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Abstract

Sarcopenia, a musculoskeletal disease characterized by the progressive loss of skeletal muscle mass, strength, and phys-
ical performance, presents significant challenges to global public health due to its adverse effects on mobility, morbidity,
mortality, and healthcare costs. This comprehensive review explores the intricate connections between sarcopenia and
low birth weight (LBW), emphasizing the developmental origins of health and disease (DOHaD) hypothesis, inflamma-
tory processes (inflammaging), mitochondrial dysfunction, circadian rhythm disruptions, epigenetic mechanisms, and
genetic variations revealed through genome-wide studies (GWAS). A systematic search strategy was developed using
PubMed to identify relevant English-language publications on sarcopenia, LBW, DOHaD, inflammaging, mitochondrial
dysfunction, circadian disruption, epigenetic mechanisms, and GWAS. The publications consist of 46.2% reviews, 21.2%
cohort studies, 4.8% systematic reviews, 1.9% cross-sectional studies, 13.4% animal studies, 4.8% genome-wide studies,
5.8% epigenome-wide studies, and 1.9% book chapters. The review identified key factors contributing to sarcopenia de-
velopment, including the DOHaD hypothesis, LBW impact on muscle mass, inflammaging, mitochondrial dysfunction,
the influence of clock genes, the role of epigenetic mechanisms, and genetic variations revealed through GWAS. The
DOHaD theory suggests that LBW induces epigenetic alterations during foetal development, impacting long-term health
outcomes, including the early onset of sarcopenia. LBW correlates with reduced muscle mass, grip strength, and lean
bodymass in adulthood, increasing the risk of sarcopenia. Chronic inflammation (inflammaging) andmitochondrial dys-
function contribute to sarcopenia, with LBW linked to increased oxidative stress and dysfunction. Disrupted circadian
rhythms, regulated by genes such as BMAL1 and CLOCK, are associated with both LBW and sarcopenia, impacting lipid
metabolism, muscle mass, and the ageing process. Early-life exposures, including LBW, induce epigenetic modifications
like DNA methylation (DNAm) and histone changes, playing a pivotal role in sarcopenia development. Genome-wide
studies have identified candidate genes and variants associated with lean body mass, muscle weakness, and sarcopenia,
providing insights into genetic factors contributing to the disorder. LBW emerges as a potential early predictor of sarco-
penia development, reflecting the impact of intrauterine exposures on long-term health outcomes. Understanding the
complex interplay between LBW with inflammaging, mitochondrial dysfunction, circadian disruption, and epigenetic
factors is essential for elucidating the pathogenesis of sarcopenia and developing targeted interventions. Future research
on GWAS and the underlying mechanisms of LBW-associated sarcopenia is warranted to inform preventive strategies
and improve public health outcomes.
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Introduction

As the world rapidly ages, sarcopenia emerges as a global
public health concern that requires prioritized attention
from researchers and practitioners. Sarcopenia is a progres-
sive skeletal muscle disorder characterized by rapid loss of
excessive muscle mass, strength, and physical performance.1

It brings along severe adverse health consequences such as
deteriorated mobility, frailty, falls, increased morbidity and
mortality, and high healthcare costs,1,2 and accordingly has
a negative impact on quality of life.3 This complex disease
involves various risk factors, encompassing environmental
and genetic influences, leading to diverse developmental
pathways.4

Recent research has shed light on factors impacting foetal
growth and development, with a specific focus on prenatal ex-
posure such as low birth weight (LBW), which carries lasting
consequences into later life.5 Aligning with the Developmental
Origin of Health and Disease (DOHaD) theory, maternal me-
tabolism and prenatal dietary habits influence the likelihood
of adult disorders through early-life epigenetic modulation of
gene expression.6 Promoting healthy early-life behaviours
during pregnancy and infancy and identifying intrauterine
exposures and early-life predictors offer opportunities for
preventing later-life diseases.6,7 Investigating the early stages
of muscle growth and alterations is crucial for understanding
age-related muscular diseases like sarcopenia.8

This comprehensive review aims to explore recent litera-
ture on sarcopenia, emphasizing current and potential deter-
minants, underlying mechanisms (including inflammaging,
circadian disruption, and mitochondrial dysfunction), and
the epigenetic approach. A particular focus is placed on inves-
tigating the hypothesis of LBW as a potential early predictor
of sarcopenia development.

