the length of the sequences was not greater than 100 or less than 10. However, sequences with 
non-conventional amino acids, such as "B, J, O, U, X, Z” are rarely  found15. These sequences were excluded 
while performing our study. The peptide protein sequences obtained were focused on "A, C, D, E, F, G, H, I, K, 
L, M, N, P, Q, R, S, T, W, Y" and filtered for further analysis. Figure 2 illustrates the amino acid distribution of 
the final datasets.

Figure 2 exhibits the compositional distribution of 20 amino acids in percentage for both positive and negative 
cases. The corresponding letters in the Fig. 2 indicates all the amino acids. There are 9 (nine) non-polar amino 
acids such as alanine (A), phenylalanine (F), glycine (G), isoleucine (I), leucine (L), methionine (M), proline 
(P), valine (V), and tryptophan (W). There are 6 polar, uncharged amino acids such as serine (S), cysteine (C), 
asparagine (N), glutamine (Q), threonine (T), and tyrosine (Y). Two amino acids are present in the acidic amino 
acid group. They are glutamic acid (E) and aspartic acid (D). Accordingly, lysine (K), arginine (R), and histidine 
(H), are essential amino  acids36. In this study, we observed significant differences in the amino acid composition 
of active antimicrobial peptides (AMPs) and their inactive antimicrobial peptides (non-AMPs), as demonstrated 
by the bar graph analysis. We observed that in the positive AMPs, the non-polar amino acid proline (P) and 
the polar amino acid group serin (S) were enriched by more than 100%. For non-AMPs, the non-polar groups 
alanine (A) and leucine (L) constituted more than 80% of the total amino acids. In addition, tryptophan (W) 
appeared at lower levels in AMPs and non-AMPs.

Table 1.  Datasets and statistical information.

Dataset Category Positive Negative Total

Before CD-HIT
Train dataset 3536 3536

12,520
Test dataset 3122 2326

After CD-HIT
Train dataset 2865 3348

10,600
Test dataset 2389 1998

Figure 2.  Compositional distribution of amino acid for both positive and negative sequences of the merged 
dataset.
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Feature encoding
Feature encoding methods play a vital role in the biological fields to prepare the datasets for machine learning 
and deep learning algorithms. Therefore, we employed eight feature encoding methods from four different 
feature encoding groups. The applied feature encoding groups and feature encoding methods are Amino Acid 
Composition (AAC), Adaptive Skip Dinucleotide Composition (ASDC), PseAAC of Distance-Pairs and Reduced 
Alphabet (DP) from the amino acid compositional group: Grouped Amino Acid Composition (GAAC) and The 
Composition of k-spaced Amino Acid Pairs (CKSAAGP) from Grouped amino acid compositional group, Moran 
(Moran) and Normalized Moreau-Broto (NMBroto) from the Autocorrelation-based feature encoding group: 
and Pseudo K-tuple reduced amino acid composition (PseKRAAC) from Pseudo-amino acid compositional-
based feature  group37,38.

[I] Amino acid compositional features
AAC 
The AAC calculates the normalized quantities of each amino acid sequence. It provides an overview of the pro-
portion of each  peptide39. The mathematical formula is as follows:

where k denotes certain kinds of amino acids, Nk is the length of the sequences, and  N is the total number of 
amino acids. In this study, we used 20D of the AAC features.

ASDC
ASDC is an adapted version of the dipeptide composition that generates a comprehensive descriptive process 
that considers all pertinent data between neighboring residues and intervening  residues39. The feature vector of 
the ASDC can be defined as

where T − 1 is the interference amino acids, fi is the frequency of peptides, which is ≤ T − 1 intervening of amino 
acids, this study used 400D of the ASDC features.

DP
Another feature-encoding method is DP. This is based on the frequencies of k-spaced amino acid pairs, and the 
composition of the protein sequence and distance pairs used in PseAAC, which indicates pairs of amino acids 
that are detached by a certain quantity of residues. The Reduced Alphabet Scheme uses amino acids like clusters 
to reduce the dimensionality of the feature  vector40. This formula is expressed as follows:

where DP(i, j) is the number of the distance pair of peptides, N is the length of the sequence, n is the distance 
between two peptides, and w is the weight of the i th residue at k th sequences. In this study, the 20D DP features 
were used.

