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Cholinergic Neuromodulation of Prefrontal Attractor
Dynamics Controls Performance in Spatial Working
Memory
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The behavioral and neural effects of the endogenous release of acetylcholine following stimulation of the nucleus basalis (NB) of
Meynert have been recently examined in twomale monkeys (Qi et al., 2021). Counterintuitively, NB stimulation enhanced behavioral
performance while broadening neural tuning in the prefrontal cortex (PFC). The mechanism by which a weaker mnemonic neural
code could lead to better performance remains unclear. Here, we show that increased neural excitability in a simple continuous
bump attractor model can induce broader neural tuning and decrease bump diffusion, provided neural rates are saturated.
Increased memory precision in the model overrides memory accuracy, improving overall task performance. Moreover, we show
that bump attractor dynamics can account for the nonuniform impact of neuromodulation on distractibility, depending on distrac-
tor distance from the target. Finally, we delve into the conditions under which bump attractor tuning and diffusion balance in
biologically plausible heterogeneous network models. In these discrete bump attractor networks, we show that reducing spatial
correlations or enhancing excitatory transmission can improve memory precision. Altogether, we provide a mechanistic understand-
ing of how cholinergic neuromodulation controls spatial working memory through perturbed attractor dynamics in the PFC.
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Significance Statement

Acetylcholine has been thought to improve cognitive performance by sharpening neuronal tuning in the prefrontal cortex
(PFC). Recent work has shown that electrical stimulation of the cholinergic forebrain in awake-behaving monkeys reduces
neural tuning in PFC under stimulation conditions that improve performance. To reconcile these divergent observations,
we provide network simulations showing that these derive consistently from specific conditions in prefrontal attractor
dynamics: firing rate saturation leads to increased storage precision and reduced neural tuning upon cholinergic activation
via an increase in neural excitability, a reduction in neural correlations, and an increase in excitatory transmission. Our study
integrates previously reported data into a consistent mechanistic view of how acetylcholine controls spatial working memory
via attractor network dynamics in the PFC.

Introduction
Understanding how neuromodulatory systems affect associative
cortex dynamics during cognitive function is fundamental to
acquiring insights into cognitive control processes. Such under-
standing is also essential for advancing hypotheses for the net-
work mechanisms underlying neuropsychiatric disorders, often
characterized by subtle cognitive processing alterations. In this
regard, working memory (WM) is of particular relevance. For
one, WM is known to be modulated by the dopaminergic, norad-
renergic, and cholinergic systems (Cools and Arnsten, 2021).
Besides, it is closely associated with network activity in the pre-
frontal cortex (PFC), for which computational models have
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successfully linked network dynamics with behavior (Compte et
al., 2000; Wimmer et al., 2014; Inagaki et al., 2019; Barbosa et al.,
2020). Furthermore, WM is affected in most neuropsychiatric
disorders (Forbes et al., 2009). However, the causal chain from
cellular neuromodulation to changes in network dynamics and
behavioral performance in WM remains largely unknown, even
for simple behavioral readouts, such as spatial memory precision
in delayed response tasks (Stein et al., 2021).

A series of recent studies have investigated how the release of
endogenous acetylcholine through the stimulation of the nucleus
basalis (NB) of Meynert impacts cognitive functions, including
spatial and color WM and sustained attention (Blake et al.,
2017; Liu et al., 2017; Qi et al., 2021). Remarkably, they reported
that NB stimulation leads to better behavioral performance, an
uncommon observation upon interference with neuromodula-
tory systems. In addition, they investigated the neural correlates
of improved performance in the PFC (Qi et al., 2021).
Unexpectedly, they found that NB stimulation induced a general
increase in excitability and a widening of neuronal tuning curves
and memory fields. A decrease in selectivity has been observed
due to cholinergic stimulation applied iontophoretically with
high doses of cholinergic agonists (Major et al., 2018;
Vijayraghavan et al., 2018; Galvin et al., 2020b). However, this
effect has been assumed to correspond to the descending section
of an inverted-U function, representing a regime over which cho-
linergic agonists impair performance (Galvin et al., 2020a). The
effectiveness of drugs targeting other neurotransmitter systems,
for example, dopamine, is often interpreted as increased stimulus
selectivity (Williams and Goldman-Rakic, 1995). Thus, dopa-
mine agonists are known to “sculpt” neuronal activity and
improve spatial selectivity at low doses, which is assumed to con-
fer the beneficial effect of dopamine in behavior (Vijayraghavan
et al., 2007) as the result of more efficient coding (Fitzpatrick et
al., 1997). The concurrent improvement in performance and
broadening of tuning raises the question of how weaker memory
code at the neural level can lead to better behavioral perfor-
mances. An answer to this question requires a mechanistic
understanding to link PFC dynamics with behavior consistently.