Search strategy and selection criteria

We developed a search strategy in PubMed for publications
in English using search terms ‘sarcopenia’ and ‘low birth
weight’ in combination with one of the following keywords:
‘developmental origins of disease and health’, ‘inflammaging’,
‘mitochondrial dysfunction’, ‘clock genes’, ‘epigenetic’, ‘ge-
nome-wide meta-analysis’. Since LBW is a main consideration
for the development of sarcopenia in our review, we looked
into the keywords used for sarcopenia and also for ‘low birth
weight’ (Table 1). The publications consist of 46.2% reviews,
21.2% cohort studies, 4.8% systematic reviews, 1.9%
cross-sectional studies, 13.4% animal studies, 4.8%
genome-wide studies, 5.8% epigenome-wide studies, and
1.9% book chapters.

Sarcopenia and developmental origins
of health and disease theory

The DOHaD hypothesis, pioneered by Prof. David Barker and
colleagues, proposes a link between intrauterine exposures,
considering also the Dutch Famine study, and the early onset
of metabolic diseases in adulthood.9 This theory suggests that
a mismatch between the intrauterine environment and the
predicted postnatal conditions can lead to metabolic impair-
ments later in life.10 In a seminal study conducted by Sayer
et al.,11 a retrospective cohort analysis in Hertfordshire, UK,
focused on exploring the associations between birth weight,
weight at 1 year of age, and body composition in older men
born between 1931 and 1939. The study revealed a positive
correlation between birth weight and adult body mass index
(BMI) and fat-free mass, but not with fat mass. Conversely,

Table 1 Article numbers for sarcopenia and presented key words

Specific term Following keywords Article numbers Included articles

Sarcopenia Developmental origins of health and disease N = 3 1
- Epidemiology N = 161 10
Low birth weight N = 9 8
- DOHaD N = 48 6
- Muscle strength N = 71 11
Inflammaging N = 11 3
-Chronic inflammation N = 439 17
Mitochondrial dysfunction N = 350 8
-Low birth weight N = 37 4
Clock genes N = 7 4
-Circadian rhythm N = 17 6
-Circadian disruption N = 9 3
-Low birth weight N = 31 2
-BMAL1 gene N = 3 2
-BMAL1 gene and adiposity N = 63 2
Epigenetic N = 72 5
-DOHaD N = 199 7
-Histone modification and low birth weight N = 7 2
Genome- wide meta-analysis study N = 5 4
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weight at 1 year of age correlated with BMI, fat-free mass, and
fat mass. These findings suggest that prenatal andmaternal in-
fluences may predominantly impact fat-free mass rather than
fat mass in older individuals, while postnatal factors could play
a more significant role in later obesity development.

The concept of DOHaD considers LBW as a marker of the
in utero environment and negative health outcomes in
adulthood,12 and it has been explored largely through epide-
miological and clinical studies. Growing data from research
also shows that prenatal life plays a significant role in the
early development of adult health, particularly in long-term
conditions related to chronic inflammation and oxidative
stress,13 which are highlighted in the underlying mechanisms
of metabolic diseases and the ageing process.

The DOHaD theory is regarded as a crucial approach in mus-
cle/fat distribution-based foetal development through epige-
netic modifications.13,14 Epigenetic changes such as DNA
methylation (DNAm), histone modifications, and non-coding
microRNAs in the fetus may cause metabolic diseases later in
life since the epigenome is especially vulnerable to changes
during the prenatal period due to the high rate of DNA synthe-
sis and DNAm in tissue and organ development during
gestation.9,13,15 Also, it has already been confirmed with an
epigenome-wide study that there is a correlation between
birth weight and DNAm alterations, which remain through
adulthood, and this link influences the ageing process: individ-
uals with lower birth weight have accelerated cellular
ageing.12 Therefore, the DOHaD findings are crucial for the bi-
ological plausibility between epigenetic modifications and
later life diseases and provide critical public health implica-
tions since foetal growth disturbances and body composition
imbalances have a significant effect on the early programming
of metabolic diseases.

