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Abstract: The EOF of a viscoelastic Maxwell fluid driven by an alternating pressure gradient and
electric field in a parallel plate microchannel with sinusoidal roughness has been investigated within
the Debye-Hiickel approximation based on boundary perturbation expansion and separation of
variables. Perturbation solutions were obtained for the potential distribution, the velocity and the
mean velocity, and the relation between the mean velocity and the roughness. There are significant
differences in the velocity amplitudes of the Newtonian and Maxwell fluids. It is shown here that the
velocity distribution of the viscoelastic fluid is significantly affected by the roughness of the walls,
which leads to the appearance of fluctuations in the fluid. Also, the velocity is strongly dependent on
the phase difference 6 of the roughness of the upper and lower plates. As the oscillation Reynolds
number Re(, increases, the velocity profile and the average velocity u,,(t) of AC EOF oscillate rapidly
but the velocity amplitude decreases. The Deborah number De plays a similar role to Req, which
makes the AC EOF velocity profile more likely to oscillate. Meanwhile, phase lag x (representing
the phase difference between the electric field and the mean velocity) decreases when G and 6 are
increased. However, for larger A (e.g., A > 3), it almost has no phase lag x.

Keywords: AC EOF; electric double layer (EDL); wall roughness; Maxwell fluid; microchannel;
Deborah number

1. Introduction

With the developments in microfluidic technology, the electroosmotic flow (EOF) [1]
is used widely in chemical and biomedical fields, such as DNA separation, cell sorting,
ion transport, sample separation, and mixing in microfluidic chips, etc. [2]. EOF is a
specific phenomenon of electrodynamic flow in micro- or nano-scale channels. This flow
phenomenon offers the advantages of requiring no external mechanical force, consuming
low energy, and being simple to operate. Compared to the conventional-scale channels, the
flow within micro-scale channels possesses its own special characteristics, such as relative
surface roughness, micro-scale effects, slip effects, surface forces and capillary effects, rapid
heat conduction effects, etc. [3]. Domestic and foreign scholars have conducted a large
number of studies on the EOF of Newtonian [4-10] and non-Newtonian fluids [11-14] in
smooth microchannels of different geometries with regard to theory, numerical simulation,
and experimentation. In addition, the effect of Joule heating on the fluid is negligible in
microchannels with a small cross-sectional area and high thermal conductivity [15].

The aforementioned studies all consider smooth wall EOF flows. Usually, the wall
roughness of microchannels is induced by the manufacturing process of the device or the
precipitation of other substances (such as macromolecules) on the wall. On the other hand,
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for all practical purposes, in order to boost the mixing efficiency of the fluid system at times,
some roughness may be artificially designed on the channel walls. Therefore, the wall
roughness in microchannels can be viewed as an intentionally designed feature rather than
just an unavoidable defect. In microflow, the relative wall roughness (i.e., the ratio of wall
roughness to channel radius) is increased due to the small size of a microchannel. Thus, the
wall roughness can affect fluid flow in a microchannel. Different flow velocity modes will
affect the component-separation efficiency, mixing reactions, flow rates, and heat-transfer
process of the microfluidic systems. The effect of roughness on flow is a complex issue with
pros and cons. At present, much of the research in this area by scholars is limited to the
flow driven by electric field forces in smooth microchannels, and very few studies consider
wall roughness. Since 1970, several scholars have considered the problem of laminar flow
problems with rough walls. Wang [16] first researched the Stokes flow between flat plates
with corrugated roughness. Chu [17] has applied the perturbation expansion method to
study the effect of corrugated roughness on fluid flow. Malevich et al. [18] have investigated
the theoretical knowledge of three-dimensional Couette flow between rough plates. Ng
and Wang [19] obtained the exact solution of Darcy-Brinkman flow. Xia et al. [20] used
the complex potential function and the boundary integral method to show the analytical
solution of the EOF of a microchannel composed of parallel plates with one smooth wall
and a sinusoidal ripple boundary on the other wall, and they analyzed the influence of
ripple amplitude and the width between the two plates on the flow field. Shu et al. [21]
utilized the boundary perturbation method (BPM) to tackle the EOF analytical solution
of a parallel plate microchannel with longitudinal sinusoidal ripple boundaries, and they
verified its accuracy. Cho et al. [22-24] employed the finite volume method (FVM) to study
the DC/AC EOF of Newtonian fluid and power-law fluid between rough parallel plates
with two superposed sinusoidal functions. In special cases, when degenerating into a single
sinusoidal function to simulate ripples, the results obtained are consistent with those of
Xia [20].