Bump attractor models (Wilson and Cowan, 1972; Amari,
1977; Compte et al., 2000) have successfully explained complex
aspects of behavior in spatial WM tasks (Wimmer et al., 2014;
Barbosa et al., 2020). In such models, a neural population repre-
sents a continuous feature by localized elevated activity (bump
attractor) self-sustained through the mnemonic delay period.
Continuous bump attractor dynamics are usually investigated
in idealized settings with network homogeneity and perfectly
symmetric connectivity. However, their more plausible biological
implementations must deal with inhomogeneities and asymme-
tries that can significantly alter the dynamical features of the
bump attractor (Renart et al., 2003; Hansel and Mato, 2013;
Seeholzer et al., 2019; Darshan and Rivkind, 2022).

Here, we first use a homogeneous, symmetric firing rate bump
attractor networkmodel (Amari, 1977)—which we will refer to as
the continuous bump attractor model—to build a mechanistic
understanding of how increased excitability in the network can
explain the effects of NB stimulation in the PFC and its beha-
vioral outcomes in monkeys engaged in a spatial WM task (Qi
et al., 2021). We show that bump attractor models can combine
broader neural tuning during the delay and improve overall per-
formance in the task, provided that neurons undergo firing rate
saturation during the dynamics. Behavioral improvement is
due to a reduction in bump diffusion, confirmed in the experi-
ments’ behavioral data. Finally, we investigate how these ideal

attractor-like qualities can emerge in more realistic, heteroge-
neous, and asymmetric networks of spiking neurons (discrete
bump attractor networks; Hansel and Mato, 2013). We find
that heterogeneity per se does not alter our conclusions. Still,
when considering network dynamics of strongly recurrent excit-
atory and inhibitory populations, the cholinergic activation in
such discrete bump attractor networks must include other mech-
anisms than just enhanced excitability to reproduce the experi-
mental data, such as reduced network spatial correlations
(Thiele et al., 2012; Chen et al., 2015; Minces et al., 2017).

Materials and Methods
Electrophysiology
The experimental data included here were previously reported (Qi et al.,
2021). Two adult male rhesus monkeys (Macaca mulatta) were
implanted with a stimulating electrode targeting the anterior portion
of the NB. Intermittent stimulation of the NB was applied for 15 s at
80 pulses per second, followed by ∼45 s with no stimulation. The stim-
ulation was applied during the intertrial interval of the behavioral task
(below). In addition, neural recordings were obtained from arrays of
1–4 electrodes over areas 8a and 46 of the dorsolateral PFC and were pre-
viously reported by Qi et al. (2021).

Task
Monkeys were trained to perform a variation of the oculomotor delayed
response task, where two visual stimuli appeared in sequence (Qi et al.,
2021). They learned to remember the location of either the first
(Remember first) or the second (Remember second) stimulus and
make an eye movement to its location depending on the color of the
fixation point (white Remember first/blue Remember second). The
task was distributed in blocks. Remember first blocks include retrospec-
tive distractors (monkeys had to remember the first and ignore the sec-
ond). Remember second blocks contained prospective distractors
(monkeys had to ignore the first and remember the second stimulus).
Trial blocks included two null conditions in which either the first or
the second stimulus is omitted (Remember first/Absent second and
Remember second/Absent first).

