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In this paper, we introduce a methodology that can improve the estimations of Gross Primary 

Productivity (GPP) and ecosystem Respiration (Reco ) processes at a regional scale. This method is 

based on a satellite data-driven approach which is suitable for regions like India where there exists 

a serious shortage of ground-based observations of biospheric carbon fluxes (e.g., Eddy Covari- 

ance (EC) flux measurements). We relied on the Moderate Resolution Imaging Spectroradiometer 

(MODIS) reflectance for capturing vegetation dynamics in the Light-Use Efficiency (LUE)-based 

vegetation model. Further, we utilised recently available satellite-based Solar-Induced Fluores- 

cence (SIF) and other variables such as Soil Moisture (SM) and Soil Temperature (ST) to refine 

the predictions of GPP and Reco . The methodology involves establishing a relationship between 

SIF and GPP for different vegetation classes over India. The SIF-GPP relationship established 

across the biomes was then used to correct the GPP fluxes simulated by the LUE-based model. 

Similarly, the ecosystem respiration estimations by the model have undergone refinement by 

incorporating ST and SM information. This innovative method shows remarkable potential to 

improve biospheric CO2 uptake and release, especially for in situ data-constrained regions like 

India. 

• SIF-based information is introduced to a light-use efficiency-based vegetation model. 

• SIF-GPP relationship is established for major biomes across India. 

• SM and ST information is incorporated into the Reco simulations in the model. 
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Background 

The terrestrial biosphere plays a significant role in sequestering a large fraction of CO2 from the atmosphere. Accurate quan- 

tification of these terrestrial carbon exchange fluxes between the atmosphere and biosphere is thus crucial for planning emission

reduction measures at the regional scale. However, quantifying these fluxes for India poses challenges due to limited ground-based 

observations and the lack of sophisticated models capable of predicting these fluxes. In this study, we employed a light-use efficiency-

based Vegetation Photosynthesis and Respiration Model (VPRM, Mahadevan et al. [ 24 ]) driven by the Moderate Resolution Imaging

Spectroradiometer (MODIS) satellite data. The model provides high-resolution hourly fluxes of Gross Primary Productivity (GPP) and 

ecosystem Respiration (Reco ) at a 0.1° × 0.1° grid cell. The VPRM model parameters to generate GPP and Reco specific to the major

vegetation classes over India are derived from MODIS reflectance such as Enhanced Vegetation Index (EVI) and Land Surface Water

Index (LSWI), and modelled air temperature. The VPRM, previously validated in various other global regions [ 4 , 5 , 8 ], has demon-

strated its potential in predicting vegetation carbon fluxes. To represent the vegetation fluxes of the region, the VPRM parameters

must be calibrated using Eddy Covariance (EC) measurements covering major biomes, as was done in the previous studies [ 3–5 , 8 ].

Given the inadequate availability of EC observations in India, this study opted for initial parameters calibrated against tropical biomes

for the VPRM [ 3 ]. Further, we integrated additional observations currently accessible through satellite remote sensing platforms into

the model in order to minimize the errors caused by the unavailability of ground-based EC measurements. 

Solar-Induced Fluorescence (SIF) obtained through satellite retrievals can be used as a proxy for photosynthesis, as indicated by

previous studies [ 28 , 34 , 38 ]. This study explores the potential of SIF to capture spatiotemporal features of vegetation productivity,

thereby improving GPP predictions by the VPRM. To augment the model with observational input, we incorporated SIF retrievals 

from Orbiting Carbon Observatory-2 (OCO-2; Li and Xiao [ 18 ]) and Tropospheric Monitoring Instrument (TROPOMI; Guanter et al.

[ 9 ]) (onboard Sentinel 5P), in addition to satellite-based information from the MODIS. The derived SIF-GPP relationship was then

integrated into the VPRM GPP calculation, improving model performance as validated against EC data (see sections “Refinement of

GPP estimates utilising SIF and Validation of refined models ”). 

Changes in precipitation patterns affect Soil Temperature (ST) and Soil Moisture (SM), influencing soil microbial activity and Reco 

[ 1 ]. Previous studies show that SM and ST can affect Reco rates, varying seasonally and spatially [ 31 , 34 ]. A simple linear relationship

between air temperature and plant respiration as considered in the VPRM respiration equation [ 24 ] may be sufficient to represent

ecosystem releases for regions where soil properties exert minimal influence on respiration dynamics. However, in the context of the

Indian region, characterized by pronounced seasonal variations in precipitation patterns, it becomes imperative to account for the 

influence of soil properties on autotrophic and heterotrophic respiration [ 7 , 26 , 27 ]. Hence, in this study, we examine the influence

of SM and ST content on Reco and attempt to integrate these soil-related variables into the model’s respiration equation (see section

“Refinement of Reco estimates ”). 