[II] Grouped amino acid compositional features
GAAC 
GAAC features are split into five groups: aliphatic groups with GAVLMI (6 amino acids), aromatic groups with 
FYW (3 amino acids), positively charged groups with KHR (3 amino acids), negatively charged groups with DE 
(2 amino acids), and group 5 with uncharged groups with STCPNQ (6 amino acids)39,41, 42. The mathematical 
formula can be specified as

where k is the acid type, G is the group number, N is the total number of acids, and G(k) is the groups number 
of peptides. In this study, we used 5D of the GAAC features.

CKSAAGP
CKSAAGP considers amino acid combinations detached according to any k residues, giving a more adaptable 
way to identify local sequence trends in protein sequences. It includes evaluating the presence of amino acid 
groupings within a specified distance and potentially finding significant morphological and functional  patterns43. 
The formula can be defined as:
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N
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where T means the length of peptides, N is the total number of acids, and g1, g2,… g5 is the group of amino acids. 
100D CKSAAGP-based features have been used in this study.

[III] Autocorrelation features
MORAN
This is a mathematical correlation-based  feature44 used to evaluate the closely related nearby measurements in a 
spatial data  collection45. In this study, we used 16D features of the MORAN feature. The formula can be stated as:

where T is the total quantity of the position at βkj , N is the current number of coordinates, a is the normalized 
value of ak,aj parameter, and βkj is the dimension of the coordinates.

NMBroto
This is similar to the MORAN feature. However, their differences lie in function, normalization, and calculation 
as NMBroto is calculated using the frequencies of k-spaced amino acid pairs and the amino acid composition 
of the protein  sequence46. NMBroto can be defined as:

where k denotes the position of peptides. A, t, lag denote the length of the residues and the distance between the 
peptides. This study used the 16D feature of the NMBroto.

[IV] Pseudo‑amino acid compositional features
PseKRAAC 
This is an extension of the Pseudo Amino Acid Composition PseAAC. This feature has 16 types of clustering 
methods; in this study, we used type 7 features, also called multiple clusters, with 4 clustering  methods47. The 
formula can be defined as:

where w is the weight of the j th position, n is the length of the tuple, N is the length of the sequence, and fi is 
the frequency in the i th residue.

Our proposed model construction
RNN is one of the most popular deep learning models used in various fields to detect the classes  accurately48. 
RNNs can handle sequential or natural language processing (NLP) data. At each step, RNN possesses the internal 
layer of the input and the hidden state from the previous phase. This invisible state enables the recollection of 
the network and allows it to verify correlations in sequential  input49. We selected this process for the optimal 
outcome to detect the AMPs, as RNNs are mainly used for the time series data, though could be utilized for 
sequence data, thus rendering them appropriate for jobs requiring sequential information. RNNs are intended to 
identify relationships and patterns in sequential data. FASTA patterns might vary in dimension, and RNNs can 
handle sequences of varied lengths despite requiring set input weights. This adaptability is significant in genetics 
and bioinformatics, where sequences might change in length.

We have constructed our meta-model “AMP-RNNpro” as shown in Fig. 3, that is optimized with six layers—an 
input layer, four hidden layers, and a dense layer. Accordingly, fifty epochs, three activation functions, and various 
filter sizes have been used in the independent test. The filter sizes connected with these layers are 128, 64, 32, and 
16. We adopted the ReLU activation function in the first three layers, and in the fourth layer, we used the tanh 
function to handle the complexity. We added dropouts of 0.5, 0.2, 0.2, and 0.2 to reduce over-fitting. Finally, a 
dense layer contains a single neuron with a sigmoid activation function, producing binary numbers 0 and 1. A 
test result indicates an AMP if it is greater than 0.5; otherwise, it suggests a non-AMP. This study used Adam 
Optimizer to adjust the model’s internal parameters. Notably, the Keras library, a popular tool for developing 
and upgrading neural networks, was used to compute our  model50. The RNN structure, sigmoid function, tanh, 
and ReLU formulas are specified as:
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(

N
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where Whh is the matrix weight of the recurrent connections, Wxh is the input connection weight, bh denotes 
the bias vector, j is the current state,  jt−1 is the previous state, and α is the activation function,  Ru denotes the 
ReLU, m is the maximum, where it returns the maximum value between 0 and u , and u is the input. Sa  denotes 
the sigmoid function, where e presents the exponential function and the output range (0,1). Ht is the tanh func-
tion; this function range is (−1, 1), et − e−t denotes the hyperbolic sine, and et + e−t denotes the hyperbolic 
cosine function.