BPM has been widely used to study the EOF problem in microchannels with rough
wall surfaces. For instance, Chang et al. [25] researched the EOF of circular microfluidic
channels with axial roughness using BPM. The reason for the increase or decrease of the
velocity is to take into account the influence of the relative roughness amplitude, wavenum-
ber, and pressure gradient on the electric potential and velocity distribution. The increase in
velocity is due to the fact that the EDL electric field force is larger than the electric field force
at the center of the channel, and the pressure gradient also amplifies the flow velocity. Kera-
mati et al. [26] have investigated the impact of corrugated roughness on fully developed
EOF and heat transfer in circular microtubes, revealing that higher corrugation numbers
and relative roughness result in reduced Nusselt numbers, indicating negative effects on
both hydrodynamic and thermal features of EOF, while also identifying the Nusselt number
correlation with decreasing joule heating rate and increasing dimensionless Debye—Hiickel
parameter. Messinger and Squires [27] found that when the wall conductivity is too high,
the nano-scale wall roughness that usually appears on micromachined metal electrodes can
significantly inhibit EOF. Zhang et al. [28] used molecular dynamics methods to numeri-
cally study the effect of wall roughness on micro-scale EOF. Fakhari and Mirbozorg [29]
used FVM to numerically study the impact of sinusoidal, sawtooth, and square-tooth wall-
surface roughness on EOF between parallel plates. It has been shown that the wall-surface
roughness may degrade the velocity and thus reduce the EOF velocity. Buren et al. [30]
have used BPM and studied electromagnetic hydrodynamic (EMHD) flow in micro-parallel
channels with sinusoidal roughness under the Debye-Hiickel approximation and have
obtained perturbation solutions for velocity and electric potential. In addition, the EMHD
of transverse and longitudinal roughness have been studied [31,32]. Recently, the effect
of small-amplitude random lateral wall roughness on EMHD flow in microchannels in
parallel plates [33] and cylindrical [34] microchannels was studied using the perturbation
method of stationary random function theory. Hosham et al. [35] studied the heat and
mass transfer effects in EOF based on the viscoplastic Bingham fluid model in complex
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corrugated microchannels. The flow and heat-transfer characteristics in a microchannel
with a cross-section that periodically expands gradually and suddenly contracts was nu-
merically studied by Zhu et al. [36]. In addition, microchannels with the same volume and
a similar convective heat-transfer area are compared. The pressure and viscous resistance
of the groove walls were analyzed analytically to explain why the groove can sustain a low
microchannel pressure drop. Mohammadi et al. [37] have studied the effect of nanofluids
as coolants and sinusoidal wave walls on the performance of rectangular microchannel
heat sinks by using the FVF method, revealing that higher wave amplitudes and lower
wavelengths improve heat-transfer performance.

In industrial and engineering applications, microfluidic devices are widely used to
analyze biological fluids, which are frequently solutions of long-chain molecules that
exhibit some non-Newtonian fluid properties. Therefore, it is of practical interest to study
non-Newtonian fluids in microchannels. Martinez et al. [38] simplified the PTT fluid
control equation through lubrication theory and then used BPM to resolve the simplified
PTT fluid EOF approximate analytical solution in a parallel plate with transverse sinusoidal
roughness, but the result only retained first-order accuracy. Si and Jian [39] utilized the
BPM to provide approximate analytical solutions for the velocity and volumetric flow rates
of periodic EMHD flows involving a conductive, incompressible, and viscous Jeffrey fluid
within micro-parallel plates featuring sinusoidal roughness.

In summary, there has not been enough attention paid by domestic and international
scholars to the EOF of non-Newtonian fluids with roughness in microchannels. In particular,
studies using theoretical analysis and numerical simulations are still in the development
stage, and there are a large number of fundamental and mechanistic systematic studies
that need to be carried out. Based on this status quo, in this paper, we studied the effect of
periodic EOF of Maxwell fluid in parallel plate microchannels with sinusoidal roughness
using the linearized Poisson—Boltzmann equation and the Cauchy momentum equation.
The paper is organized as follows: Section 2 presents the mathematical modeling, results
and comparisons are discussed in Section 3; and the conclusions are drawn in Section 4.

