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Abstract
Background: In Canada’s largest COVID-19 serological study, SARS-CoV-2 antibodies in blood donors have been monitored since 2020. No 
study has analysed changes in the association between anti-N seropositivity (a marker of recent infection) and geographic and sociodemo-
graphic characteristics over the pandemic.
Methods: Using Bayesian multi-level models with spatial effects at the census division level, we analysed changes in correlates of SARS-CoV-2 
anti-N seropositivity across three periods in which different variants predominated (pre-Delta, Delta and Omicron). We analysed disparities by 
geographic area, individual traits (age, sex, race) and neighbourhood factors (urbanicity, material deprivation and social deprivation). Data were 
from 420 319 blood donations across four regions (Ontario, British Columbia [BC], the Prairies and the Atlantic region) from December 2020 to 
November 2022.
Results: Seropositivity was higher for racialized minorities, males and individuals in more materially deprived neighbourhoods in the pre-Delta 
and Delta waves. These subgroup differences dissipated in the Omicron wave as large swaths of the population became infected. Across all 
waves, seropositivity was higher in younger individuals and those with lower neighbourhood social deprivation. Rural residents had high 
seropositivity in the Prairies, but not other regions. Compared to generalized linear models, multi-level models with spatial effects had better fit 
and lower error when predicting SARS-CoV-2 anti-N seropositivity by geographic region.
Conclusions: Correlates of recent COVID-19 infection have evolved over the pandemic. Many disparities lessened during the Omicron wave, 
but public health intervention may be warranted to address persistently higher burden among young people and those with less social 
deprivation.
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Introduction
Disparities in COVID-19 infections and cases have been 
reported by geographic region, age, sex, racialized minority 
status and occupation.1–3 But limited information is available 
on how these disparities have evolved with time. A Barcelona 
analysis found that while low-income neighbourhoods had 
higher rates of laboratory confirmed cases in earlier 
waves, this trend reversed March to November 2022.4

Because case-based COVID-19 surveillance captures a 

fraction of symptomatic cases and omits asymptomatic cases, 
many countries have invested in serological surveillance.5,6

Many countries have begun to do SARS-COV-2 surveillance 
in blood donations, strengthening partnerships between 
blood collectors and public health.7 Blood donors are well- 
suited for population serosurveillance due to access to re-
peated samples from healthy individuals, low cost and estab-
lished high throughput testing infrastructure.8 Serological 

Key Messages 
� Prior studies have found inequalities in COVID-19 infection by sociodemographic and geographic subgroups, but limited information is 

available on how these may have changed as the pandemic has evolved. 
� While many disparities in markers of recent infection across sociodemographic subgroups of Canadian blood donors decreased in the 

recent Omicron period, seroprevalence was consistently higher among young people and rural residents of the Prairies region. 
� Longitudinal serological surveillance in blood donors can be used to understand how disparities in population infection and immunity 

evolve over time. 
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surveillance can reveal temporal patterns, infection preva-
lence and differences in disease dynamics across geographic 
and demographic subgroups.9–11

In Canada’s largest SARS-CoV-2 seroprevalence study, 
Canadian Blood Services has tested monthly cross-sectional 
samples from nine Canadian provinces since May 2020. To 
date, four publications have reported logistic regression 
analyses over different periods, most recently up until June 
2022.12–15 Reports found that anti-N seropositivity was as-
sociated with younger age, belonging to a visible minority, 
being from a more materially deprived neighbourhood, or 
from a less socially deprived neighbourhood.12,13 These find-
ings help to identify disparities in SARS-CoV-2 infection and 
can inform resource allocation. However, the evolution of 
correlates of seropositivity through Omicron has not been 
analysed, urban and rural differences in seropositivity have 
not been explored, and geographic variability in seropositiv-
ity at the sub-provincial level has not been published. 
Modelling geographic variability is useful because many 
hard-to-track factors that influence COVID-19 epidemiol-
ogy differ between and within Canadian provinces: occupa-
tional and social patterns, ability to work remotely and 
compliance with social distancing guidelines. These unob-
served factors can limit use of generalized models for under-
standing geographic differences in COVID-19 seropositivity. 
Multi-level models with spatial effects could account for spa-
tial heterogeneity that is not explained by available covari-
ates and potentially improving seropositivity estimation 
through the borrowing of information from neighbouring 
areas. To date, multi-level models with spatial effects have 
not been used for analysing Canadian SARS-CoV-2 seropos-
itivity data.16