Sarcopenia and low birth weight

The World Health Organization (WHO) classifies LBW as less
than 2500 g, and LBW infants are 20 times more likely to ex-
perience problems than normal weight infants.16 Therefore,
WHO highlights LBW as a critical public health issue.17 Ac-
cording to the DOHaD approach, LBW is often triggered by in-
trauterine exposures and is associated with chronic disease in
later life.18–21 The concept of DOHaD focuses on body mass
at birth, foetal origins of diseases and early life exposure ef-
fects on the development of metabolic disorders in early
adulthood.22,23 Also, considering muscle comprises 25% of
the body composition at birth, early programming of body
composition during foetal development, and other epigenetic
modifications in the prenatal period, LBW may be deemed a
risk factor for early sarcopenia onset regarding epigenetic
regulation.

One of the first indication on birth weight associated with
sarcopenia in men and women, independently of adult height

and weight was published by Sayer et al.24 LBW is associated
with decreased muscle mass, muscle and grip strength, and
lean body mass in early adulthood.7,24–34 Also, a lower mus-
cle fibre score was found in the vastus lateralis muscle of
old men who were with LBW.26 The number of muscle fibres
is considered a significant factor in determining muscle
strength and mass,7,35 which form and grow dramatically
throughout gestation and the first year following birth.8 The
growth of fewer muscle fibres during the intrauterine period
may result in early progressive loss of muscle with age, limit-
ing physical ability and independence in early adulthood.30

Furthermore, LBW combined with rapid postnatal develop-
ment results in increased skeletal muscle ageing. DOHaD
considers that early adiposity and body composition pro-
gramming prepares the foetal epigenome for the postnatal
era.36 When there is a mismatch between the predicted
and exposed environments (i.e., malnutrition or low calorie
intake),37 infants with LBW have a higher fat percentage
and lower lean body mass, leading to an increased risk of
metabolic disorders such as sarcopenia later in life.31,36,38 In
light of this knowledge, LBW might be regarded as a marker
of intrauterine conditions,30 and the effects of prenatal expo-
sures on muscle morphology and adipose tissue formation
may be the link between LBW and muscle-related disorders
like sarcopenia.26

Moreover, studies have demonstrated that prenatal nutri-
tion is critical for birth weight39, adiposity,36 and muscle fibre
number.26,40 LBW and prenatal malnutrition are linked to a
higher risk of developing sarcopenia than normal birth weight
in adulthood.7 Animal and human models have shown that
undernutrition during the intrauterine period affects
myofiber growth and birth weight, and lower myofibers have
negative impacts on muscle mass and grip strength in later
life.26,41,42 Furthermore, diet during the intrauterine period
affects the methylation process in the foetus epigenome,
which is supported by epigenetic studies showing that LBW
is related to epigenetic alteration in DNAm due to adverse in-
trauterine exposures.26,39

Sarcopenia and inflammaging

Inflammaging, or chronic low-grade inflammation that occurs
as part of the ageing process, emerges as a key contributor to
the development of sarcopenia. This association is grounded
in factors such as genetic susceptibility, cellular senescence,
and oxidative stress resulting from disruptions in mitochon-
drial function.43 The prevalence of inflammaging, not only
leads to tissue impairment independently of infection but
also serves as a crucial link connecting age-driven increases
in adiposity, metabolic imbalances, and the onset of sarcope-
nia and subsequent muscle weakness.44,45
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Inflammatory mediators and their impact