2. Mathematical Modeling
2.1. Description of the Problem

The mathematical model of the AC EOF for an incompressible, linear, and viscoelastic
Maxwell fluid in a microchannel is considered in Figure 1. The mean height of the mi-
crochannel is 2H. The length and width are much larger than the height of the microchannel.
As shown in the rectangular coordinate system (x*, i, z*), the x* axis is located in the mid-
dle of the plate, and an AC electric field with a strength of E*; and periodic pressure are
applied at both ends of the channel. At this time, the fluid is considered to be along the z*
direction of flow. The applied electric field strength is significantly lower than 10° V/m.
Additionally, the flow system is not expected to reach a chaotic state due to the time scale
associated with electromigration in the EDL, which is estimated to be within the range of
1078~10"7 s [12]. This time scale is at least two orders of magnitude smaller than the EOF,
ranging from 10~°~10~3 s. Therefore, the transient effects of the EDL can be disregarded.
Due to the small channel cross-sectional area and high thermal conductivity of silica, we
assume negligible Joule heating effects and assume that fluid properties are independent of
temperature variations. The corrugated wall surface of the lower plate and the upper plate
are, respectively, expressed as [30]

y* = H[—14 6sin(A*x* +0)], v = H[1 + §sin(A*x*)], 1)

where, J is the ratio of the ripple amplitude to the average half-height of the channel, A* is
the wave number, and 6 is the phase difference.
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Figure 1. Schematic of AC EOF through a microchannel with sinusoidal wavy walls.

2.2. Mathematical Models and Approximate Solutions

According to the electric double layer theory, the relationship between the electric
potential ¥ (x*, y*) and the net charge density p*.(x*, ¥*) can be described by the Poisson—
Boltzmann (P-B) equation [1]

*

VY — —%“, )

z,eY
kT’

where, z,, e, ng, ¢, kp, and T, respectively, represent the valence, the charge carried by the
electron, the concentration of liquid ions, the dielectric constant of the electrolyte solution,
the Boltzmann constant, and the absolute temperature.

If ¥ is small enough (<<25 mV), namely z,e¥ / (k,T) << 1, the term sinh(z,e¥ / (k, 1)) =~
z0e¥ /(kyT). This linearization is called Debye—Hiickel linearization (Physically, it means
that the electric potential energy is very small compared with the thermal energy of ions).
According to Equations (2) and (3), the linearized P-B equation is obtained

0 = —2npzyesinh

©)

’Y Y .,
W‘FW:KW. (4)

The corresponding boundary conditions are given as

Y(x*,y") = Cu, aty = yu"

Y(x*y*) =0, aty =y (5)

here we assume that {,, and {; are constants [21].
An incompressible Maxwell fluid should satisfy the continuity and Cauchy momentum
equations
V*.-U=0, (6)

ou
p(at* +(U- V*)U> =—V'P+ V" -1+ p,Ej(t)es. (7)

The generalized Maxwell fluid constitutive relationship of linear viscoelasticity is as
follows [12,40]

)
TS =nlVU+ (VU)T. ®)
It is considered that there is only flow along the z* direction (flow velocity U = (0, 0,

W)). According to the incompressibility condition (6), the convection term in the Cauchy
momentum Equation (7) will disappear. Combined with the constitutive Equation (8), the
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operator 1 + A19/(9t*) acts on both sides of the Cauchy momentum Equation (7), and the
governing equation is simplified as follows

9\ oW 2\ P Y 2
o1+ mgr ) 5 == (14 Mg ) o+ mov W g2 ) (14 Mg ) ES ). )

Assume that the velocity and pressure of the alternating electric field and the periodic
EOF can be written in the following complex functional form

E5(t) = R{Eoe" }, W(x",y", 1) = R{w* (x*,y)e " }, Pz, 1) = R{p" (")}, (10)
then, Equation (9) can be simplified to

ap*

o H10VZ " + (14 ihw)p; Eo. (11)

iwp(1+iMw)w* = —(1+iMw)

The boundary conditions of the upper and lower walls of the channel corresponding
to Equation (11) are

w'(xy*) =0 aty =y.", y =y (12)
Introduce a set of dimensionless parameters:
v G ¥ w* eCuEo pwH? H? op*
==—,K=xH, { = Z, U = — ,Rea=——, G=———-"—, De = \w, 13
Y H ¢ Cu ¢= Cu ueo “ Ho Q 1o 1Nou,, oz* ! (13)

In the above formula, the dimensionless electric width K represents the ratio of the
half-height (H) of the microchannel to the Debye length (1/x, where x = z,e(2ng /eky, T)1/2);
the physical meaning of the oscillation Reynolds number Req, is the ratio of the diffusion
time scale (45 = sz /10) and the period of the external electric field (fg = 1/w); Deborah
number De represents the ratio of the relaxation time A; of the fluid to the vibration time
1/w of the electric field; and G represents the dimensionless pressure gradient applied in
the axial direction of the channel.