In this study, we used Bayesian multi-level modelling with 
spatial effects to analyse evolutions in the relationship between 
SARS-CoV-2 seropositivity and geographic, demographic and 
neighbourhood characteristics across pandemic periods, includ-
ing the recent Omicron wave. Our analysis uncovered shifts in 
COVID-19 health disparities, illustrating the value of blood do-
nor serosurveillance and multi-level modelling to understanding 
seropositivity across diverse populations.

Methods
Using a Bayesian generalized linear model (GLM) 
framework with logit link function, we analysed changes 
in individual- and neighbourhood-level correlates of 
SARS-CoV-2 anti-N positivity over time. Using GLM 
models with fixed effects as a comparator, we assessed 
multi-level (hierarchical) models (MLM) with unstructured 
and structured random effects. Across four regions and 
three pandemic waves, we compared model fit, assessed se-
ropositivity by census division and analysed correlations 
between individual and neighbourhood characteristics and 
seropositivity.

Data
We analysed the Canadian Blood Services SARS-CoV-2 sero-
prevalence study data from December 2020 to December 
2022 in nine provinces of Canada (Qu�ebec and the territories 
were excluded). Samples were randomly selected for serologic 
testing from approximately last two weeks of each month 

from January 2021 to December 2021 and from all weeks 
from January 2022 to November 2022. As previously de-
scribed,13 a straight random sample was applied until June 
2021, after which stratification by age group was applied to 
enable a smaller monthly sample size. Samples were tested 
for anti-nucleocapsid antibodies using the Roche Elecsys® 

Anti-SARS-CoV-2 assay. We extracted individuals’ age, sex, 
self-reported race/ethnicity dichotomized into white and ra-
cialized minority and postal code from donation records. We 
used postal code to classify donors as living in an urban or ru-
ral area and assign donors to a quintile of the Pampalon 
Material and Social Deprivation Indices.17 Material depriva-
tion is a neighbourhood measure of socioeconomic depriva-
tion that captures lack of access to essential material 
resources that can impact one's quality of life and well-being; 
social deprivation is a neighbourhood measure based on edu-
cation, employment, income, housing, family structure and 
access to social services.

