Skip to main content
. 2024 May 22;26:e54705. doi: 10.2196/54705

Table 2.

Use of health care standards in the reviews mapped to the life cycle phases by van de Sande et al [23].


Standards and corresponding reviewsa
Life cycle phase 0: preparation before AIb model development

Define the problem and engage stakeholders
  • Do no harm road map (Wiens)


Search for and evaluate available models
  • FDAc devices (Benjamens)

  • ÉCLAIRd (Omoumi)


Identify, collect data, and account for bias
  • FHIRe (Mandel)

  • FAIRf (Wilkinson)

  • Validation (Riley)

  • PROBASTg (Moons and Wolff): Adamidi et al [37]a, Barboi et al [38], Abbasgholizadeh Rahimi et al [58], and Sahu et al [59]


Handle privacy
  • HIPAAh (OOTAi): Battineni et al [39]

  • GDPRj (EUk)


Ethical principles, frameworks, and guidelines
  • WMAl (Helsinki declaration): Abd-Alrazaq et al [36]a

  • Ethics for mental health technology (WEFm): Zidaru et al [68]

  • Digital disease technology detection (SORMASn): Zhao et al [13]a

  • Asadi framework of ethics (Asadi): Zhao et al [15]a

  • Ethical guidelines (EU): Chew and Achananuparp [44]

  • Ethical principles and framework (Montreal): Mörch et al [55]

  • Ethics and governance of AI health (WHOo): Zidaru et al [68]

Life cycle phase I: AI model development

Check applicable regulations
  • Proposed regulatory framework (FDA)

  • Harmonized rules on AI (EU)


Prepare data
  • Preprocessing data (Ferrao)


Train and validate
  • MLp cardiac imaging (Juarez-Orozco)


Evaluate performance and report results
  • AI guide (Park and Han): Mörch et al [55]

  • TRIPODq (Collins): Adamidi et al [37]

  • TRIPOD-MLr (Collins): Hassan et al [50] and Mörch et al [55]

  • CLAIMs (Mongan): Shelmerdine et al [15]t

  • CHARMSu (Moons): Barboi et al [38] and Sahu et al [59]

  • PRISMA-DTAv (McInnes): Shelmerdine et al [15]t

  • MI-CLAIMw (Norgeot): Shelmerdine et al [15]t

  • MINIMARx (Hernandez-Boussard): Shelmerdine et al [15]t

  • NOSy (Lo): Hassan et al [50] and Battineni et al [39]

  • LOEz (Concato): Seibert et al [61]a

  • MMATaa (Hong): Zhao et al [66]a

  • Clinical Prediction Rule Checklist (CASPab): Bertini et al [40]

  • STARDac (checklist): Zhao et al [66]a

  • COREQad (checklist): Buchanan et al [42]a, Kaelin et al [52]a, and Seibert et al [61]a

Life cycle phase II: assessment of AI performance and reliability

Externally validate model or concept
  • Validation (Ramspek and Riley)

  • Generalizability (Futoma)

  • Risk of bias (?): Talpur et al [63]

  • MADE1.0ae (Dandala): Choudhury and Asan [46]a


Simulate results and prepare for clinical study
  • DECIDE-AIaf (steering group): Shelmerdine et al [15]t

Life cycle phase III: clinically testing AI

Design and conduct clinical study
  • SPIRIT-AIag (Cruz): Mörch et al [55]

  • Explanations (Barda)

  • CONSORT-AIah (Liu): Loveys et al [54]

  • Revised Cochrane RoB 2ai (Sterne): Loveys et al [54]

  • ROBINS-Iaj (RoB 2 for non-RCTsak; Sterne): Loveys et al [54]

  • STROBEal (checklists): Adamidi et al [37]a

Life cycle phase IV: implementing and governing AI

Legal approval
  • AI-MLam medical devices (Muehlematter)


Safely implement model
  • TAMan (Jauk)

  • ML model facts (Sendak)


Model and data governance
  • FAIR (Wilkinson): Adamidi et al [37]a

  • SaMDao clinical evaluation (FDA): Adamidi et al [37]a

  • Quality management system (IMDRFap): Adamidi et al [37]a


Responsible model use
  • Ethics ambient intelligence (Martinz-Martin)

Standards in the reviews mapped to multiple phases

Design justice principles
  • 10 principles—International Design Justice Network: Zidaru et al [68]


Study quality
  • Reporting guidelines (EQUATORaq): Zidaru et al [68]


Policy
  • China—AI governance (Laskai): Choudhury et al [45]

  • Federal engagement plan (NISTar): Choudhury et al [45]

  • Russian AI policy (OECDas): Choudhury et al [45]

  • AMAat AI recommendations (link): Sapci and Sapci [60]

  • CCCau AI road map (link): Zidaru et al [68]a

  • EU (AI Watch): Zidaru et al [68]a


Technical and interoperability
  • Software life cycle ISOav and IEEEaw-12207 (link): Zidaru et al [68]a