Overall, this article aims to demonstrate a data-driven approach providing a novel means of refining the GPP and Reco estimations

of flux distribution by VPRM for regions where ground-based flux measurements are the current limitation. 

Below, we describe the data and methods used in this paper. The flowchart in Fig. 1 provides an overview of the workflow. 

Method details 

MODIS-based estimations of biospheric CO2 fluxes 

We used VPRM to derive estimates of GPP and Reco for the Indian region. VPRM utilises the EVI and the LSWI, both derived

from the remote sensing measurements collected by the MODIS on NASA’s Terra and Aqua satellites, together with meteorology from

ERA5 [ 12 ] to derive the VPRM GPP (GPPVPRM 

). We used the MODIS tiles of the surface reflectance dataset (MOD09A1) on sinusoidal

grids at a 500 m spatial resolution with an 8-day interval to generate EVI and LSWI fields. Specifically, we used the red band (band

1), the near-infrared band (band 2), the blue band (band3) for deriving EVI, and the near-infrared band and the shortwave infrared

band (band 6) for deriving LSWI. Air temperature information from ERA5 is used to generate VPRM Reco fluxes (Reco,VPRM 

) taking
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Fig. 1. Flow chart showing the work flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

into account the response of each vegetation class to temperature. For representing different biomes in VPRM, we used vegetation

classification based on SYNMAP [ 15 ]. In the standard VPRM, GPPVPRM 

and Reco,VPRM 

are derived as follows: 

GP PVPRM 

= λ × Pscale × Tscale ×Wscale × FPA RPAV × SWdown ×
1 

1 + SWdown 
SWdown 0 

(1) 

Reco ,VPRM 

= α × Tair + β (2) 

where λ is the light use efficiency term, and FPA RPAV is the fraction of incident radiation available for the photosynthetically active

part of the vegetation. FPA RPAV is derived from MODIS EVI. SWdown is prescribed from ERA5. SWdown 0 is the half-saturation value. 

Tscale , Pscale , and Wscale are dimensionless scalars representing the sensitivity of plants to changes in temperature, phenology, and 

water availability, respectively [ 2 , 24 , 37 ]. Tscale is derived based on the equation developed for the terrestrial ecosystem model by

Raich et al. [ 30 ] using ecosystem-specific temperature as follows: 

Tscale =
(
Tair − Tmin 

) (
Tair − Tmax 

)

(
Tair − Tmin 

) (
Tair − Tmax 

)
− (Tair − Topt ) 2 

(3) 

where Topt , Tmax , and Tmin represent optimal, maximum, and minimum temperatures for photosynthesis activity for each vegetation 

class. Photosynthesis is assumed to be absent above or below Tmax and Tmin , respectively. Tair is the hourly air temperature at 2 m

prescribed from ERA5 [ 6 ]. In this study, we set Topt , Tmax , and Tmin to 20 °C, 45 °C, and 0 °C respectively. In Eq. (3) , Tair is constrained

with a threshold value ( Ttshld ), and Tair below Ttshld is set to Ttshld for accounting for ecosystem respiration in winter times. Pscale 
accounts for the effects of leaf age on photosynthesis; hence, it is set to 0 for water bodies and unclassified vegetation classes. Pscale 
is assumed to always be 1 for the Evergreen vegetation class. For all vegetation classes other than Evergreen, we computed Pscale as

a function of LSWI except at the time of maximum greenness (representing full leaf expansion) as follows: 

Pscale =
1 + LSWI 

2 
(4) 

For the maximum greenness time, Pscale is set to 1. Wscale is used to represent the effect of water stress on photosynthesis and is

derived as follows: 

Wscale =
1 + LSWI 

1 + LSW Imax 
(5) 

where LSW Imax is the maximum LSWI during the plant growing season per grid cell. The model parameters, specifically λ, SWdown 0 ,

α, and β are usually calibrated using EC measurements for each ecosystem. 

This calibration process involves minimizing the least squares differences between the modelled fluxes and observations from 

eddy flux towers situated at discrete locations across major vegetation classes. This optimization approach, employed in studies such 

as Dayalu et al. [ 5 ] and Luus and Lin [ 22 ], is conducted to enhance the model’s performance within the specified region. 

Due to the limited availability of observational eddy flux measurements for calibration in the Indian region, we opted for VPRM

model parameters ( λ, SWdown 0 , α, and β) optimized based on the EC data from Amazonian Tropical biomes, as outlined in Table 1 .