Substituting the dimensionless parameter (13) into the P-B Equation (2), the EOF
control Equation (10) and the boundary conditions (3) and (12), the equation satisfied by
corresponding dimensionless electrical potential ¢(x, y) and velocity w(x, y) is

Po ¢ o
2 2
3;’ ‘2);; iReqy(1 +iDe)w = — (1 +iDe)G — K2(1 +iDe)g. (15)

The corresponding boundary conditions are

p(x,y) =1 w(xy) =0, aty =yu,

¢(x,y) =¢ w(x,y) =0, aty =y (16)

In the absence of roughness, the electrical potential ¢ and velocity w are only functions
of y. However, the presence of wall roughness causes a function change in the x direction.
In the following analysis, it is assumed that § << 1 and the electrical potential ¢ and velocity
w expanded to the power of J as

R(x,y) = Ro(y) + 6R1(x,y) + 6*Ra(x,y) + (17)

The Taylor expansion of the function R, aty = 1 and y = —1 on the upper wall y =y,
and the lower wall y =y, respectively, is
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62 sin?(Ax)

R(x,14 ésin(Ax)) = R(x,1) + dsin(Ax)Ry(x,1) + >

Ryy(x,1) + - -

sin(A0)
2

= Ro(1) + 6[sin(A0)R'o(1) 4 Ry (x,1)] + 6] R"o(1) 4 sin(AB)Ryy(x,1) + Ry (x,1)] + O(8%).

62 sin?(Ax + )

R(x, =1+ dsin(Ax +6)) = R(x, —1) + dsin(Ax + )Ry (x, —1) + 5

Ryy(x,—1) + - --

sin?(Ax + 6)
2
Substituting Equation (17) into Equations (14) and (15), we obtain the boundary value

problem of the differential equation that is satisfied by the power of ¢

= Ro(—1) + 8[sin(Ax 4+ 0)R'o(—1) + Ry (x, —1)] + 6*| R"g(—1) +sin(Ax + 0)Ryy(x, —1) + Ro(x, =1)] +--- . (18)

2

2
80 O}iyq’;’ = K¢y, VZ‘;O —iRen (1 +iDe)wy = —(1 +iDe)G — K2(1 +iDe)gy.  (19)
P s i I W PR TR TR (1+iDe)w; = —K2(1 +iDe)g;. (20)
Coox? 0 9y? P a2 oy Q 1.
02 02 o%w o%w
2, 992 P2 _ 2 2 2 ) .
P T K=y, 2 T W —iReq (1 +iDe)w, K*(1+1iDe)¢,. (21)

The corresponding boundary condition (16) uses the Taylor expansion of the function
Raty =21 (18), and it can be obtained that the following boundary conditions are

50 : 4)0(1) =1, 4)0(_1) = g/ wO(l) =0, wO(_l) =0, (22)
tgi(x,1) = —sin(Ax)¢’y(1), ¢1(x,—1) = —sin(Ax +0)¢'((—1), wi(x,1) = —sin(Ax)w'o(1), wy(x, —1) = —sin(Ax + 0)w'o(—1), (23)

22 A ) 9 in? Ax+0 . 0
5% ¢2(x,1) = _sm 2( *) ¢"o(1) — sm(/\x)ai;b:l, pa2(x,—1) = fsm(zix)q)”o(fl) —sin(Ax +9)ai;|y:71/
.2 i2
wz(x’]_) — _Su’lzﬂw//o(l) _ Sin()\x>aau:;l|y_l,w2(X, _1) — _ww//o(_l) _ Sin(Ax +9)aw1 |y__] (24)
where
iRe (1 +1iDe) = (ap +ifo)>%, (25)

then it can be calculated

R R /2
o = e“ \/1+D62 , e“ \/1+Dez+De . (20)

combining Equations (19) and (22), we can calculate

¢o(y) = Agcosh(Ky) + Bpsinh(Ky),

wo(y) = Cocosh[(ag +1iBo)y] + Dosinh[(xg + iBo)y] + ag cosh(Ky) + bosinh(Ky) + (27)

iReQ ’
Substituting Equation (22) into (27), the undetermined constants Ay, By, Co, Dy, a9, bo
can be obtained. See Appendix A.
According to the boundary condition (23), the solution expression of Equation (20) can
be written as

P1(xy) = fily) sin(Ax) + g1(y) cos(Ax), wi(x,y) = Fi(y)sin(Ax) + Gi(y) cos(Ax).  (28)
Substituting Equation (28) into Equation (20), we can obtain
f1(y) = A1 cosh(Kyy) + Bisinh(Kyy), g1(r) = Az cosh(Kyy) + Basinh(Kiy),

Fi(y) = Cycosh(aj +iB1)y + Dysinh(aq +iB1)y + a1 cosh(Kiy) + bysinh(Kyy),



Micromachines 2024, 15, 4

7 of 18

=

G
Upm =

1+ sin(Ax)
= / dr [ w(
47 146 sin(Ax+6)

(w0 +1Bo)

G1(y) = Cycosh(ag +1B1)y + Dysinh(aq +iB1)y + a cosh(Kyy) + bpsinh(Kyy).  (29)

where K? = K24+ A2, (1 + 1,81)2 = (ap + 1[30)2 + A2, the undetermined constants Aj, Bj,

C D aj, ](] 1, 2), see Appendix A.