Modelling
We developed separate models for four regions: Ontario, 
British Columbia (BC), the Prairies (Alberta, Saskatchewan 
and Manitoba) and the Atlantic (New Brunswick, 
Newfoundland and Labrador, Nova Scotia and Prince 
Edward Island). Within each region, we developed separate 
models for three periods based on pandemic waves: pre- 
Delta (14 December 2020–31 July 2021), Delta (1 August 
2021–14 December 2021) and Omicron (15 December 
2021–30 November 2022). While our dataset contained 
each donor’s forward sortation area, the first three digits of 
their postal code, this level of geographic aggregation was 
too fine for multi-level modelling. We instead classified 
donors into census divisions using the postal code conversion 
file based on forward sortation area. When individuals’ for-
ward sortation areas spanned more than one census division 
(17.28% of donations), we assigned a census division ran-
domly in proportion to the population in each division. We 
excluded donations with missing demographic or geographic 
information and donors living in census divisions in which 
fewer than five donations were tested (often, this occurs 
when a donor works or studies in an urban area but retains a 
rural address in their donation record). Our Bayesian models 
regressed individual characteristics (age, sex, racialized mi-
nority status) and neighbourhood characteristics (urbanicity, 
social deprivation, material deprivation) on SARS-CoV-2 
anti-N serological test outcome. We included sample month 
as a continuous covariate to account for the time trend of in-
creasing positivity during the pandemic waves, adjusting for 
bias that could arise through temporal shifts in subgroup 
representation. For each region and wave, we developed 
three models: a GLM with a logit link function with fixed 
effects (GLM); a multi-level model with regular fixed effects 
and census division random effects (MLM random effects), 
which did not consider information on the spatial relation-
ship between census divisions; and a multi-level model with 
structured random effects through conditional autoregres-
sive (CAR) prior,18 which used a binary, first order adja-
cency matrix to denote the adjacency between census 
divisions (MLM spatial).19–22 Our model specifications were 
as follows:
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where ykj denotes a binary outcome of the anti-N serological 
test by individual j in census division k, which follows the 
Bernoulli distribution with probability θkj, and is linked to a 
linear combination of the fixed effect covariates b through a 
logit function. Coefficients β0 to β7 represent the intercept, 
age, sex, race, material and social deprivation index 
quantiles, urban and month. In the MLM setting, αk has a 
weakly-informed flat prior denoting the census division 
random effect. In the MLM spatial model setting, spatial var-
iable ϕk is normally distributed, and each region’s value 
equals the average of its neighbours. Variable dk;k is the num-
ber of neighbours for region k. Its variance is defined as the 
reciprocal of dk;kτk, so that uncertainty decreases as the num-
ber of neighbours increases, following a standard method for 
spatial modelling.18 We used a weakly-informed prior 
t 3;0;2:5ð Þ on the inverse square-root of the precision param-
eter τk. Analysis was performed using the brms package in 
R23 and code are published.24

Results
Blood donors population
After excluding 4357 (0.9%) donations for missing race and 
60 781 (12.5%) for missing material and social deprivation, 
our dataset contained 420 319 donations from 239 346 
donors: 186 745 (44.4%) donations in Ontario, 67 593 
(16.1%) in BC, 121 984 (29.0%) in the Prairies and 43 998 
(10.5%) in the Atlantic region (Table 1). Regions had similar 
proportions of female donors (42.1–44.5%) and age distribu-
tions (39.4–46.0% of donors older than 55). About 22.9% 
of the blood donor cohort was aged 55–64, compared to 

16.5% of the Canadian population age 17 and older.25 The 
Prairies had the largest proportion of donors from more ma-
terially deprived neighbourhoods. The Atlantic region had 
the lowest proportion of donations from members of a racial-
ized minority group and the most rural donors; BC had the 
most donations from members of a racialized minority group 
and the fewest rural donors. Within regions, the distribution 
of covariates was similar across waves (Supplementary 
Tables S1–S3, available as Supplementary data at IJE online).

While the switch to stratified sampling during the pre-Delta 
period slightly changed the age distribution (Supplementary 
Table S4, available as Supplementary data at IJE online), it 
did not appear to have impacted trends in seropositivity when 
stratifying by age, sex and race (Supplementary Figures S1 
and S2, available as Supplementary data at IJE online). 
Moran’s I test showed strong spatial autocorrelation among 
census divisions’ seropositivity during Omicron in all regions 
except the Atlantic; Moran’s I was 0.21 (P< 0.01) for 
Ontario, 0.11 (P<0.01) for BC, 0.10 (P<0.05) for Prairies 
and −0.01 (P¼0.44) for the Atlantic. For earlier waves, 
Moran’s I test was only significant for Ontario in the Delta 
wave (0.20 [P< 0.05]). For all period-region combinations 
the R-hat value was below 1.01, suggesting successful conver-
gence, for all parameters.