However, it is important to note that these parameters may not accurately represent the subtropical biomes of India, potentially

resulting in a decrease in model performance compared to simulations conducted in regions like Europe or North America. To

decouple the influence of the initial model parameters, we also used another set of initial parameters that are optimized for European

biomes (VPRMEUR ) (refer to Table 1 ) in the model and examined their differences. 
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Table 1 

List of VPRM initial parameters optimized against Amazonian Tropical and European biomes based on vegetation classes used in this study. 

Vegetation class Tropical parameters European parameters 

λ SWdown 0 α β λ SWdown 0 α β

Grassland 0.13 157 0.026 0 − 0.17 229.1 0.08 0.58 

Cropland 0.12 646 0.004 0 − 0.13 690.3 0.16 − 0.01 

Savanna 0.11 682 0.004 0 − 0.11 682 0.004 0 

Shrubland 0.08 303 0.02 0 − 0.08 363 0.02 0 

Deciduous forest 0.17 324 0.32 0 − 0.19 271.4 0.14 0.82 

Evergreen forest 0.21 501 0.16 0 − 0.30 270.2 0.17 0.88 

Mixed forest 0.25 206 0.34 0 − 0.28 236.6 0.22 0.43 

∗ Units are as follows: λ: μmol CO2 m
− 2 s− 1 / μmol SWdown m

− 2 s− 1 ; α: μmol CO2 m
− 2 s− 1 / °C; β: μmol CO2 m

− 2 s− 1 ; SWdown 0 : μmol CO2 m
− 2 s− 1 . 

Table 2 

List of scalars applied to GOSIF (based on SIF retrievals at 757 nm) on an 8-day time step, specific to each vegetation type. The squared correlation 

coefficients (R2 ) between GOSIF and TROPOSIF from 2018 to 2020 across different vegetation classes are indicated. R2 in the annual GPP from 

VPRM with annual GOSIF and TROPOSIF across different vegetation classes are also provided for the year 2019. 

Vegetation class SGOSIF R2 (GOSIF vs TROPOSIF) R2 (GPPVPRM vs TROPOSIF) R2 (GPPVPRM vs GOSIF) 

Grassland 2.81 0.22 0.22 0.52 

Cropland 4.62 0.45 0.48 0.53 

Savanna 4.35 0.56 0.22 0.29 

Shrubland 4.35 0.62 0.77 0.84 

Deciduous forest 4.17 0.56 0.46 0.55 

Evergreen forest 4.02 0.52 0.59 0.59 

Mixed forest 3.94 0.55 0.44 0.52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Satellite-based SIF observations across Indian biomes 

We hypothesize that utilising the satellite remote sensing measurements of SIF may partly address the challenge posed by

the limited availability of adequate EC observations for calibrating the VPRM parameter across India. SIF is the signal emit-

ted by the chlorophyll pigment in plants upon the absorption of sunlight during photosynthesis. Hence, SIF is considered as

a proxy for photosynthesis [ 28 , 34 , 38 ]. To improve the GPP distribution in VPRM two recently available SIF products are

employed. We utilised the global 0.1° × 0.1° gridded Level 2B product from TROPOMI, denoted as TROPOSIF, focusing on 

the 743–748 nm fitting window. Daily SIF data obtained from the TROPOMI onboard the Sentinel-5P satellite are available

( http://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/sif/v2.1/l2b/ ). Additionally, we employed another SIF product called 

GOSIF_v2 ( http://data.globalecology.unh.edu/ ; Li and Xiao [ 19 ]) derived from observations made by the OCO-2 using a machine

learning approach. GOSIF_v2 (hereafter referred to as GOSIF) is available at a spatial resolution of 0.05° and a temporal scale of 8

days. GOSIF retrievals at 757 nm are used here. Based on the availability of the data, GOSIF data from 2016 to 2020 and TROPOSIF

data from May 2018 to 2020 are employed in this study. Daily TROPOSIF data is aggregated on an 8-day scale to match the temporal

resolution of GOSIF. 