Accordlng to the boundary condition (24), the solution expression of Equation (21) can
be given as follows

92(x,y) = h(y) + fa(y) sin(2Ax) + 2(y) cos(2Ax),

wy(x,y) = H(y) + F(y) sin(2Ax) 4+ G (y) cos(2Ax). (30)
Substituting Equation (30) into Equation (21), we can obtain

h(y) = Ascosh(Ky) + Bssinh(Ky), f2(y) = Agcosh(Kay) + Bysinh(Kpy),

82(y) = As cosh(Kpy) + Bssinh(Kzy),
H(y) = Gz cosh[(ag +1o)y| + Dssinh[(ag +iBo)y] 4 a3 cosh(Ky) + b3sinh(Ky),
F,(y) = Cyqcosh[(ap +1B2)y] + Dasinh[(az +1B2)y] + a4 cosh(Kay) + bysinh(Kay),
Ga(y) = Cscosh[(az +1B2)y] + Dssinh|[(ay +1B2)y] + a5 cosh(Kpy) + bssinh(Kay).  (31)
where K% = K2 +4A2, (ap + iB2)% = (&g +1Bo)* + 4A2, the undetermined constants Aj, Bj,
Cj, Dj, aj, b (j=3,4,5), see Appendix A.

2.3. Average Velocity

The flow velocity per unit width through the microchannel is averaged over one
wavelength of wall roughness, and the complex amplitude of the average velocity can
be derived

144 sin(Ax) B 2 5
x,y)dy = E/ {/ w(x,y dy+/ w(x,y dy+/1+osm - w(x,y)dy}dx = ugy + 6 uzy + 0(5°) (32)
Co
where ug,, = (ao+1/50) sinh(xg +ifg) + PsinhK + 1ReQ

sinh(ag +1iBo) + —smhK + = L [Fl(l) +w'o(1) — Fi(—1) cosf — Gy (—1) sin6 — w'p(—1)]. (33)

Note that the Taylor expansion at y = +1 was used in the last two integral calculations
of Equation (32).
Therefore, the average velocity of AC EOF in the rough microchannel can be ex-
pressed as
uy(t) = R{uexp(it)} = |Upm| cos(t + x). (34)

where yx is the main argument of the average velocity #%, which also represents the phase
difference between the electric field and the average velocity, which is called phase lag.

3. Results and Discussion

In this section, we resolved the approximation of AC EOF for Maxwell fluid in a mi-
crochannel with sinusoidal roughness. The findings are mainly influenced by the following
dimensionless parameters: electrodynamic width K (parameters related to the thickness
of the electric double layer), the ratio of the ripple amplitude to the average half-height
of the channel, the oscillation Reynolds number Re, the zeta potential ratio { between
the upper and lower walls, the wave number A of the rough wall, the phase difference 6
between the rough walls, the dimensionless pressure gradient G, and the Deborah number
De. In engineering, in order to tackle practical problems, dimensionless parameters need to
be converted into dimensioned parameters. The relaxation time must be smaller than the
oscillation period (observation time), that is, it must satisfy A1 < 27/w or De < 27t. Typically,
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the value of EDL thickness 1/x at room temperature is 107" mto 5 x 10~7 m. Moreover, the
linearized P-B equation is valid when the wall zeta potential is less than 25 mV. Therefore,
the range of the Helmholtz-Smoluchowski EOF velocity Ueo of a Newtonian fluid is about
1075 t0 2.5 x 10~* ms~!. From the condition A; U, /(1/x) << 1, we determined that the
effective range of relaxation time A1 is 4 x 10~% s to 5 x 1072 s. Some typical parameter
value ranges are as follows [10-14]: H = 100 um, p = 108 kg-m_3, 7o =103 kgm_ls_l.
At the same time, the applied electric field frequency ranges from 0 to 1.6 kHz, and the
variation range of the corresponding angular frequency w is from 0 to 10* s~1. Therefore,
the oscillation Reynolds number Re, could take a value between 0 and 100. According to
references [12,39], the value range of the relaxation time A; is set from 107*sto 10% s.