Imbalances in reactive oxygen species (ROS) production, at-
tributed to the rise in inflammatory markers like tumour ne-
crosis factor alpha (TNFα), interleukin 6 (IL-6), IL-12, nuclear
factor kappa B (NF-κB), and C-reactive protein (CRP), are in-
trinsically tied to the ageing process. These mediators activate
diverse transcription factors that influence gene expression,
ultimately leading to the loss of muscle mass and strength—
central to sarcopenia.46–50 The inflammaging, referred to as
low-grade inflammation, is associated with an increase in
the number of cells that complete the cell cycle and reach
the status of cellular senescence, which is a hallmark of
ageing.46,51 Furthermore, inflammaging can lead to telomere
and telomerase impairments, prompting the ageing process,
where critically short telomeres denote irreversible DNA dam-
age and consequent cellular senescence.46

Sarcopenia, inflammation, and disease

Sarcopenia is identified by skeletal muscle inflammation and
involves molecular impairments associated with various
chronic diseases characterized by significant mitochondrial
dysfunction and circadian rhythm disruption.52 These obser-
vations suggest a clear interaction between inflammatory
mediators and muscle mass, impacting the development of
sarcopenia.53

Muscle and insulin metabolism

Skeletal muscle plays an important role in insulin-induced
glucose metabolism. Notably, the reduction in muscle mass,
a hallmark of sarcopenia, is closely attributed to insulin
resistance.54 Intrauterine growth restrictions leading to LBW
contribute to the development of insulin sensitivity in skele-
tal muscle.55 A strong association between TNFα and insulin
resistance further underlines the complex relationship.56

Population-based data show that sarcopenic individuals have
elevated plasma levels of IL-6, CRP, and TNFα and their asso-
ciation with an increased risk of muscular strength loss.46 It
also explains the later phenotype of metabolic syndrome in
adults, such as sarcopenia, which is caused by inflammatory
biomarker-related skeletal muscle changes.56

Low birth weight and inflammation

Epidemiological studies have demonstrated the relationship
between LWB and increased adulthood risk for
cardiovascular57,58 and metabolic diseases,59–61 which could
be mediated by an inflammatory pathway. Wada et al. dem-
onstrated that LBW was related to elevated white blood cell

counts independently of sex, age, lifestyles, and chronic dis-
eases in middle-aged Japanese men and women.62

In summary, the complex connection between
inflammaging and sarcopenia involves a blend of genetic, cel-
lular, and molecular processes. The impact of inflammatory
mediators on muscle health cannot be underestimated, as
evidenced by their role in the development of sarcopenia.
Understanding this interaction is crucial for developing inter-
ventions to mitigate age-related muscle loss and its associ-
ated functional impairments.

Sarcopenia and mitochondrial
dysfunction

Recent studies have connected LBW to mitochondrial dys-
function and an excess of ROS, as well as demonstrating
that LBW is most likely caused by an increased mitochon-
drial DNA (mtDNA) copy number in maternal blood.16 An in-
creased mtDNA copy number has been determined to be a
potentially efficient predictor of LBW and intrauterine
growth restriction.16 Changes in mtDNA copy number can
result in lower performance for electron transport chain
(ETC) function and higher ROS generation, which seems con-
nected to the Bcl-2/adenovirus E1B 19-kDa-interacting pro-
tein 3 (BNIP3) function. BNIP3, a pro-apoptotic mitochondrial
protein from the Bcl-2 family, exists in different organs and
the placenta in humans.16 Decreased expression of muscle
BNIP3 induces accelerated ageing and muscle atrophy, which
are associated with the development of sarcopenia, com-
pared to high levels of BNIP3 in aged subjects.63,64

Mitochondrial activity and organization are crucial factors
for skeletal muscle mass and functionality, and inflammatory
cytokines such as TNFα and IL-6 lead to mitochondrial dys-
function during ageing.65 Mitochondrial dysfunction in mus-
cles has been reported to have a role in the pathophysiology
of sarcopenia, which involves mtDNA depletion, ETC damage,
and oxidative stress in aged muscles.66 As mitochondrial activ-
ity deteriorates, the ROS process is disturbed, resulting in an
adverse change in cellular functioning that induces oxidative
stress, resulting in pathological consequences in muscle.67,68