Minimizing scale mismatch between GOSIF and TROPOSIF 

We made the biome-specific analyses of SIF products, deducing their spatial and temporal characteristics over Indian biomes from

2018 to 2020 (period selection is based on common data availability). For the spatial analysis, GOSIF data have been re-gridded to

0.1° × 0.1° to match the resolution of TROPOSIF. The 8-day averaged SIF products from GOSIF and TROPOSIF reasonably agree with

each other across biomes with R2 ranging from 0.45 to 0.62 except for Grassland (R2 = 0.22) (see Table 2 ). A similar good agreement

between SIF retrievals from OCO-2 and TROPOMI on a global scale is also reported by K¨ohler et al. [ 17 ] and Guanter et al. [ 9 ]. Fig. 2

illustrates the comparison between the monthly averaged TROPOSIF and GOSIF across various vegetation classes of India spanning 

from 2018 to 2020. The vegetation classification is made according to the SYNMAP. A robust correlation exists between TROPOSIF

and GOSIF products (R2 > 0.85). Overall, we find that TROPOSIF values are ∼4 times greater than GOSIF over the study region for

all the biomes except for Grassland, where the biome-specific TROPOSIF is ∼3 times larger than GOSIF. A scaling factor separately

for each vegetation class (SGOSIF,vg ) is applied to minimize these differences as follows: 

TROPOSI Fvg = SGOSIF ,vg × GOSI Fvg (6) 

where SGOSIF,vg is the scaling factor representing the factorial difference between TROPOSIF and GOSIF based on vegetation type, vg.

Table 2 provides SGOSIF,vg values used across biomes. A similar upscaling of OCO-2 SIF is also done by K¨ohler et al. [ 17 ] and Guanter

et al. [ 9 ] to compare the fields with TROPOSIF on a global scale. 
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Fig. 2. Time series of monthly averaged SIF (GOSIF and TROPOSIF) across different biomes over India from 2018 to 2020. The vegetation classifi- 

cation based on SYNMAP is used to represent SIF for different biomes. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

Spatio-temporal patterns of SIF over Indian biomes 

Fig. 3 compares scaled GOSIF and TROPOSIF across different biomes. Annually, the highest SIF values (GOSIF, mean/min/max: 

1.16/0.62/1.49 mW m− 2 sr− 1 nm− 1 and TROPOSIF, mean/min/max: 1.17/0.59/1.58 mW m− 2 sr− 1 nm− 1 ) are exhibited by Evergreen 

forest, and the lowest values are observed (GOSIF, mean/min/max: 0.22/0.011/0.49 mW m− 2 sr− 1 nm− 1 , TROPOSIF, mean/min/max: 

0.28/0.05/0.53 mW m− 2 sr− 1 nm− 1 ) over Grassland vegetation. The above values are based on the annual average across different 

vegetation types for 2019 and 2020 per grid. On an annual scale, large spatial variability in the SIF values is exhibited by Shrublands

and the least by Deciduous forest and Grasslands. Compared to 2019, SIF values from GOSIF of the year 2020 for Cropland, Savanna,

Shrubland, Deciduous forest, and Evergreen forest show enhancement in the range of 0.01 mW m− 2 sr− 1 nm− 1 to 0.23 mW m− 2 sr− 1 
5
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Fig. 3. Comparison between annual SIF retrievals from OCO-2 (GOSIF) and TROPOSIF across vegetation classes over India averaged for 2019 and 

2020. GOSIF (estimated at 757 nm) is scaled by respective biome-specific scaling factors (see Table 2 ) to compare with TROPOMI SIF (estimated at 

743 nm and 748 nm). The upper and lower limit of the box shows the 5th and 95th percentile of the data and the center line shows the median. All 

the values that are 1.5 times higher than the 5th and 95th percentile are considered outliers and are removed from the graph. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nm− 1 , with Grassland showing no enhancement. Mixed forest biomes exhibited a decline in SIF value (− 0.005 mW m− 2 sr− 1 nm− 1 ) 

in 2020 compared to the previous year. Like GOSIF, TROPOSIF also indicates no increments in SIF values for Grasslands, while other

ecosystems show an annual augmentation between 0.04 mW m− 2 sr− 1 nm− 1 to 0.11 mW m− 2 sr− 1 nm− 1 . 

We further analysed SIF variability against GPP from VPRM. While both GOSIF (upscaled) and TROPOSIF products are in good

agreement with GPPVPRM 

over most of the vegetation classes in our study (e.g., R2 = 0.77 to 0.84 for Shrubland), we found a weak

correlation between SIFs and standard VPRM-derived GPP for Savanna (R2 = 0.22 to 0.29). The above correlation values are based

on the annually averaged data analysis from 2019 (see Table 2 ). It is noteworthy that the SIF-GPP relationship can become weak

in certain environmental conditions such as drought (e.g., Shekhar et al. [ 33 ]) and be variable within certain biomes based on leaf

physiology (e.g., Wu et al. [ 36 ]). However, a future study is needed to elucidate SIF-GPP relationships in India across different biomes

in drought and wet conditions. 