After a 1 s fixation period, the first stimulus was presented for 0.5 s.
After a 1 s delay (Delay 1), the second stimulus was presented for 0.5 s.
Monkeys had to respond with a saccade after another 1 s delay (Delay 2).
The monkeys were rewarded with juice after reporting the correct loca-
tion. Gaze deviation beyond the fixation window led to immediate trial
termination without reward.

Each stimulus was displayed at one of eight locations arranged along
a circular ring (separated by 45°). The angular distance between the tar-
get stimulus and the distractor could be 0, 45, 90, or 180°. Additional
details regarding the task structure can be found in the original article
(Qi et al., 2021).

Continuous bump attractor network
Our first model consists of a homogeneous bump attractor network of a
single population of rate neurons, similar to that proposed by Amari
(1977).

Rate dynamics. The equation that defines the evolution of the rates of
the neurons in our model is the following:

t
dri(t)
dt

= −ri(t)+ F[IReci (t)+ I FFi (t)+ IStimi (t)], (1)

where we fixed t = 20 ms.
Where explicitly indicated, we consider a threshold linear transfer

function

F(u) = 0 for u , 0

F(u) = u for u ≥ 0,
(2)
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in all other cases we assume that the input/output neural transfer func-
tion is a sigmoid-like function that saturates for large input values:

F(u) = Q

2
1+ erf

u

u0
��
2

√
( )( )

, (3)

where Q = 15 Hz is the saturation threshold of the neural activity and
u0 = 1 Hz.

Connectivity. The network consists of N = 1,000 fully interconnec-
ted neurons. Neurons lie on a ring and present selectivity to stimulus
locations (ui = 2pi/N for i = 1, . . . ,N). Neurons with similar preferred
locations are more strongly connected than neurons coding for distant
locations.

We model this with a connectivity profile that follows a cosine shape:

Jij = 1
N
(J0 + 2 J1 cos (ui − uj)). (4)

In the simulations, we chose J0 = −2.75 and J1 = 1.1; therefore, all con-
nections are negative.

In the case of the heterogeneous bump attractor network, we add an
extra noisy term to the connections:

Sij = sHeter���
N

√ nij, (5)

where nij are random and independently distributed values with zero
mean and unit variance, and σHeter controls the magnitude of the
heterogeneities.

Recurrent inputs. The recurrent input to neuron i is given by the
following:

IReci (t) =
∑N
j=1

Jijrj(t). (6)

Feedforward (FF) input. Neurons in the network receive an external
input that is a FF input with mean, I0, and temporal variance, h0:

I FFi (t) = AAtt(t) I0 + h0 ji(t), (7)

where we introduce an attention switch, AAtt(t) = 1 for t . tONS1 or 0
otherwise, which turns on upon stimulus presentation and remains on
for the rest of the simulation. ji(t) is white noise. In the simulations,
we took I0 = 10 Hz and h0 = 5.48 Hz.

Stimulus input. During stimulus presentation, neurons receive an
additional tuned input:

IStimi (t) = AStim(1+ sStim cos (ui − uStim)), Stim = S1, S2 (8)

where AStim is the strength of the stimulus, sStim is the stimulus
modulation, and uStim the stimulus location. In the simulations, we
took AS1 = 1.0 Hz and sS1 = sS2 = 1.0.

Moreover, to simulate the effect of distraction in Remember first tri-
als, we assume that AS2 is drawn for each trial from a truncated Gaussian
distribution withmean 0.05 Hz and standard deviation 0.75 Hz; the neg-
ative values of AS2 are set to zero.

NB stimulation. Since the release of acetylcholine in the PFC is
thought to result in the depolarization of excitatory pyramidal neurons
through activation of depolarizing nonspecific cation currents
(Andrade, 1991; Haj-Dahmane and Andrade, 1996; Yan et al., 2009;
Zhang and Séguéla, 2010; Baker et al., 2018), we modeled NB stimulation
as an increase of the constant external input to the excitatory neurons,
ION0 = I0 + dI0. In the simulations, we selected dI0 = 20 Hz. With this
parametric choice, baseline firing rate went from 4.8 to 10 Hz with NB

stimulation (compared with 10.9 to 13.4 Hz in the experimental data
of Qi et al., 2021).