Model comparison
The GLM model had the highest widely applicable informa-
tion criterion (WAIC) score, indicating poorer balance of 
goodness-of-fit and complexity, for all region-wave combina-
tions except for the Atlantic region during the Delta wave 
which had only 31 positive cases. In the 11 other settings, the 
MLM spatial model had a lower WAIC score than the MLM 
random effects model, suggesting that considering adjacency 
of census divisions improved estimation, although the differ-
ence was sometimes small (Table 2). Using the rule-of-thumb 
suggested by Spiegelhalter et al.,26 the MLM spatial model fit 
was ‘about the same’ as MLM random effects in 4 of 11 set-
tings (WAIC score improved by less than 2); MLM spatial 
model was ‘different but similar’ in 3 of 11 settings (WAIC 
score improved by 2–7) and the MLM spatial model was 
‘different’ in 4 of 11 (WAIC score improved by more than 7). 
More informative priors may have led to a greater 
performance improvement with spatial effects. The posterior 
mean was closer to the crude seropositivity in most census 
divisions using the MLM random effects model compared to 
the GLM model, except in the Atlantic region before omicron 
(Figure 1, Supplementary Figures S3 and S4, available as 
Supplementary data at IJE online). The 95% highest poste-
rior density interval included the raw proportion seropositive 
for every census division for each MLM spatial model. This 
was not always true for the GLM model, suggesting that in-
cluding spatial effects improved sub-regional seropositivity 
estimation. Given similar performance between the MLM 
random effects and spatial models, we restrict our compari-
son to the MLM spatial models and GLM models for the re-
mainder of the article.

Predictors of seropositivity by region and wave
Across regions and waves, coefficient point estimates and un-
certainty ranges were similar whether the GLM or MLM spa-
tial model was used (Figure 2). The coefficient on month of 
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sampling had a positive value in all models, indicating in-
creasing seropositivity over time during the wave. Each 
region’s coefficient was higher during Omicron (0.272–0.35 
monthly increase in seropositivity) compared to pre-Delta 
(0.144–0.199). Coefficients during Delta ranged from 0.007 

(Ontario) to 0.398 (Atlantic) (Supplementary Figure S5, 
available as Supplementary data at IJE online).

Neighbourhood material deprivation was positively associ-
ated with seropositivity in all regions and waves except for 
the Atlantic. Social deprivation was often negatively associ-
ated with seropositivity, possibly due to the protective effect 
of smaller average household sizes. The coefficient for urban-
icity was not statistically significant in most regions; how-
ever, we estimated a large negative coefficient for the Prairies, 
suggesting that seropositivity was higher for rural individu-
als. Analysing the same coefficients over shorter 3-month 
periods, we found that urbanites in Ontario had higher sero-
positivity, but only in the earliest 3-month period of March– 
August 2021 (Supplementary Figure S6, available as 
Supplementary data at IJE online).

Younger age, male sex and racialized minority status were 
associated with greater seropositivity in most regions across 
each wave. As an exception, we found no significant associa-
tion with sex and race in the Prairies during the pre-Delta 
and Delta waves. Coefficients for material deprivation, sex 
and race were smaller in the Omicron wave, suggesting that 
subgroup differences became less pronounced as more indi-
viduals were infected. In contrast, the coefficients on age 
were similar across waves. Analysing the same coefficients 
over shorter 3-month periods further confirmed that subgroup 
differences shrunk as the pandemic unfolded for urbanicity 
(Supplementary Figure S6, available as Supplementary data at 
IJE online), material deprivation (Supplementary Figure S7, 

Table 1. Distribution of individual and neighborhood characteristics by region

Overall Atlantic BC Ontario Prairies

Number 420 319 43 998 67 592 186 745 121 984
Sex (%)

Female 180 859 (43.0) 19 597 (44.5) 29 589 (43.8) 80 351 (43.0) 51 322 (42.1)
Male 239 460 (57.0) 24 401 (55.5) 38 003 (56.2) 106 394 (57.0) 70 662 (57.9)