Deriving SIF-GPP relationship across biomes 

We followed Li and Xiao [ 19 ] to establish the relationship between SIF and GPP across Indian biomes. Here also we assume that

the GPP varies linearly with SIF [ 35 , 39 ]. Previous studies have used different approaches to derive GPP from SIF, which also varied

across biomes. Some studies have used a linear relationship between SIF and GPP, while others have explored non-linear relationships

[ 11 , 20 , 39 ]. Additionally, there are studies that have considered universal relationships for all vegetation types versus those specific to

biomes [ 10 , 35 ]. Besides vegetation type, physiological as well as environmental factors such as temperature, moisture, and radiation

also significantly influence the SIF-GPP relationship [ 4 , 21 , 23 , 29 ]. At the leaf level, the relationship resembles a typical light response

curve of a leaf, where photosynthesis reaches saturation at moderate light intensity while SIF continues to increase proportionally with

light intensity [ 25 ]. This calls for future studies focusing on elucidating the relationship between SIF and GPP taking into account the

environmental, physiological, and geographical factors specific to the Indian region. The above efforts require observational datasets 

of both SIF and GPP across various biomes at the field level representing different environmental conditions, which are currently

limited over India. Because of the data limitation, the present study does not specifically derive the uncertainties in the SIF-GPP

relationship though stringent quality filtering is applied to the SIF measurements used. Our approach assumes the above uncertainty

to be negligible relative to other major model errors of GPP estimation. However, using SIF alone is insufficient for accurate GPP

estimation due to the discrepancies in the quantitative relationships as explained above. Hence, the present study integrates SIF and

auxiliary environmental information together with the surface reflectance data to minimize uncertainties in GPP estimation . 

Here, the 8-day averaged GPP from GOSIF (denoted as GPPGOSIF ) is derived as follows: 

GP PGOSIF ( vg ) = γGOSIF ,vg × GOSIF ( vg ) + CGOSIF ,vg (7) 

where γvg is the factor converting GOSIF to GPPGOSIF for each vegetation class. Similarly, CGOSIF ,vg represents the constant specific to 

each vegetation class, vg. Our derived scalars for converting SIF to GPP are different from Li and Xiao [ 19 ] due to the differences in
6
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Table 3 

Biome-specific scalars used for the conversion of TROPOSIF to GPPTROPOSIF and GOSIF to GPPGOSIF across different vegetation classes across India 

(see section “Deriving SIF-GPP relationship across biomes ”). 

Vegetation class γTROPOSIF (mW m− 2 sr− 1 nm− 1 )/ (μmol m− 2 s− 1 ) CTROPOSIF γGOSIF (mW m− 2 sr− 1 nm− 1 )/ (μmol m− 2 s− 1 ) CGOSIF 

Grassland 7.84 0.40 22.03 1.12 

Cropland 4.81 0.22 22.22 1.01 

Savanna 5.12 0.32 22.27 1.39 

Shrubland 5 0.39 21.75 1.69 

Deciduous forest 5.35 0.34 22.30 1.41 

Evergreen forest 5.47 0.64 21.98 2.57 

Mixed forest 5.59 0.61 22.02 2.40 

Fig. 4. Comparison of monthly averaged GPP from EC observations with GPPGOSIF , GPPTROPOSIF , GPPVPRM , GPPVPRM,GOSIF , and GPPVPRM,TROPOSIF for 

Betul during 2018. Note that TROPOSIF data has only been available since May 2018. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

Indian biomes, their classifications, and the upscaling of the GOSIF product (see Table 3 ). We utilised the above SIF-GPP relationship

to derive GPP from TROPOSIF. When using SIF products from TROPOSIF, the factor of difference between GOSIF and TROPOSIF

values (SGOSIF,vg , see Table 2 ) must be taken into account as follows: 

GP PTROPOSIF ( vg ) = γTROPOSIF ,vg × TROPOSIF ( vg ) + CTROPOSIF ,vg (8) 

where 

γTROPOSIF ,vg =
γGOSIF ,vg 
SGOSIF ,vg 

(9) 

CTROPOSIF ,vg =
CGOSIF ,vg 

SGOSIF ,vg 
(10) 

Table 3 provides the scalars used for converting TROPOSIF to GPPTROPOSIF . To evaluate how well these GPP products (GPPVPRM 

,

GPPTROPOSIF and GPPGOSIF ) capture the observed variability, we validated them using EC observations obtained from the Betul 

(21°51 ′ 46.84 ″ N latitude and 77°25 ′ 33.67 ″ E longitude, Madhya Pradesh; Jha et al. [ 13 ]) site in Central India. The tower is situated

in a homogeneous mixed Deciduous forest with a tropical climate, has been operational since November 2011, and is located at