Machine‑learning models
This study used 33 models, where we applied some traditional models and some meta-models using stacking 
classifiers, voting classifiers, along with simple RNN model. We investigated several combinations of voting and 
stacking based models. All the models are demonstrated in the supplementary file (S1). Among them we selected 
two meta-classifiers, Voting and AMP-RNNpro, additionally, four distinct classification methods, including 
K-nearest Neighbor (KNN), Random Forest (RF), Extreme Gradient Boosting Classifier (XGB), and Extra-trees 
Classifier (EX) based on their performance, and we have employed several hyper-parameters to obtain a better 
outcome. These models are further described in the following.

KNN is one of the most widely used classification techniques. In general, KNN analyzes most classes between 
the data points "K" in the feature area or the nearest  data51. We set the K as 100 neighbors to account for the 
100 nearest neighbors in the data sets. To obtain the distance between the data points, we applied the Manhat-
tan technique. We used the weights parameter as distance for deciding whether closet neighbors had a more 
substantial impact on the prediction with their weights. Accordingly, we used the "kd tree” algorithm for the 
final dimension results.

Another classification technique, RF, predicts the result using the voting stage to generate many decision-
making structures during the training  phase52. In this study, the RF model is configured with "sqrt" as the feature 
dimension, where the number of features boosts the model’s robustness and prevents over-fitting. The node 
splitting threshold was set at "entropy," predictability for repeatable outcomes was set at a random state value 
of "100," and the prediction method employed was an ensemble of "100" decision trees (DT) to extract feature 
information from the feature-dimensional selection.

The XGB model combines a highly streamlined operation with the potential of gradient-boosting method, 
where this method of tree construction and each subsequent tree address the mistakes made by its predecessors 
to produce an accurate  result53. This study used an estimator of “100” for the number of boosts and a learning rate 
of “0.1"; a subsample of “1.0” denotes all training samples applied in each round. The regularization parameter 
is “30” for preventing underfitting or overfitting.

In the EX classifier builds the trees using random split techniques and provides the result by combining 
 methods54. Where, EX provided the most effective results by the averaging method’s. This study used a “100” 
estimator for the classification.

Another popular ensemble approach in machine learning is the Voting classifier, where included have 
included the estimated probabilities across multiple baseline models such as KNN, RF, XGB, DT, and EX, which 
are subsequently employed as input data and used voting soft parameter to deliver the final classification results.

Performance evaluation metrics
We measured the model’s effectiveness using the following metrics: Accuracy, Sensitivity (Sn), Specificity (Sp), 
Matthews Correlation Coefficient (MCC), Kappa Score (K), F1 Score (FS), and Precision (PR). These indica-
tors allowed for a thorough quantitative assessment of the model’s performance. In this context, TP, TN, FP, 

(12)ReLU = Ru = m(0, u)(∵ u = u > 0)

(13)tanh(t) = Ht =
et − e−t

et + e−t

Figure 3.  AMP-RNNpro framework’s structure overview.



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:12892  | https://doi.org/10.1038/s41598-024-63461-6

www.nature.com/scientificreports/

FN denotes respectively true positive, true negative, false positive, and false  negative55–57. The corresponding 
mathematical formulae are as follows.

Experimental results
In this study, we have used several performance evaluation metrics as mentioned in the previous section to 
justify the performances of the developed models. We compared the performances of several machine learning 
models with our proposed model AMP-RNNpro. All the results have been compared and analyzed in this sec-
tion, highlighting the performances of the proposed model.

Performances of machine learning models
Table 2 demonstrates the independent test method for providing a better outcome than the cross-validation. In 
the supplementary file, we have added the cross-validations and other independent test performances accordingly.