Bump dynamics. In analyzing the simulation results of the different
models, we measure changes in the network selectivity by referring to the
relative amplitude of the bump. We define it as the ratio between the first
and zero moments of the discrete Fourier transform of the rate popula-
tion vector:

F0(t) = 1
N

∑N
i=0

ri(t), (9)

F1(t) = 2
N

∑N
i=0

ri(t) e
−2ip/N

∣∣∣∣∣
∣∣∣∣∣, (10)

where |.| is the modulus operator.
Moreover, we compute the center of mass of the bump as follows:

c(t) = arctan Im
∑N
i=0

ri(t)e
−2ip/N

( )/
Re

∑N
i=0

ri(t) e
−2ip/N

( )[ ]
,

(11)

and we compute population tuning curves by smoothing the population
rate vector, ri(t), with a rolling average over nearby neurons.

Model performance. In the attractor rate model, errors in the model
can have two components:

1. Distraction and heterogeneities systematically bias the bump center
endpoint affecting the accuracy of the response. By computing the
bump center deviation from S1 averaged over trials and stimulus
conditions at the end of the delay (t=tend), we can estimate this
bias as follows:

Response bias = ctrial, (S1,S2)(tend)− uS1
〈 〉

trials, (S1, S2)
, (12)

where 〈·〉 is the average operator.

In the continuous attractor model with no distraction, there are no
response biases.

However, in trials with distraction, the distractor shifts the response
in a distance-dependent manner. We define a measure for this shift in a
signed manner as follows:

Distractor bias = sign(uS1 − uS2) (ctrial, (S1, S2)(tend)− uS1)
〈 〉

trials, (S1, S2).

(13)

2. The diffusion of the bump on the ring around the location of the
stimulus affects the precision of the response.
By computing the bump center endpoint deviation from its mean

over trials,

Endpoint deviation = ctrial, (S1, S2)(tend)

− ctrial, (S1, S2)(tend)
〈 〉

trials
, (14)

we can define the average variance in model responses by the following:

Response variance = Endpoint deviation2
〈 〉

trials, (S1, S2) . (15)

The average standard error in responses is as follows:

Response STD =
����������������������������������
Endpoint deviation2
〈 〉

trials, (S1, S2)

√
, (16)
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and the definition of the diffusivity of the random process is as follows:

Diffusivity = Endpoint deviation2
〈 〉

trials, (S1, S2) / (tend − tOFFS1 ). (17)

Quantitative and statistical analysis of saccadic errors
Response bias and variance. In the data, we decompose saccades in a

similar manner. For each monkey, we compute a saccade response bias,
Dui, as the deviation of the saccade location, ui, to the target stimulus,
θTarget, averaged over trials with the same stimuli pair:

Du = ui − uTarget
〈 〉

trials, (S1, S2). (18)

We estimate the saccade response variance by computing the deviation
of the saccade to the mean saccade averaged over trials with the same
stimuli pair:

du2 = ui − ui〈 〉trials, (S1, S2)
( )2〈 〉

trials, (S1, S2)
. (19)

Saccade bias and variance were estimated for saccades within 30° of the
reported stimulus.

We tested how task conditions affected the saccade response variance
in a linear model:

du2 = b0 + bNB XNB + btaskXtask + bmonkeyXmonkey + bNB/taskXNB Xtask

+ bNB/monkeyXNB Xmonkey + btask/monkeyXtaskXmonkey

+ bNB/task/monkeyXNB XtaskXmonkey + e,

(20)

where XNB = 0 or 1 for control or NB-stimulated trial, Xtask = 0 or 1
for Remember first or Remember second trial, Xmonkey = 0 or 1 for each
monkey, and e is assumed to be a Gaussian random variable.

We fitted the model’s coefficients with an ordinary least squares
scheme. We did not find significant interactions between NB and the
monkey factor, so we only included the main factor, “monkey,” in sub-
sequent analyses. In the main text, we report the coefficients and p-values
of the interaction between NB stimulation and task (bNB/task).