507 m above sea level. Additional information about the site, instrumentation details, and data preprocessing at Betul can be found

in [ 13 , 32 ]. Here, the utilization of EC observations is restricted to just one site, primarily because of constraints related to data

availability. GPPVPRM 

captured the seasonal pattern (R2 = 0.83) better than SIF-based GPP products (GPPTROPOSIF and GPPGOSIF ) but 

with a larger model-observation bias (see Fig. 4 ). While these results demonstrate the potential of the VPRM in predicting temporal

variations of observed GPP, it indicates the need for further calibration of model parameters. As a result, we have chosen to integrate

SIF observational information to calibrate the VPRM GPP parameters. This strategic calibration is expected to reproduce the observed 

variations in GPP. 

Refinement of GPP estimates utilising SIF 

We integrated 8-day averaged SIF observations to modify the GP PVPRM 

, as follows: 

GP PVPRM ,SIF ( i , j , t, vg ) = ηvg × GP PVPRM 

( i , j , t, vg ) + εvg (11) 

Here, GP PVPRM ,SIF refers to either GPP refined based on GOSIF (further denoted as GP PVPRM ,GOSIF ) or GPP refined based on 

TROPOSIF (further denoted as GP PVPRM ,TROPOSIF ). i, j, and t represent latitude, longitude, and time coordinates, respectively. ηvg is 
7
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Table 4 

Biome-specific scalars used for creating GPPVPRM,GOSIF 

and GPPVPRM,TROPOSIF . 

Vegetation class 𝜂

TROPOSIF GOSIF 

Grassland 3.2 3.3 

Cropland 1.6 1.7 

Savanna 3.7 2.3 

Shrubland 3.3 2.2 

Deciduous forest 2.4 1.7 

Evergreen forest 1.7 1.2 

Mixed forest 2.3 1.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the scaling factor corresponding to the specific vegetation class, applied to GPPVPRM 

to include the information provided by SIF (see

Table 4 ). ηvg is thus: 

ηvg =
∑n1 

𝑖 =1 
∑n2 

𝑗=1 
∑n3 

𝑡 =1 
(
GP PSIF ( i , j , t, vg ) × GP PVPRM 

( i , j , t, vg ) 
)

∑n1 
𝑖 =1 

∑n2 
𝑗=1 

∑n3 
𝑡 =1 GP PVPRM 

( i , j , t, vg ) 
(12) 

εvg in Eq. (11) represents the vegetation-specific error term or the y-intercept between GP PSIF (vg ) and GP PVPRM 

(vg ) . n1, n2, and n3

represent the number of latitude, longitude, and time indices per vegetation class. The refinement improved model performance with

modified models ( GP PVPRM ,GOSIF and GP PVPRM ,TROPOSIF ) showing a reduction in bias and spread from the observation (see Fig. 4 ). It

is also worth mentioning that the accuracy of GPP calculated using the demonstrated approach relies on satellite SIF and reflectance

products and is expected to improve with dedicated satellite instruments designed for these measurements at high spatial and temporal

resolutions. 

Refinement of Reco estimates 

The influence of soil properties may become crucial in influencing both autotrophic and heterotrophic respiration, particularly 

in regions with distinct wet and dry seasons [ 7 , 26 , 27 ]. To examine whether SM and ST influence Reco in the Indian region, we

analysed the correlation between Reco data from the Betul EC site and surface SM and ST fields obtained from the high-resolution

land data assimilation system (HRLDAS; Chen et al., 2007) based on the Noah land surface model (LSM). The HRLDAS provides

3-hourly SM and ST fields at a spatial resolution of 4 km from 2012 to 2017. We compared the SM and ST fields from HRLDAS with

EC fluxes by utilising the nearest grid point to the Betul site location. For this comparison, the hourly fluxes from Betul are averaged

to 3-hourly (see Fig. 5 ). A strong dependence of Reco on SM was found (R2 > 0.5), but ST showed minimal effect on the observed

respiration flux pattern. We also use the surface SM fields from GLEAM v3 (spatial resolution: 0.25° × 0.25°, temporal resolution:

daily) ( https://www.gleam.eu/#datasets ; Martens et al. [ 25 ]) model and level 2 (7 - 28 cm) ST from ERA5 (spatial resolution:

0.1° × 0.1°, temporal resolution: hourly) ( https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab = overview ; 

Hersbach et al. [ 12 ]) reanalysis product as they provide latest data with more temporal coverage. 