In Table 2, from the various descriptors, it can be deduced that the best performance has been obtained from 
ASDC feature encoding, demonstrating as a potential candidate among the eight feature encoding techniques. 
From the AAC feature selection, the best outcome has been obtained by EX considering the overall evaluation 
metrics than the other models. AMP-RNNpro performed better than the other models, securing 95.58% accuracy, 
surpassing other models on ASDC features. It can be included that the AMP-RNNpro model performed remark-
ably not only with ASDC feature but also with additional features while considering all the evaluation metrics. In 
ASDC, the sensitivity and specificity of this model have been obtained respectively, 97.65% and 93.85%, which 
indicates proficiency in detecting a new sample precisely. Following that, in the CKSAAGP feature, AMP-RNNpro 
has performed considerably better than the other models, obtaining an accuracy of > 90%. In the DP feature 
encoding approach, EX has performed notably, providing an accuracy of 95.19% and the other evaluators scoring 
more than 90%. In GAAC encoding, AMP-RNNpro resulted in better performance than the other models. In the 
MORAN feature, both EX and AMP-RNNpro have performed well, resulting in a similar accuracy of 90.18%. 
But we calculated the other evaluation metrics where the EX model performed notably in consideration of the 
sensitivity and specificity, which is 96.45%, 84.93% on par with the AMP-RNNpro model, which has achieved 
95.95% on sensitivity and 85.95% on specificity. In the NMBroto and PseKRAAC feature approaches, the RF 
model obtained the highest accuracy than the other models. It is prevalent that ASDC can provide enormous 
potential in detecting AMPS, whereas AMP-RNNpro displayed the most outstanding performance considering 
other classifires. Accordingly, all models are statistically significant, except for AMP-RNNpro of the DP descrip-
tor, where the p-value is greater than 0.01, indicating that the model does not have sufficient methods to reject 
the null hypothesis. The study found that a p-value of less than 0.05 indicates scientific validation, which can 
result in a significant difference when making  decisions58. All the p-values are included in the supplementary file.

In Table 3, we demonstrated the analysis of 48D probabilistic values, where we merged all the probabilistic 
values which are generated from our best six chosen model of machine learning method. However, this table 
showed that AMP-RNNpro has optimal performances than others, where AMP-RNNpro excels in performance 
and demonstrates excellent results in various evaluation metrics. This model exhibits accuracy in classifying 
tasks with a 97.15%. In K, a measurement of inter-rater consistency, indicates the model’s stability with an 
exceptional value of 94.30%. The MCC of 94.31%. Furthermore, the model’s capacity to accurately capture the 
positive class of 96.48% in Sn and specifically detect the negative class with 97.87% respectively. The model’s 
balanced performance is indicated by the f1-score, precision, which achieves an astounding 97.23% with values 
of and 97.87%. Though in KNN and Voting has high precision rat but the AMP-RNNpro has optimal values 
in other assessments with adequate precision, where this model captured the actual class more than 97 times 

(14)Accuracy =
(TP + TN)

(TP + TN + FP + FN)

(15)PR =
TP

(TP + FP)

(16)Sn =
TP

(TP + FN)

(17)FS =
2 ∗ (PR ∗ RE)
((PR + RE))

(18)MCC =
TP ∗ TN − FP ∗ FN

√
TP + FP ∗ (TP + FN) ∗ (TN + FP)

(19)K =
2 ∗ (TP ∗ TN − FP ∗ FN)

(TP + FP) ∗ (FP + TN)+ (TP + FN) ∗ (FN + TN)

(20)Sp =
TN

(TN + FP)
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and balanced the actual class and the predicted class more precisely. In Sp, Voting has 98.34%, which is high 
performance to distinguish the negative classes from the samples, however, our proposed model AMP-RNNpro 
has potential performance to detect the non-AMPs. Overall, the AMP-RNNpro method is a suitable model for 
determination of antimicrobials from FASTA sequences.

Table 2.  Performance of machine learning classifiers and AMP-RNNpro on feature encoding methods. 
Significant values are in bold.