Anomalies in mitochondrial functioning and errors have also
been connected to senescence.69 Also, muscle mitochondrial
dysfunction linked to intrauterine undernutrition and LBW
results in insulin resistance which may cause metabolic
problems in skeletal muscle functioning, leading to
sarcopenia.65,70,71

Furthermore, the accumulation of mtDNA mutations cor-
relates with a decrease in energy generation in muscle cells,
weakness, and fibre loss.72 mtDNA mutations increase with
age and cause mitochondrial dysfunction and skeletal apo-
ptosis, which are major contributions to the pathophysiology
of sarcopenia.73 Therefore, mitochondrial impairment is
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considered the key precursor of the underlying mechanism of
sarcopenia74 and one of the explanatory elements of the link
between LBW and sarcopenia.

Sarcopenia and clock genes: A
comprehensive exploration

Clock genes, integral components of the circadian rhythm
system, play a crucial role in regulating diverse physiological
processes. This discussion delves into the intricate relation-
ship between clock genes and sarcopenia, shedding light on
how disruptions in circadian rhythms can influence foetal de-
velopment, birth weight, metabolic regulation, and the onset
of sarcopenic traits.

Circadian rhythm and foetal development

Disrupted biological clocks, leading to chrono disruption,
exert a deleterious impact on foetal development and birth
weight.75 Moreover, a correlation exists between LBW and
adult cortisol levels, a marker of circadian rhythm, indicat-
ing LBW’s potential to predict prospective metabolic
dysregulations.76 Animal studies also confirmed that maternal
circadian arrhythmia during pregnancy may elevate the risk of
developing chronic diseases later in life, aligning with research
on DOHaD.77

Circadian regulation and metabolism

The circadian clock’s role is pivotal in synchronizing an organ-
ism’s metabolism with its external environment.78 Brain and
muscle ARNT-like protein (BMAL1) and circadian locomotor
output cycles kaput (CLOCK) are key transcription factors driv-
ing circadian rhythm regulation. Deficiencies in BMAL1 can re-
sult in abnormalities in behavioural and genetic expression
patterns.78 BMAL1 also governs adipogenesis, and circadian
disruption impacts lipid metabolism, leading to metabolic dis-
orders in early life.79

Clock genes and sarcopenia

Infants and adults with LBW show visceral adipose tissue ac-
cumulation, resulting in reduced lean body mass.22 Further-
more, disruption of BMAL1 function in visceral adipose tissue
is observed in patients with metabolic diseases.80 Rev-Erbα, a
nuclear receptor, regulates adiposity and BMAL1 transcrip-
tional control, influencing myogenic progenitor proliferation
and formation.81,82 In human models, CLOCK and BMAL1
transcription factors are associated with body weight.83 Mice
with BMAL1 mutations exhibit smaller body weight and

higher triglyceride levels in skeletal muscles.84 Therefore,
the interaction of the impaired BMAL1 gene, Rev-Erbα, and
LBW may contribute to sarcopenia development. Further re-
search into the circadian rhythm’s effect on lipid metabolism
and fat/muscle distribution in the intrauterine and postnatal
periods could yield significant insights.

Circadian rhythm disruption and sarcopenia

Recent studies reveal that circadian rhythm disruption from
shift work or nocturnal lifestyles contributes to sarcopenia
development via molecular circadian clock impairment and
mitochondrial dysfunction.85,86 BMAL1 regulates homeostasis
by controlling ROS; thus, its dysfunction is linked to excessive
ROS generation, leading to chronic oxidative stress.78 BMAL1
deficiency results in muscular atrophy, decreased strength, al-
tered sarcomere organization, and reduced mitochondrial
content—key features of sarcopenia.81 Animal models sug-
gest that BMAL1 deficiency shortens lifespan, accelerates
ageing, and triggers early-onset sarcopenia.78,87,88

