Table 3.
Performance analysis of probabilistic features frameworks.
Mode | Classifier | Accuracy | MCC | K | PR | FS | Sn | Sp |
---|---|---|---|---|---|---|---|---|
48D probabilistic features | EX | 0.9703 | 0.9409 | 0.9407 | 0.9820 | 0.9711 | 0.9604 | 0.9810 |
RF | 0.9624 | 0.9248 | 0.9247 | 0.9709 | 0.9634 | 0.9560 | 0.9692 | |
KNN | 0.9635 | 0.9278 | 0.9271 | 0.9839 | 0.9641 | 0.9450 | 0.9834 | |
XGB | 0.9658 | 0.9316 | 0.9316 | 0.9732 | 0.9668 | 0.9604 | 0.9716 | |
Voting | 0.9624 | 0.9257 | 0.9248 | 0.9839 | 0.9629 | 0.9428 | 0.9834 | |
AMP-RNNpro | 0.9715 | 0.9431 | 0.9430 | 0.9799 | 0.9723 | 0.9648 | 0.9787 |
Significant values are in bold.