Descriptor Classifier Accuracy  (%) MCC (%) K (%) PR (%) FS (%) Sn (%) Sp (%) P-value

AAC 

EX 95.19 90.58 90.36 95.19 95.19 98.50 92.42  < 0.01

RF 94.67 89.50 89.31 94.67 94.67 97.75 92.09  < 0.01

KNN 92.02 84.80 84.10 92.02 92.02 98.30 86.77  < 0.01

XGB 75.86 53.09 52.15 75.86 75.86 83.88 69.15  < 0.01

Voting 86.62 74.18 73.38 86.62 86.62 93.39 80.95  < 0.01

AMP-RNNpro 95.17 90.43 90.30 95.17 95.17 97.60 93.14  < 0.01

ASDC

EX 95.42 90.95 90.81 95.42 95.42 98.00 93.26  < 0.01

RF 95.24 90.58 90.44 95.24 95.24 97.80 93.09  < 0.01

KNN 91.54 83.98 83.16 91.54 91.54 98.40 85.81  < 0.01

XGB 88.97 78.23 77.93 88.97 88.97 92.69 85.85  < 0.01

Voting 93.07 86.47 86.14 93.07 93.07 97.20 89.62  < 0.01

AMP-RNNpro 95.58 91.22 91.12 95.58 95.58 97.65 93.85  < 0.01

CKSAA-
GP

EX 93.18 86.56 86.35 93.18 93.18 96.40 90.50  < 0.01

RF 93.37 86.97 86.72 93.37 93.37 96.90 90.41  < 0.01

KNN 89.86 80.83 79.84 89.86 89.86 97.50 83.47  < 0.01

XGB 84.43 69.64 68.99 84.43 84.43 90.39 79.45  < 0.01

Voting 90.49 81.61 81.04 90.49 90.49 96.05 85.85  < 0.01

AMP-RNNpro 93.62 87.31 87.19 93.62 93.62 95.80 91.80  < 0.01

DP

EX 95.19 90.58 90.36 95.19 95.19 98.50 92.42  < 0.01

RF 94.83 89.77 89.62 94.83 94.83 97.50 92.59  < 0.01

KNN 92.02 84.80 84.10 92.02 92.02 98.30 86.77  < 0.01

XGB 75.86 53.09 52.15 75.86 75.86 83.88 69.15  < 0.01

Voting 86.62 74.18 73.38 86.62 86.62 93.39 80.95  < 0.01

AMP-RNNpro 95.17 90.44 90.31 95.17 95.17 97.70 93.05  > 0.01

GAAC 

EX 89.72 79.88 79.46 89.72 89.72 94.29 85.89  < 0.01

RF 89.58 79.44 79.16 89.58 89.58 93.19 86.56  < 0.01

KNN 89.88 80.40 79.81 89.88 89.88 95.50 85.18  < 0.01

XGB 60.25 24.68 22.67 60.25 60.25 78.63 44.87  < 0.01

Voting 88.65 78.19 77.40 88.65 88.65 95.35 83.05  < 0.01

AMP-RNNpro 89.99 80.67 80.05 89.99 89.99 95.85 85.10  < 0.01

MORAN

EX 90.18 81.13 80.43 90.18 90.18 96.45 84.93  < 0.01

RF 90.13 80.96 80.32 90.13 90.13 96.05 85.18  < 0.01

KNN 85.16 73.55 70.80 85.16 85.16 98.80 73.75  < 0.01

XGB 70.62 44.45 42.36 70.62 70.62 84.68 58.85  < 0.01

Voting 86.62 75.68 73.59 86.62 86.62 98.30 76.85  < 0.01

AMP-RNNpro 90.18 81.02 80.41 90.18 90.18 95.95 85.35  < 0.01

NMBroto

EX 90.15 81.09 80.38 90.15 90.15 96.45 84.89  < 0.01

RF 90.18 81.12 80.42 90.18 90.18 96.40 84.97  < 0.01

KNN 85.39 73.68 71.22 85.39 85.39 98.25 74.63  < 0.01

XGB 69.50 42.35 40.23 69.50 69.50 84.03 57.35  < 0.01

Voting 87.01 76.13 74.31 87.01 87.01 97.80 77.98  < 0.01

AMP-RNNpro 90.04 80.67 80.13 90.04 90.04 95.45 85.52  < 0.01

Pse-KRAAC 

EX 82.13 65.54 64.53 82.13 82.13 90.04 75.51  < 0.01

RF 82.97 66.19 65.94 82.97 82.97 86.09 80.37  < 0.01

KNN 82.61 66.72 65.53 82.61 82.61 91.34 75.30  < 0.01

XGB 64.33 34.68 30.97 64.33 64.33 86.39 45.88  < 0.01

Voting 81.13 63.39 62.51 81.13 81.13 88.44 75.01  < 0.01

AMP-RNNpro 75.27 54.08 51.50 75.27 75.27 89.94 63.00  < 0.01
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Figure 4 compares the true positive and true negative rates for six classifiers using eight feature encod-
ings and probabilistic techniques (AAC, ASDC, CKSAAGP, DP, GAAC, MORAN, NMBroto, PseKRAAC, 48D 
probability merged dataset). The approaches are labeled A, B, C, D, E, F, G, H and I. When a thorough analysis 