Clock genes, telomere dynamics, epigenetics, and
sarcopenia

CLOCK deficiency in animals correlates with decreased telo-
merase activity and shorter telomere length—a critical aspect
of biological ageing.89 Therefore, clock gene disruption is as-
sociated with ageing.90 Even though the connection between
telomere length and sarcopenia is not fully elucidated,
shorter telomere length is linked to decreased grip strength
—a sarcopenia marker.91 Furthermore, epigenetic mecha-
nisms such as histone alterations, including acetylation and
methylation, play a role in regulating CLOCK transcription
factor expression.92 CLOCK has histone acetyltransferase
function, and several epigenetic modification enzymes follow
circadian rhythm patterns.92 Thus, circadian clock distur-
bances may contribute to LBW and early-stage sarcopenia
through epigenetic modifications.

The influence of clock genes on foetal development, met-
abolic regulation, and sarcopenia onset is intricate and mul-
tifaceted. Understanding how circadian rhythm disruptions
affect various life stages provides insights into potential in-
terventions to mitigate sarcopenia and age-related traits.

Sarcopenia and epigenetic

Epigenetic alterations, encompassing inheritable gene ex-
pression regulation elements, have profound implications
for health across generations.36 This section explores the
complex mechanism between epigenetic mechanisms and
the development of sarcopenia, focusing on DNAm, histone
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modifications, and noncoding RNA regulation. Key epigenetic
processes, namely DNAm, histone modifications, and non-
coding RNA regulation, play pivotal roles in regulating gene
expression.93

Epigenetic mechanisms and developmental origins
of health and disease theory

Epigenetic mechanisms serve as the foundation for the
DOHaD theory, which states that prenatal and early-life expe-
riences shape long-term health outcomes and supports the
connection between LBW and increased risk of chronic dis-
eases in adulthood due to the mismatch concept.93

DNA methylation and sarcopenia

DNAm emerges as a major epigenetic mechanism in the
context of DOHaD, influencing foetal programming and
development.36 An epigenome-wide study on a cohort of
1757 individuals has shown a significant correlation between
birth weight and blood-based DNAm in adulthood.12 This
study has also reported significant associations between
lower birth weight, and higher Grim Age acceleration and
shorter DNAm-derived telomere length, which are two epige-
netic age measures, confirming previous results.94,95 DNAm is
also implicated in the underlying processes of sarcopenia, af-
fecting satellite cell differentiation during early life and the
loss of myogenic capacity in ageing.96 Peterson et al. found
that DNAm mediates the link between chronic diseases and
lower grip strength, which has been designated as an impor-
tant predictor of sarcopenia.45 DNAm is reversible, and
ten-eleven translocation methylcytosine dioxygenases (TET)
enzymes can demethylate DNA.36 Prenatal exposures may dis-
rupt TET activity and be linked to developmental issues.36

Animal studies have linked TET mutations to low body mass
in mice and developmental issues due to disturbed TET
activity.36,93

Further investigation is necessary to comprehend how foe-
tal stressors lead to DNAm alterations at specific loci, elucidat-
ing the potential connection between early-life LBW exposure
and later-life sarcopenia.

Histone modifications and epigenetic interactions
in the onset of sarcopenia

Histone tails undergo various modifications, including meth-
ylation, acetylation, and phosphorylation, with DNAm and
histone modifications engaging in intricate epigenetic
interactions.93 These modifications are linked to metabolic
disorders.97 Histone acetylation identifies transcriptionally
active genes, while trimethylation of lysine 27 (H3K27me3)

and 9 (H3K9me3) indicates silenced genes or regions on
histone H3; increased H3K27 methylation levels negatively
impact muscle regeneration.93 In addition, animal studies
establish connections between LBW and increased gene
acetylation and H3K9 trimethylation, genes involved in
developmental processes and critical for physiological and
cellular homeostasis.98 Non-coding RNAs also contribute
to the complex network of gene regulation through
DNAm.93

As epigenetic research advances, it appears that DNAm
patterns may serve as markers for early-life exposures, poten-
tially predicting the likelihood of disorders such as sarcopenia
later in life. Within the DOHaD framework, epigenetic alter-
ations play a crucial role in the ageing process and the early
onset of chronic disorders.36 The exploration of epigenetic
mechanisms provides insights into potential interventions to
mitigate the development of age-related conditions, empha-
sizing the importance of considering early-life experiences
in the context of lifelong health.