  • OGCax: Seibert et al [61]a

  • SWEay: Seibert et al [61]a

  • SOSaz: Seibert et al [61]a

  • AI concepts and terminology (ISO and IECba 22989): Seibert et al [61]a

  • Framework for AI systems (ISO and IEC 23053): Wenzel and Wiegand [26]t

  • AI risk management (ISO and IEC 23894): Wenzel and Wiegand [26]t

  • AI bias (ISO and IEC 24027): Wenzel and Wiegand [26]t

  • AI trustworthiness (ISO and IEC 24028): Wenzel and Wiegand [26]t

  • AI robustness (ISO and IEC 24029-1): Wenzel and Wiegand [26]t

  • AI use cases (ISO and IEC 24030): Wenzel and Wiegand [26]t

  • Safety of machinery (ISO 22100-5): Choudhury et al [45]a


Terminology standards
  • FAERSbb: Choudhury et al [45]a

  • Medication information extract clinical notes (MedEx): Choudhury et al [45]a

  • Medical prescription normalized (RxNorm): Choudhury et al [45]a

  • MedDRAbc: Choudhury et al [45]a

  • Patient-centered clinical research network (PCORnet): Choudhury et al [45]a

  • UMLSbd: Choudhury et al [45]a

Robotics

Partnership for R&Dbe and innovation
  • European robotics partnership (SPARCbf): Buchanan et al [42]a


Robotic standardization and safety
  • Robotics standardization (ISO and TCbg 299): Buchanan et al [42]a


Robotic devices for personal care
  • Personal care robots (13482: 2014): Buchanan et al [42]a

  • Vocabulary (ISO 8373: 2021): Buchanan et al [42]a

aItalicized references are original studies cited in the reviews, and references denoted with the footnote t are those cited in our paper but not present in any of the reviews.

bAI: artificial intelligence.

cFDA: Food and Drug Administration.

dECLAIR: Evaluate Commercial AI Solutions in Radiology.

eFHIR: Fast Healthcare Interoperability Resources.

fFAIR: Findability, Accessibility, Interoperability, and Reusability.

gPROBAST: Prediction Model Risk of Bias Assessment Tool.

hHIPAA: Health Insurance Portability and Accountability Act.

iOOTA: Office of The Assistant Secretary.

jGDPR: General Data Protection Regulation.

kEU: European Union.

lWMA: World Medical Association.

mWEF: World Economic Forum.

nSORMAS: Surveillance, Outbreak Response Management and Analysis System.

oWHO: World Health Organization.

pML: machine learning.

qTRIPOD: Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis.

rTRIPOD-ML: Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis—Machine Learning.

sCLAIM: Checklist for Artificial Intelligence in Medical Imaging.

tReferences denoted with the footnote t are those cited in our paper but not present in any of the reviews.

uCHARMS: Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies.

vPRISMA-DTA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy.

wMI-CLAIM: Minimum Information About Clinical Artificial Intelligence Modeling.

xMINIMAR: Minimum Information for Medical AI Reporting.

yNOS: Newcastle-Ottawa Scale.

zLOE: level of evidence.

aaMMAT: Mixed Methods Appraisal Tool.

abCASP: Critical Appraisal Skills Programme.

acSTARD: Standards for Reporting of Diagnostic Accuracy Studies.

adCOREQ: Consolidated Criteria for Reporting Qualitative Research.

aeMADE1.0: Model Agnostic Diagnostic Engine 1.0.

afDECIDE-AI: Developmental and Exploratory Clinical Investigations of Decision-Support Systems Driven by Artificial Intelligence.

agSPIRIT-AI: Standard Protocol Items: Recommendations for Interventional Trials–Artificial Intelligence.

ahCONSORT-AI: Consolidated Standards of Reporting Trials–Artificial Intelligence.

aiRoB 2: Risk of Bias 2.

ajROBINS-I: Risk of Bias in Non-Randomised Studies of Interventions.

akRCT: randomized controlled trial.

alSTROBE: Strengthening the Reporting of Observational Studies in Epidemiology.

amAI-ML: artificial intelligence–machine learning.

anTAM: Technology Acceptance Model.

aoSaMD: Software as a Medical Device.

apIMDRF: International Medical Device Regulators Forum.

aqEQUATOR: Enhancing the Quality and Transparency of Health Research.

arNIST: National Institute of Standards and Technology.

asOECD: Organisation for Economic Co-operation and Development.

atAMA: American Medical Association.

auCCC: Computing Community Consortium.

avISO: International Organization for Standardization.

awIEEE: Institute of Electrical and Electronics Engineers.

axOGC: Open Geospatial Consortium.

aySWE: Sensor Web Enablement.

azSOS: Sensor Observation Service.

baIEC: International Electrotechnical Commission.

bbFAERS: Food and Drug Administration Adverse Event Reporting System.

bcMedDRA: Medical Dictionary for Regulatory Activities.

bdUMLS: Unified Medical Language System.

beR&D: research and development.

bfSPARC: Scholarly Publishing and Academic Resources Coalition.

bgTC: technical committee.