is considered, AMP-RNNpro stands out as the best model inside the machine learning framework for feature 
encoding and 48D dataset. The RF, AMP-RNNpro, KNN, and Ex classifiers each attain a noteworthy AUC value 
of 0.99 in subplots A, B, and D. In C, the AMP-RNNpro, KNN, and Ex classifiers achieved 0.99 AUC score. The 

Table 3.  Performance analysis of probabilistic features frameworks. Significant values are in bold.

Mode Classifier Accuracy MCC K PR FS Sn Sp

48D probabilistic features

EX 0.9703 0.9409 0.9407 0.9820 0.9711 0.9604 0.9810

RF 0.9624 0.9248 0.9247 0.9709 0.9634 0.9560 0.9692

KNN 0.9635 0.9278 0.9271 0.9839 0.9641 0.9450 0.9834

XGB 0.9658 0.9316 0.9316 0.9732 0.9668 0.9604 0.9716

Voting 0.9624 0.9257 0.9248 0.9839 0.9629 0.9428 0.9834

AMP-RNNpro 0.9715 0.9431 0.9430 0.9799 0.9723 0.9648 0.9787

Figure 4.  AUC Roc curve analysis on six classifiers on eight feature encoding methods and probabilistic 
merged dataset. The approaches are labeled (A) AAC feature (B) ASDC feature (C) CKSAAGP feature (D) DP 
feature (E) GAAC feature (F) MORAN feature (G) NMBroto feature (H) PseKRAAC feature (I) 48-dimensional 
probabilistic features from six classifier.
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AMP-RNNpro, KNN, RF, and Ex classifiers have a remarkable AUC value of 0.98 in subplots of F, G. In the E 
subplot, The AMP-RNNpro, KNN, and Ex classifiers have 0.98 AUC value. KNN and RF classifiers have an AUC 
score of 0.92 in Subplot H. In I, we demonstrated the probabilistic values outcomes, where it is clearer that, with 
the probability values most of the models outperformed with this dataset, where AMP-RNNpro model obtained 
99.61% of AUC score, demonstrates the proficiency in accurately distinguishing the classes. As a result, Fig. 4 
illustrates the overall decent performance of these methods, with the majority identifying AMPs effectively with 
AUC values over 0.99.

Comparison of AMP‑RNNpro with others model in the current study
To demonstrate the strengths of probabilistic feature combinations over single-feature encoding, we generated 
figures based on several performance evaluation metrics. Our study, represented in Fig. 5, arranges feature 
extraction strategies according to performance. It becomes prevalent for every performance evaluation metric 
that AMP-RNNpro outperforms every other single based model. Though in single-based descriptor’s XGB, and 
RF demonstrated an excellent performances in MCC, SP, and Sn, but overall performance consideration, we 
conclude that AMP-RNNpro model has optimal numbers with 48D probabilistic values but also this model well 
performed in single based feature encoding method, where, in accuracy term’s, AAC, ASDC, CKSAAGP has 
optimal performed with AMP-RNNpro, and with the probability this framework obtained higher accuracy than 
the others method. In MCC, SN, and Sp have also this model provided a sufficient results. Therefore, considering 
the overall performances, we conclude that our proposed model AMP-RNNpro achieved a better outcome in 
every evaluation metrics with an adequate performance.