Sarcopenia and genome-wide studies

Genome-wide studies (GWAS) are critical to identifying a
connection between sarcopenia and possible exposure ef-
fects through genes. A GWAS identified the fat mass and
obesity-associated (FTO) gene as a candidate for lean body
mass99 and found that lower lean body mass relates to
sarcopenia. It is also indicated that thyrotropin-releasing
hormone receptor (TRHR), hypothalamic–pituitary-thyroid
(HPT), insulin-like growth factor-I (IGF1), and iroquois
homebox gene 3 (IRX3) are significant genes for lean body
mass determinants.100 Thus, there is a gene–gene interac-
tion indicating a link between FTO, IGF-1, and IRX3, implying
that FTO may play an important role in muscle
development.99 Muscle weakness GWAS results, as another
important determinant of sarcopenia, were associated with
major histocompatibility complex, class II, DQ Alpha 1
(HLA-DQA1), growth/differentiation factor 5 (GDF5), and
dymeclin (DYM) variants, and the analysis results pointed
out a causal link between several chronic disorders and mus-
cle weakness.101 Human leukocyte antigen (HLA) alleles
were also linked to sarcopenia and its determinants.102 Fur-
thermore, in a meta-analysis of the DNAm genome-wide
study, candidate genes, DNAm modifications (hypo and hy-
per-methylations), and gene expression variations with age
were identified in skeletal muscle atrophy, lipid metabolism,
and fibre type specification.103 Therefore, it may be possible
to elaborate on the gene loci and biological plausibility of
LBW’s effect on sarcopenia with GWAS aimed at
determining the pathways by which loci play a role in
disorders104 (Table 2).
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Summary and conclusions

In summary, our review explored the intricate connections
between sarcopenia and LBW through a PubMed search,
shedding light on the multifaceted nature of this condition.
The review identified key factors contributing to sarcopenia
development, including the DOHaD hypothesis, LBW’s impact
on muscle mass, inflammaging, mitochondrial dysfunction,
the influence of clock genes, the role of epigenetic mecha-
nisms, and genetic variations revealed through GWAS.

The DOHaD hypothesis suggests that early-life exposures,
such as LBW, can induce epigenetic alterations during foetal
development, impacting long-term health outcomes, includ-
ing the early onset of sarcopenia (Figure 1). LBW correlates
with reduced muscle mass, grip strength, and lean body mass
in adulthood and an increased risk of sarcopenia later in life.
Chronic inflammation (inflammaging) and mitochondrial dys-
function both contribute to sarcopenia, with LBW linked to
increased oxidative stress and dysfunction. Disrupted circa-
dian rhythms, regulated by genes known as BMAL1 and
CLOCK, are linked to both LBW and sarcopenia, impacting
lipid metabolism, muscle mass, and ageing processes.
Early-life exposures, including LBW, can induce epigenetic
modifications such as DNAm and histone changes, which play
a pivotal role in sarcopenia development. Genome-wide stud-
ies have discovered candidate genes and variants associated
with lean body mass, muscle weakness, and sarcopenia, re-
vealing insights into the genetic factors contributing to the
disorder.

In conclusion, this review synthesized the complex rela-
tionships between LBW and sarcopenia. Given the complex
character of sarcopenia, we emphasize the importance of in-
terdisciplinary research encompassing genetics, epigenetics,
developmental biology, and ageing studies. While our find-
ings contribute to the understanding of these connections,
further research is necessary to identify precise pathways
and interactions, which will facilitate the development of ef-
fective preventive and treatment strategies for this signifi-
cant public health concern.
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