Figure 2 plots the AC EOF velocity amplitude for a Maxwell fluid for a given x = 0.
As can be seen from Figure 2, the velocity amplitude is smaller in the rough microchannel
than that in the smooth microchannel. The reason for this is that the increased contact area
between the corrugation on the lower wall and the fluid causes the flow resistance of the
fluid to increase, which reduces the amplitude of the velocity. In addition, the velocity
profile in the smooth microchannel shows central symmetry, which is consistent with the
results obtained by Liu et al. [12].

' F,
h ! ; ..‘l"-‘- G i
I [l A’ ‘.."Il L
5 'I A g ' 4 I '
| " | h
: o 4 # [}
= I P !
: P |
S 3T i
i I . ) | i
) ? *5 ' :
|| i
| ® .
;, 8¢ — 5 =0
ar ¢ | -0-6=0.05 Y
/
é
0 : : :
-1 0.5 0 0.5 |
Yy

Figure 2. The amplitude of velocity |w(x, y)| withy (K=10,A =8, G =0, Req =10, 6 = 0.57) (red
square—Liu et al. [12]).

Figure 3 depicts the three-dimensional pure AC EOF velocity and contour distribution
diagram of a Newtonian fluid corresponding to different 5 and 6. Figure 3a shows the
velocity diagram under smooth channel (i.e., § = 0). It can be seen from Figure 3 that,
especially near the wall, as the dimensionless ripple amplitude J increases the fluctuations
in the Newtonian fluid velocity profile become more and more obvious, and the velocity
distribution depends on the phase difference 6 of the upper and lower plate roughness
ripples. In addition, it can also be seen that the classic pin-shaped velocity profile similar to
this is also presented.
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Figure 3. Three-dimensional AC EOF velocity distributions and contours for different 6 and 6 (G =0,
K=10,A=8,7=1,6=0.05 De =0, Ren—0). (a) AC EOF velocity distribution in the smooth
microchannel; (b) 0 =0; (c) 6 = t/2; (d) 0 = 7.

Figure 4 displays the three-dimensional pure AC EOF velocity and contour distribution
map of a Maxwell fluid corresponding to different 6 and 6. The velocity distribution under
a smooth channel (i.e., 6 = 0) is shown in Figure 4a. For a given ¢ = 0.05, it is easy to see
from Figure 4b,d that when the rough wall changes from in-phase (6 = 0) to out-of-phase
(80 = ), the velocity profile is significantly affected by the wall roughness and obvious
wave phenomena appeared. In addition, the velocity distribution depends on the phase
difference 0 of the upper and lower plates’ roughness ripples. Combined with Figure 5, it
is easy to see that for a given G, K, A, g, De, and 0, the velocity profile oscillates rapidly, and
the amplitude decreases with the increase of Rey. Moreover, the amplitude is larger in the
narrow EDL region near the wall and gradually decreases away from the EDL region. The
reason for this is that the vibrational period is much shorter than the dissipation timescale
and the fluid motion does not have enough time to diffuse to the plane in the middle of
the two walls of the microchannel. In addition, for linear generalized Maxwell fluids, the
larger the De, the smaller the resummation capacity and the larger the elastic effect. The
velocity profile is more likely to oscillate under the action of an external electric field, which
is caused by Maxwell’s “fading memory” phenomenon.
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Figure 4. Three-dimensional AC EOF velocity distributions and contours for different 6 and 6 (G =0,
K=10,A=8,0=1,De=2,Req =100). (a) 6=0,0=0; (b) 6 =0.05,0=0; (c) 6 =0.05, 6 = 71/2;
(d)6=0.05,0=m.

Figure 6 reveals the three-dimensional pure AC EOF velocity and contour distribution
diagram of a Maxwell fluid corresponding to different 5. When the two parallel plate
walls possess opposite charges (i.e., { = —1), the direction of the EOF in the micro-parallel
channel is directly related to the polarity of the charge on the channel wall. This conclusion
is similar to the outcome obtained in reference [8]. It is easy to see from Figure 6 that when
the { potential of the lower plate is high (i.e., { = 2), the velocity will rapidly increase from
zero to the maximum value in the EDL region of the lower wall. Subsequently, the velocity
will decrease with the distance away from the lower plate wall, gradually increasing in
the EDL region of the upper wall as the velocity reaches zero on the upper wall surface,
which can be attributed to the fact that the flow of the fluid is driven by the electroosmotic
force result from the interaction of the external electric field and the EDL. This due to the
higher ion concentration in the EDL, which causes the fluid to flow more violently in the
EDL region of the lower parallel plate wall. In the EDL region of the upper parallel plate
wall, the ion concentration is low and the fluid flow is relatively slow.
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Figure 5. Three-dimensional AC EOF velocity distributions and contours for different §, De and Reqy
(G=0,K=10,A=8,{=1,0=0). (a) 6 =0, De =2, Reqy = 10; (b) § = 0.05, De = 2, Reqy = 10; (c) J = 0.05,

De =2, Req, = 50; (d) & = 0.05, De = 0.5, Reqy = 50.
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Figure 6. Three-dimensional AC EOF velocity distributions and contours for different { (G =0, K =10,
A=8,De=1,Req=50,0=0,6=0.05). (a) L =—1;(b) { =2.