Age group, years (%)
16–24 31 983 (7.6) 2806 (6.4) 4639 (6.9) 14 487 (7.8) 10 051 (8.2)
25–34 73 564 (17.5) 6286 (14.3) 12 525 (18.5) 33 502 (17.9) 21 251 (17.4)
35–44 71 834 (17.1) 6675 (15.2) 11 993 (17.7) 31 312 (16.8) 21 854 (17.9)
45–54 73 694 (17.5) 7959 (18.1) 11 487 (17.0) 33 900 (18.2) 20 348 (16.7)
55–64 96 046 (22.9) 11 227 (25.5) 14 468 (21.4) 42 938 (23.0) 27 413 (22.5)
65–74 62 027 (14.8) 7616 (17.3) 10 294 (15.2) 26 090 (14.0) 18 027 (14.8)
75þ 11 171 (2.7) 1429 (3.2) 2186 (3.2) 4516 (2.4) 3040 (2.5)

Race (%)
Minority 70 935 (16.9) 2881 (6.5) 16 453 (24.3) 33 163 (17.8) 18 438 (15.1)
White 349 384 (83.1) 41 117 (93.5) 51 139 (75.7) 153 582 (82.2) 103 546 (84.9)

Social deprivation 
quintile (%)
1 89 390 (21.3) 5466 (12.4) 12 859 (19.0) 43 248 (23.2) 27 817 (22.8)
2 89 168 (21.2) 10 818 (24.6) 14 473 (21.4) 41 603 (22.3) 22 274 (18.3)
3 84 219 (20.0) 11 380 (25.9) 13 149 (19.5) 36 019 (19.3) 23 671 (19.4)
4 78 222 (18.6) 9111 (20.7) 11 889 (17.6) 32 452 (17.4) 24 770 (20.3)
5 79 320 (18.9) 7223 (16.4) 15 222 (22.5) 33 423 (17.9) 23 452 (19.2)

Material deprivation 
quintile (%)
1 126 094 (30.0) 7754 (17.6) 19 775 (29.3) 49 068 (26.3) 49 497 (40.6)
2 103 314 (24.6) 9821 (22.3) 17 959 (26.6) 45 895 (24.6) 29 639 (24.3)
3 85 695 (20.4) 9145 (20.8) 13 784 (20.4) 41 023 (22.0) 21 743 (17.8)
4 66 536 (15.8) 9930 (22.6) 10 251 (15.2) 32 068 (17.2) 14 287 (11.7)
5 38 680 (9.2) 7348 (16.7) 5823 (8.6) 18 691 (10.0) 6818 (5.6)

Urban (%)
Rural 55 623 (13.2) 7805 (17.7) 3117 (4.6) 29 851 (16.0) 14 850 (12.2)
Urban 364 696 (86.8) 36 193 (82.3) 64 475 (95.4) 156 894 (84.0) 107 134 (87.8)

BC, British Columbia.
Distribution of individual and neighbourhood characteristics for donations tested across all three waves. For social and material deprivation quintile, 1 is the 
lowest level of neighbourhood deprivation and 5 is the highest level.

Table 2. WAIC (widely applicable information criterion) score from 
different models by type, region and wave

Region–Wave GLM MLM random effects MLM spatial

Ontario–Pre-Delta 10 953.04 10 792.09 10 778.91**
Ontario–Delta 3 262.97 3 212.39 3 211.86
Ontario–Omicron 161 243.10 160 681.99 160 674.40**
BC–Pre-Delta 3 539.64 3 494.69 3 493.32
BC–Delta 1 816.80 1 793.20 1 786.7*
BC–Omicron 56 952.86 56 580.27 56 578.95
Prairies–PreDelta 9 967.58 9 885.03 9 881.98*
Prairies–Delta 5 432.21 5 357.38 5 354.64*
Prairies–Omicron 99 922.69 99 358.87 99 351.41**
Atlantic–PreDelta 501.87 500.22 500.19
Atlantic–Delta 354.82 356.90 356.11
Atlantic–Omicron 31 353.12 31 233.64 31 223.49**