Discussion
Performance comparison of the existing predictor
Figure 6 illustrates a comprehensive comparison of specificity and sensitivity outcomes in several models includ-
ing our proposed model and other existing models such as sAMPpred-GAT, iAMP-2L, AMPlify, iAMPpred, 
LMpred, AMPFinder, AMPscanner. The results show that our model, AMP-RNNpro, outperformed all other 
models. The increased specificity indicates that our algorithm correctly detects AMPs.

In Table 4, we have shown performance comparisons of our model with several existing prediction tools. It 
demonstrates that our model achieved higher accuracy and AUC scores than the other proposed models. Our 
proposed model has taken probabilistic features derived from 8 feature encoding techniques which possess 
intrinsic differentiating capability and delivered a composed outcome by identifying the negative class with 
97.87% specificity and the positive class with 96.48% sensitivity. Moreover, our model has obtained a 99.61% 
AUC score and 97.15% accuracy. So, it can be concluded that our model has optimally distinguished between 
the active and inactive AMPs. In comparison with the iAMPred and iAMP-2L models’ performance on the 
independent test dataset of AMPs, our model has an increase in accuracy by 4% and specificity of 10% over these 
two models. Based on the independent test analysis, AMP-RNNpro outperformed AMPlify model by 15% in 
accuracy and 30% in sensitivity. The difference between sensitivity and specificity of AMPlify is over 30 percent 
that may lead to an unbalanced detection on unseen data. Our suggested model is more powerful and more 
accessible to detect the AMPs than the complex GAT-based feature selections model sAMPpred-GAT which 
used cross-validation method for evaluation. In our study, we have evaluated our model based on independ-
ent test as it is more viable to depict how suited our model is for practical application than the cross-validation 
technique. However, sAMPpred-GAT model’s performances are relatively lower than AMP-RNNpro and also 
possess difference between sensitivity and specificity over 35% that may greatly affect to the unbiasedness of the 
model. LMpred and AMPfinder tested their models on various datasets. AMP-RNNpro outperformed LMpred 
by 3 percent in accuracy, sensitivity, and specificity. In comparison with AMPfinder, AMP-RNNpro achieved 
3% higher results in accuracy. In AMPfinder model’s performance, the gap between specificity and sensitivity is 
10% whereas in our model it is 1% which demonstrates a more consistent performance in differentiating between 
the AMPs and non-AMPs. By comparing our proposed model to the majority of the state-of-the-art, we can 
conclude that our proposed model can successfully deliver more balanced and accurate results which will be 
more efficient for real life applications.

Adaptability and stability analysis
We conducted experiments with our proposed model on a diverse dataset. We experimented with AMPFinder’s 
D1 test dataset and iAMPCN’s initial stages test dataset to evaluate the model’s capabilities with these datasets.

Case study 1
We used AMPFinders D1’s  dataset26, and we observed that there were 980 active sequences and 982 non-active 
sequences. To validate our model with the dataset, we have recognized that AMP-RNNpro obtained 96.73% in 
accuracy, 99.82% in sensitivity, and 62.96% in specificity. It is clearly observed that our model performed well 
in the independent test approach.

Case study 2
We have another experiment with the  iAMPCN22 models on a first-stage independent test dataset to validate 
our models. The authors stated that they organized their dataset by aggregating the various data repositories. 
However, we collected 2000 negative and positive samples to assess our model. The results of this study showed 
96.13% in accuracy, 91.16% in sensitivity, and 98.46% in specificity. This result demonstrated our model’s remark-
able and potent ability to recognize the AMPs dataset.
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Interpretation
AMP-RNNpro has been constructed with optimal probabilistic features from eight feature encoding techniques. 
Hence, it has delivered a more robust and precise performance compared to the previous predictors. Following 
recent studies, a model interpretation by illustrating the impacts of the probabilistic features on performance 
has been accomplished using  SHAP30. In Fig. 7, the illustration demonstrates the top 20 features based on their 
overall impact on the outcome of our model.