From Equation (32), it can be seen that uy,, > 0 or uy,, <0 correspond to an increase or
decrease, respectively, of the mean velocity in the microchannels with roughness compared
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to that in the smooth channels. In AC EOF, there is a time difference x (called phase lag)
between the velocity and the applied electric field, which represents the time required for
momentum diffusion. Figure 7 indicates the variation of phase lag x with A, Req, De, K,
and ( at different G and 6, and the changes of x with G at different 0. As expected, the phase
lag x reduces with augmented G. The reason for this is that the forward pressure gradient
promotes flow while the reverse pressure gradient hinders flow. For larger wave numbers
(such as A > 3), there is almost no phase lag x between the electric field and the average
velocity, which increases with the increase of 6 and is more obvious for smaller wave
numbers (such as A < 3). This conclusion is consistent with the results of the literature [28]
(Figure 7a). For a given Req, the phase lag x also increases or decreases significantly with
6. On the other hand, the results show that the velocity profile oscillates rapidly with the
increase of Reqy and the amplitude becomes smaller. Under certain parameters, the same
Ren number will produce the same ) peak value (as shown in Figure 7b). The reason
for this is that the rough wall changes from in-phase (8 = 0) to the out-of-phase (6 = 7).
Although the increased surface area of the flowing fluid in contact with the solid wall
results in greater resistance, the shear thinning effect of a Maxwell fluid exhibits faster flow
(as shown in Figure 7c). The phase lag x first increases and then decreases with the increase
of K. The increase of K means that the thickness of the EDL decreases. When the EDL is very
thin, ions only need to overcome a small potential difference to reach the electrode surface.
At this point, the flow velocity is faster, but the motion of the fluid on the microchannel
walls is affected by ripples and roughness, resulting in a larger flow resistance. When the
EDL is thick (small K), the effect is opposite. Therefore, in rough corrugated microchannels,
the appropriate EDL thickness is selected according to specific conditions to achieve the
required fluid control and transmission effects (Figure 7d). The phase lag x varies with
and G and there is almost no phase lag (Figure 7e,f).

Figure 8a,b expresses the average velocity u;,(t) of AC EOF in different § and G for
rough microchannels as a function of ¢. For a given (, it is easy to see in the figure that
the velocity profile becomes larger when the pressure gradient changes from a reverse
pressure gradient (G = —1) to a forward pressure gradient (G = 1). This demonstrates
that the pressure gradient hinders or promotes the flow (see Figure 8a). When the two
parallel plate walls are oppositely charged, the electroosmotic force becomes resistance,
so the velocity profile along the pressure gradient near the lower plate is smaller than
the velocity profile reverse pressure gradient (see Figure 8b). It can also be seen from the
figure that there is no phase lag phenomenon in different 6 velocity profiles. For given
parameters, the average velocity u,(t) oscillates rapidly with the increase of Rep, and the
amplitude becomes smaller (see Figure 8c), which is consistent with the previous known
results (see Figure 4). It can also be seen from Figure 8 that the average velocity u,,(t)
oscillates periodically with ¢, that the period is consistent with the external electric field,
and that no phase lag appears.

The amplitude of the mean velocity | Uy, | as a function of the parameters Req, De,
and A is given in Figure 9. For a given K, a larger Re, and a smaller G will result in a
smaller | U, | (see Figure 9a). For a given Req,, the same De will result in the same peak
value of |Uy, |. This is because the elastic effect of the fluid will cause the AC EOF velocity
to increase for some De numbers and decrease for others. In addition, under a larger
elastic effect (that is, a larger De number), | Uy, | decreases with the increase of the wall
roughness phase difference 6 between the upper and lower plates. The reason for this is
that when the rough wall changes from in-phase (8 = 0) to out-of-phase (6 = 7r), the area of
the wall where the flowing fluid contacts the solid increases, resulting in greater resistance
(Figure 9b). | Uy, | does not change significantly with increasing wave number. For larger
wave numbers (such as A > 2.5), the impact of the roughness phase difference 6 on | U, |
is negligible (Figure 9c).
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Figure 8. Variations of u,(t) with t (a) { =2, De =2, Req =5; (b) { = —2, De =2, Rey =5; and (c) 6 =0,
G=0,=1whenK=10,A=2,and 6 =0.1.
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Figure 9. The complex amplitude of the average velocity | U, | as a function of (a) Req; (b) De; and
(c) AwhenK=10, =1,and 6 =0.1.