BC, British Columbia.
WAIC score from different models per region/wave. Lower WAIC scores 
indicate a better model fit. The lowest score for each region-wave 
combination is shown in bold. Using the rule-of-thumb suggested by 
Spiegelhalter et al.,26 improvements in WAIC scores of 2 or less indicate 
‘similar’ model fit; improvements in WAIC scores between 2 and 7 indicate 
‘different but similar’ model fit (�), and improvements in WAIC scores 
greater than 7 indicate ‘different’ model fit (��).
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available as Supplementary data at IJE online) and sex 
(Supplementary Figure S8, available as Supplementary data at 
IJE online), but not for age (Supplementary Figure S9, avail-
able as Supplementary data at IJE online) or social depriva-
tion (Supplementary Figure S10, available as Supplementary 
data at IJE online). Subgroup differences by race appeared to 
shrink in BC and Ontario (Supplementary Figure S11, avail-
able as Supplementary data at IJE online). Analysing crude 
percent seropositivity by strata led to similar insights 
regarding correlates of seropositivity for both individual 
characteristics (Supplementary Figure S12, available as 
Supplementary data at IJE online) and neighbourhood 
characteristics (Supplementary Figure S13, available as 
Supplementary data at IJE online).

Discussion
Our study is the first to analyse shifts in seropositivity by 
sociodemographic subgroup across Canada through the 
Omicron period. Building on earlier analyses of the Canadian 
Blood Services COVID-19 serological surveillance study, we 
identified similar associations between individual covariates 
(age, race, sex) and seropositivity in the pre-Delta and Delta 
periods.27 During Omicron, we found that male sex and ra-
cialized minority status were still associated with higher sero-
positivity in many regions, but with a much smaller effect 

size. This suggests that disparities in COVID-19 infection by 
race and sex have lessened. In contrast, we found that young 
age remained highly associated with seropositivity through 
the omicron wave; coefficients in the Delta wave suggest 
�0.02 lowered log odds of seropositivity for every one-year 
increase in age; this increased to �0.03 in the Omicron wave.

Regarding neighbourhood characteristics, material depri-
vation was positively associated with anti-N seropositivity, 
while social deprivation was negatively associated. This may 
be because essential workers who cannot work remotely are 
more likely to live in materially deprived neighbourhoods,28

and socially deprived neighbourhoods are protected by 
smaller household sizes. Interestingly, the association be-
tween seropositivity and high material deprivation lessened 
during the more recent Omicron wave, while the association 
with low social deprivation persisted. Living in a rural area 
was strongly associated with seropositivity in only one re-
gion: the Prairies. Calculating crude seropositivity by sub-
group confirmed exceptionally high seropositivity for rural 
residents in the Prairies (Supplementary Figure S12, available 
as Supplementary data at IJE online). High seropositivity for 
rural residents was also observed when analysing each prov-
ince in the Prairies region separately (data not shown). Rural 
Prairies residents may have had greater occupational expo-
sure; for instance, outbreaks were reported in meat-packing 
facilities in the pre-Delta wave.29 During the pre-donation 

Figure 1. Posterior predicted seropositivity estimation during Omicron. Percent seropositivity by census division estimated using a multi-level model with 
spatial effects (MLM spatial), a generalized linear model (GLM) and the crude observed seropositivity (Obs). In 43 of 49 census divisions in Ontario, 23 of 
25 in British Columbia, 43 of 47 in Prairies and 36 of 44 in Atlantic, seropositivity was more accurate using MLM spatial compared to GLM
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questionnaire, rural blood donors in the Prairies reported re-
cent COVID-19 vaccination at a far lower rate than any 
other subgroup (Supplementary Figures S14 and S15, avail-
able as Supplementary data at IJE online). Low vaccination 
rates among rural Prairies residents, also reported else-
where,30 may partly explain disproportionately high seropos-
itivity during the Delta and Omicron waves and could 
suggest less concern for risk mitigation, which could have 
contributed to higher seropositivity before vaccines were 
available. Research in populations other than blood donors 
may improve understanding of seropositivity for rural 
Prairies residents.