We designed three experiments for improving predictions of Reco by integrating the corresponding equation with 1) SM only, 

2) ST only, and 3) both ST and SM. Additionally, we used global data products FLUXNET-Random Forest ( https://db.cger.nies.go.

jp/DL/10.17595/20200227.001.html.en , Jiye [ 14 ]) and FLUXCOM ( https://www.bgc-jena.mpg.de/geodb/projects/DataDnld.php , 

Jung et al. [ 16 ]) generated from a network of flux towers worldwide for adjusting the magnitude of resulted fluxes for each vegeta-

tion classes. The FLUXNET-Random forest product is generated by upscaling EC observations from FLUXNET 2015 using the Random

Forest method, resulting in a global gridded dataset. This approach incorporates satellite and meteorological data. Conversely, FLUX- 

COM utilises machine learning techniques to integrate energy flux measurements from FLUXNET towers with remote sensing and 

meteorological data to estimate carbon fluxes on a global grid. Even though both products rely on the same set of observations, the

accuracy of carbon flux estimates is influenced by factors such as the choice of machine learning algorithm, predictor variables, input

data, and the representation of various ecosystems. The FLUXNET-Random forest product is referred to as FLUXNET for the rest of

the study. The upscaling process involves separate utilization of FLUXCOM and FLUXNET for comparative analysis purposes. The 

scaling is done separately for each vegetation class by considering respiration fluxes corresponding to each vegetation class in our

domain. 

The respiration equation is modified as follows: 

Based on experiment 1: 

Reco ,VPRM ,SM 

( i , j , vg ) = νvg ,SM 

× SM ( i , j , vg ) + κvg ,SM 

×
(
αvg × Tair ( i , j , vg ) + βvg 

)
(13) 

Based on experiment 2: 

Reco ,VPRM ,ST ( i , j , vg ) = τvg ,ST × ST ( i , j , vg ) + κvg ,ST ×
(
αvg × Tair ( i , j , vg ) + βvg 

)
(14) 

Based on experiment 3: 

Reco ,VPRM ,SMST ( i , j , vg ) = τvg × ST ( i , j , vg ) + νvg × SM ( i , j , vg ) + κvg ×
(
αvg × Tair ( i , j , vg ) + βvg 

)
(15) 
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Fig. 5. Temporal variation (3 hourly) in the Reco fluxes compared against soil moisture and soil temperature fields from HRLDAS for the Betul site. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 5 

List of VPRM standard and refined respiration parameters based on vegetation classes 

adjusted using FLUXNET. 

Vegetation class νvg ,SM κvg ,SM τvg ,ST κvg ,ST τvg νvg κvg 

Grassland 1545.8 3.90 0.002 3.90 − 0.0023 2790.4 3.96 

Cropland 7997.9 0.20 0.009 0.40 − 0.0008 8588.3 0.20 

Savanna 9770.4 − 0.10 0.01 − 0.09 − 0.0009 10,321.2 − 0.07 

Shrubland 4390.4 0.60 0.003 0.90 − 0.001 5059.4 0.72 

Deciduous forest 10,059.1 − 0.03 0.01 0.01 − 0.003 11,684.6 0.02 

Evergreen forest 7147.7 0.50 0.01 0.40 0.005 4505.6 0.44 

Mixed forest 7488.6 0.30 0.01 0.40 − 0.005 10,214.6 0.30 

∗ Units are as follows: τ: μmol CO2 m
− 2 s− 1 K− 1 ; 𝜈: μmol CO2 m

− 2 s− 1 m− 3 m3 ; κ: dimen- 

sionless. 

 

 

where, νvg ,SM 

, κvg ,SM 

, τvg ,ST , κvg ,ST , τvg , νvg , and kvg represent the vegetation specific parameters, adjusted against observation-based 

respiration fluxes (FLUXNET or FLUXCOM). 

Table 5 provides the list of vegetation-specific scalars used for Reco,VPRM 

refinements using ST fields from ERA5 and SM fields

from GLEAM. Fig. 6 shows the distribution of modified Reco fluxes based on standard VPRM, experiments 1, 2, and 3, and estimates

from FLUXCOM and FLUXNET data. 
9
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Fig. 6. Comparison of the annual distribution of Reco fluxes from standard and refined VPRM for 2016. Shows a) the refined VPRM simulations 

(Expt. 1, Expt. 2, and Expt. 3) in which κ-related parameters for each vegetation class are adjusted with FLUXCOM dataset, and b) the same as (a), 

but κ-related parameters for each vegetation class are adjusted with FLUXNET dataset. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

10
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Fig. 7. Comparison of monthly averaged EC observations with Reco simulations over Betul for the period 2012 to 2018. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 6 

Comparison of monthly averaged Reco fluxes from VPRM model simu- 

lations against EC observations for Betul from 2012 to 2018. 