4. Conclusions

In this section, the AC EOF problem for a Maxwell fluid between micro-parallel plates
with sinusoidal wall roughness is studied using the boundary perturbation expansion
method and the linear superposition principle. From the above theoretical and drawing
analysis, the following conclusions can be drawn:

The velocity distribution of the fluid is significantly affected by the wall roughness,
there is an obvious fluctuation phenomenon, and the velocity distribution depends on 6.
The velocity profile oscillates rapidly with the increase of Reqy and the amplitude becomes
smaller. The amplitude is larger in the narrow EDL region near the wall and gradually
decreases away from the EDL region. For some given parameters, the larger the De is,
the easier it is for the velocity profile to oscillate under the action of an external electric
field. When the ¢ potential is high, the velocity rapidly increases from zero to a maximum
value in the EDL region. The phase lag x diminishes with the growth of G. For larger wave
numbers (such as A > 3), there is almost no x between the electric field and the average
velocity. For a given Req, the x also increases or decreases significantly with §. On the
other hand, it shows that the velocity profile oscillates rapidly and the amplitude becomes
smaller and smaller as Req, increases. For a given larger De number, a different 6 has a
more obvious x, and x declines as  improves. x first increases and then lessens with the
enhancement of K, and there is almost no phase lag phenomenon with ¢ and G. The velocity
profile of the average velocity u,,(t) increases with the increase of G, and there is no phase
lag in different 0 velocity profiles. The u,,(t) oscillates rapidly and the amplitude decreases
with the increase of Reqy. For a given K, a larger Re and a smaller G result in a smaller
average velocity amplitude | U, |. For a given Re(, the same number of De will produce
the same | Uy, | peak value. For larger De numbers, | Uy, | reduces as 8 enhances. | U, | has
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no obvious change with the augmentation of wave number A. For larger wave numbers
(such as A > 2.5), the influence of 8 on | Uy, | is negligible.
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Nomenclature

(x*, y*, z¥) dimensionless cartesian orthonormal coordinate system
(x,y) cartesian orthonormal coordinate system

R{} the real part of the periodic EOF function

Req oscillatory Reynolds number

De deborah number De = Aqw

K dimensionless electrokinetic width K = xh

Zy valence of ion

H average half-height of microchannel

t time

w(x, y, t) dimensionless velocity along the z-axis direction
w; dimensionless velocity of &/-order equation (j = 0, 1, 2)
P pressure of the liquid

G dimensionless pressure gradient

Ep *(t) AC electric field

1y valence of ion

ng ion density of bulk liquid

e elementary charge

ky, Boltzmann’s constant

T absolute temperature

Ueo Helmholtz-Smoluchowski electroosmotic velocity
u average velocity in rough microchannel

| U | complex amplitude of ac EOF mean velocity

U velocity vector

Uom average velocity in smooth microchannel

U increment of average velocity in rough microchannels
Greek symbols

aj, ﬁj real numbers (j =0, 1, 2)

A wave number

0 phase difference

£ dielectric constant in vacuum

M relaxation time or relaxation time of a fluid

T shear stress tensor

Qe net charge density per unit volume

10 zero shear viscosity of fluid

w oscillation angular frequency of AC electric field
Y(x*, y) electric potential

Q(x, y) dimensionless electric potential
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®; dimensionless electric potential of & order equation (j =0, 1, 2)
X phase lag
€ dielectric constant
0 the ratio of the ripple amplitude to the average half-height of the channel
1/x, Ap thickness of EDL
o density of fluid
Appendix A
_ 14 1-7 _ K%(1+iDe) A _ K2(1+iDe)BO ___ iRepagcoshK+G
Ap = 2 cosh K’ Bo = 2sinhK’ 40 = (g+i ‘BO)Z_KZ’ bo = (g +ip ) _K2’ Co = iReq) cosh(ap+ifp)’
_ _ _ bgsinhK HED+HAO) — A)-A(D 81(=1) s
Do = sinh(axp+iBg) A= 2cosh(Ky) 7 By = 2sinh(Kj) A 2cosh( 1)’ By = ZSmh(K]),
_ K*(14iDe) A; _ K*(1+iDe)B; . _ F(=1)+F(1)—2a; cosh(Ky)
1= g U = g U= 1 23 49, O = =i
Fl(l)fF] (71)72b1sinh(K1)l C2 — Gl(—l)—Zuz COSh(Kl) Dz — _ G](71)+2b25inh(1<1)

Az =
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