Comparing models, we found that the spatial MLM model, 
which incorporates correlated random effects between adja-
cent census divisions, had the best fit. This is consistent with 
previous research on spatial modelling in other contexts,22

though we found that the posterior predicted seropositivity 
was similar in our MLM with regular random effects. 
Comparing the spatial MLM and GLM models, we found 
that the coefficients on individual and neighbourhood covari-
ates were generally similar. That said, the significance of coef-
ficients for material and social deprivation sometimes 
differed between the GLM and spatial MLM model, suggest-
ing neighbourhood covariates may be more sensitive to 
choice of a spatial model.

The blood donor cohort is large and includes many geo-
graphic areas, but donor eligibility rules, self-selection and 
lack of coverage for remote areas (e.g. the Canadian territo-
ries) can limit generalizability.31–33 A so-called ‘healthy do-
nor effect’ has been documented wherein blood donors have 
better self-rated health and lower incidence of cardiovascular 
disease and cancer.31,34 Generalizability of donors differs by 

health condition35 and is not well-characterized for respira-
tory illnesses. Previous studies have found that population se-
roprevalence is sensitive to sampling frame, location, 
occupation and other demographic characteristics.27,36

Despite these selection biases, our findings for the earlier pan-
demic period are consistent with findings from other cohorts. 
General population meta-analyses found similar subgroup 
differences, including lower seropositivity among older adults 
and white racial groups in Europe and the Americas in the 
pre-Omicron period.35,37 Still, statistical adjustment and inte-
grating data from other surveillance populations may im-
prove representativeness and generalizability.38

Our analysis has other limitations. Firstly, the MLM spa-
tial model was at the level of census division because smaller 
areas were too fine for consistent model convergence. 
Because our neighbourhood covariates were defined at a 
more granular geographic area, we modelled them as covari-
ates at the individual level. With sufficient data and computa-
tion power, future analyses could use finer geographic 
modelling. Secondly, census division-level seropositivity esti-
mation may be improved through mapping directly from 
postal code to census division instead of from forward sorta-
tion area. Thirdly, while the spatial MLM model had the best 
fit to the data, incorporating spatial correlation can make 
model convergence challenging when there are few positive 
cases. Fourthly, our modelling framework did not account 
for repeated measures from the same individual, though a 
sensitivity analysis where we randomly selected one sample per 
donor in each wave was consistent with our primary analysis 
(Supplementary Figure S16, available as Supplementary data at 
IJE online). Due in part to limits on frequency of blood 

Figure 2. Covariate coefficient estimates by regions and wave. Coefficient estimate of individual- (age, race and sex) and neighbourhood-level (urban, 
material & social deprivation quintile) covariates across three waves from two models: multi-level models with spatial effect (MLM spatial) and 
generalized linear models (GLM) for Ontario (ON), British Columbia (BC), the Prairies and the Atlantic region. Coefficients greater than zero indicate a 
positive association with seropositivity
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donation, the number of samples included per donor were 
fairly low (1.20 for pre-Delta, 1.16 for Delta, 1.54 
for Omicron).

In sum, we found that serological surveillance in blood 
donors can produce valuable insights into population infec-
tion and immunity, and Bayesian MLM can improve esti-
mated seropositivity by geographic area. Extending prior 
analyses into the Omicron wave, we found that disparities in 
seropositivity waned for most individual and neighbourhood 
characteristics as larger swaths of the population became 
infected. As an exception, heightened seropositivity persisted 
through the Omicron wave for younger individuals, individu-
als in socially deprived neighbourhoods and rural residents in 
the Prairies region. Our analyses demonstrate the value of 
serosurveillance for monitoring impacts of an epidemic 
across demographic subgroups. Further research is warranted 
to refine methods for analysing blood donor surveillance 
data, strengthen use of these data for public health decision- 
making and explore blood donor serosurveillance for 
other pathogens.
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