In Fig. 7, best six models based on AAC and ASDC, CKSAAGP features indicate their most significant con-
tribution in the detection of AMPs. The remaining 2 spots of the top 20 have been taken by models based on the 
NMBroto feature encoding technique. So, it dictates that the compositional features of AAC and ASDC play a 
vital role in the detection and development of medications. Wang et al. previously conducted AAC, the amino 

Figure 5.  A comparison of 48D probability values classifieir with eight feature encodings classifier. The 
approaches are labeled as: (A) accuracy, (B) MCC, (C) specificity, (D) sensitivity.
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acid composition and ASDC which represents the amino acid chain. The authors stated that these two features 
have significant potential for drug discoveries and peptide  identification60. Kabir et al. also mentioned that the 
AAC feature is more impactful in detecting  AMPs61. Park et al. proposed an antimicrobial function: anticancer 
prediction tools, The study found that CKSAAGP was one of the most important features for predicting the 
 anticancer62. As a result, it can be apprehended that the further exploration of these features holds greater pos-
sibilities both in detection and drug discovery.

Website implementation
We have implemented a website of our model to predict the AMPs. The interface of our prediction tool is shown 
in Fig. 8.

We have designed a simple interface that is easier to understand and efficient to use for detecting AMPs with 
proper functionalities. Initially, an input section is given, allowing a user to provide sequences in FASTA format 
for AMP prediction of the AMPs. Below the input section are two buttons: ‘Predict’ and ‘Example’. After click-
ing the ‘Predict’ button, it shows the prediction result in the output box. The output is shown in the following 
First-In-First-Out (FIFO) format. When the user presses ‘Example’ button it will give some sequences in the 
input section. The output will be shown as positive for the active AMPs and negative for the inactive-AMPs. 
Additionally, if the given sequences contain any unnecessary numbers or strings then the excessive numbers 
or strings will be excluded while the prediction and the result will be provided for the clipped sequences. Our 
prediction tool can be found at http:// 13. 126. 159. 30/.

Conclusion
A robust and novel method, named AMP-RNNpro, has been developed for detecting AMPs based on eight 
features of different criteria, additionally providing insights into the features that play a dominant role in the 
detection. The proposed model comprises compositional, positional, and physiochemical, as well as other proper-
ties for detecting AMPs with high accuracy and precision. Our recommended method is novel as the probabil-
istic features possess more innate abilities to distinguish AMPs. Thus, it analyzes AMPs more swiftly, instantly 

Figure 6.  Comparison of the other proposed model with AMP-RNNpro.

Table 4.  Performances of AMP-RNNpro and existing AMPs prediction tools.

Model name Accuracy Sensitivity Specificity AUC Reference

iAMPpred 0.9217 0.9938 0.8456 0.9361 14

iAMP-2L 0.9282 0.9956 0.8608 0.9018 59

AMPlify 0.8032 0.6162 0.9902 97.44 19

sAMPpred-GAT 0.715 ± 0.01 0.530 ± 0.011 0.9 ± 0.02 0.77 21

AMPFinder 0.9445 0.9945 0.8945 0.9874 26

LMPred 0.9333 0.9228 0.9438 0.9789 20

AMPscanner 0.5296 0.5885 0.4707 0.5436 15

AMP-RNNpro 0.9715 0.9648 0.9787 0.9961 Proposed model

http://13.126.159.30/
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identifying if they have anti-characteristics and categorizing the features. In healthcare institutions, it is crucial 
for efficiently and rapidly appraising patient medication. We have built a user-friendly website to predict the 
AMPs with our proposed model.

To increase the precision and efficiency of AMP identification, future studies are needed to explore new 
feature encoding methods and ensembled deep neural networks feature selection techniques that may help in 
measuring the contribution of each feature encoding technique in discerning AMPs from non-AMPS consider-
ing the incorporation of larger datasets from the medical field.

Figure 7.  Features importance on top 20 features.

Figure 8.  AMP-RNNpro framework’s website. Demonstrates a input box, example button, predict button and 
outcome of the AMPs.
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Data availability
The dataset and the source code have been available for this study is here. https:// github. com/ Shazz ad- Shaon 
3404/ Antim icrob ials_. git.
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