Variable name R2 RMSE (μmol m− 2 s− 1 ) MBE (μmol m− 2 s− 1 ) 

Reco,VPRM 0.02 5.7 − 3.50 

Reco,VPRM,ST 0.06 4.4 0.08 

Reco,VPRM,SM 0.80 2.0 − 0.01 

Reco,VPRM,SMST 0.82 1.9 − 0.01 

 

 

 

 

 

 

 

 

 

 

Validation of refined models 

The validation of refined GPP and Reco models was done by comparing them with EC observation from Betul site (see Figs. 4 and

7 ). The intercomparison of GPPVPRM,GOSIF and GPPVPRM,TROPOSIF with the standard GPPVPRM 

shows remarkable improvement in the 

model performance with a significant reduction in RMSE (RMSE: VPRM = 7.83 μmol m− 2 s− 1 , μmol m− 2 s− 1 VPRMGOSIF = 4.9 μmol 

m− 2 s− 1 , and VPRMTROPOSIF = 4.3 μmol m− 2 s− 1 ) and MBE (MBE: VPRM = − 6.11 μmol m− 2 s− 1 , VPRMGOSIF = − 3.3 μmol m− 2 s− 1 , 

VPRMTROPOSIF = − 2.6 μmol m− 2 s− 1 ) values. The above levels of model improvements confirm the potential of using high-resolution 

satellite-derived SIF in capturing the seasonal cycle of GPP at an ecosystem level. VPRM respiration modified using SM (Experiment

1: R2 = 0.80) shows much improvement in model prediction than when ST (Experiment 2: R2 = 0.06) alone is used (see Fig. 7 ). VPRM

respiration modified using both SM and ST (Experiment 3) shows slightly better improvement than using only SM (see Table 6 ). The

model-observation bias reduced considerably, with RMSE reducing from 5.7 μmol m− 2 s− 1 to 1.9 μmol m− 2 s− 1 and MBE reducing 

from − 3.5 μmol m− 2 s− 1 to − 0.01 μmol m− 2 s− 1 when both SM and ST are added to VPRM respiration. In general, incorporating the 

SM and ST in addition to air temperature in the Reco calculation in the VPRM improves the model’s ability to produce more realistic

values over the Deciduous ecosystem of Betul. 

VPRM initial parameter sensitivity test 

As we cannot specifically calibrate the VPRM model parameters for the Indian region using EC observations, assessing the sen-

sitivity of refined model simulations to the chosen initial VPRM model parameters becomes important. For this, we performed the

standard VPRM model simulations of GPP using model parameters calibrated for European biomes (denoted as GPPVPRM,EUR ). We 

then refined GPPVPRM,EUR using TROPOSIF to generate GPPVPRM,EUR,TROPOSIF . The refinement is done following the same approach 

applied in GPPVPRM 

to generate GPPVPRM,TROPOSIF as detailed in section “Refinement of GPP estimates utilising SIF ”. Fig. 8 shows the 

difference between GPPVPRM,TROPOSIF and GPPVPRM,EUR,TROPOSIF for Betul observation site, giving an average GPP difference within 

0.05 μmol m− 2 s− 1 i.e. the choice of initial model parameters in VPRM does not significantly impact the model refinements that

receive additional observational information from SIF. 

Summary 

This research presents a methodology to improve the LUE-based model that harnesses the capabilities of satellite-derived SIF 

data within vegetation models to produce reliable GPP estimates. Our approach holds significant promise for regions where EC 

observational data are scarce. The validation of the refined vegetation model against EC observations from the Betul site indicates

that integrating SIF has led to improved model performance. This enhancement has resulted in model values closely aligning with

the observed data. Furthermore, we observe that the TROPOMI-based product exhibits superior performance in predicting variations 
11
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Fig. 8. The difference in GPP simulations among the refined VPRM runs using the Amazonian Tropical and European parameters for the Betul site. 

 

 

 

 

 

 

 

 

 

 

 

 

in observed GPP compared to the OCO-2-based product. We showed the importance of incorporating soil-related information in the 

VPRM respiration equation. Our innovative approach of including ST and SM in the model respiration in addition to air temperature

significantly improved the model’s ability to reproduce the observed respiration fluxes. The sensitivity test conducted to examine 

the impact of initial model parameters on the refined model indicates a negligible influence of the initial parameters on the ultimate

output. 
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