Distraction bias. In our analysis of the effect of distraction on response
accuracy, we tested the dependency of distractor biases with the absolute
distance between S1 and S2 with the following linear model:

sign(uS1 − uS2) ∗ Du = b0 + bNB XNB + bdistanceXdistance

+ bmonkeyXmonkey

+ bNB/distanceXNB Xdistance + e, (21)

where Xdistance = 0 for |uS1 − uS2| = 45◦ and Xdistance = 1 for
|uS1 − uS2| = 90 or 180◦.

Moreover, we tested the dependency of the response variance with
the distance between stimuli with the following linear model:

du2 = b0 + bNB XNB + bdistanceXdistance + bmonkeyXmonkey

+ bNB/distanceXNB Xdistance + e. (22)

We fitted the coefficients of the model with an ordinary least squares
scheme. We report in the main text the coefficient and p-value of the
interaction between NB stimulation and distance (bNB/distance).

Discrete attractor spiking network
Ourmore realistic spikingmodel consists of a two-population network of
strongly recurrent leaky integrate-and-fire neurons.

Leaky integrate-and-fire neuronal dynamics. The dynamics of the
membrane potential of the i-th neuron in population A,

(i, A), A [ E, I, is given by the following:

CM
dVAi(t)

dt
= −gA(VAi(t)− VL)+ (VTh − VR) (I

Rec
Ai (t)+ IFFAi (t)

+ IStimAi (t)), (23)

whereVAi(t) is the membrane potential, IRecAi (t) the recurrent input, I
FF
Ai (t)

the FF input, and IStimAi (t) the stimulus input into neuron (i, A).
Reset condition: if at time t the membrane potential, VAi, of neuron

(i, A) crosses the threshold, VAi(t−) = VTh, the neuron fires a spike, and
its voltage is reset to its resting potential, VAi(t+) = VR.

In the simulations, we chose for the leak conductances gE =
0.05 mS/cm2, gI = 0.1 mS/cm2, the capacitance CM = 1 mF/cm2,
VTh = −50 mV, VR = −70 mV and the leak potential VL = 0 mV.

Connectivity. The connectivity between population A and B is a ran-
dom matrix CAB

ij = 1 with probability PAB
ij and 0 otherwise. On average,

neurons in each population receive inputs from KB neurons in the pre-
synaptic population B. PAB

ij varies with the difference in the preferred
location between the neurons (Van Vreeswijk and Sompolinsky, 2005):

PAB
ij = KB

NB
[1+ sAB cos (uAi − uBj )], (24)

where sAB determines the spread of the projections from population B to
population A. Here uAi = 2pi/NA is the preferred location of neuron
(i, A).

In the simulations, we selected NE = 32,000, NI = 8,000 for the
number of neurons, KE = 3,200, KI = 800 for the average number of
inputs, and sEE = sIE = sII = 1.0 for the spread of the projections,
and we assumed that I to E connections were slightly less tuned: sEI =
0.9 (Kerlin et al., 2010; Hofer et al., 2011).

Recurrent inputs. The recurrent input to neuron (i, A) from its pre-
synaptic neurons in population B is given by the following:

IRecAi (t) =
∑

L={AMPA,NMDA,GABA}

∑
B={E,I}

JLAB

���
KE

√
KB

∑NB

j=1

CAB
ij SLjAB(t), (25)

SLjAB(t) =
∑
k

uBjk xBjk f LAB(t − tBjk ), (26)

where excitatory synapses form a mixture of fast (AMPA) and slow
(NMDA) synapses on other excitatory and inhibitory cells, and all inhib-

itory synapses are fast (GABA). tBjk is the time at which neuron ( j, B) has

emitted its kth spike and the sum is over all the spikes emitted by neuron
( j, B) before time t. f LAB(t) describes the dynamics of individual postsyn-
aptic currents:

f LAB(t) =
1
tLAB

e−t/tLABH(t), (27)

where tLAB is the synaptic time constant of the interactions between neu-
rons in population B and A, and H is the Heaviside step function.

In the simulations, we took tAMPA
EE = tAMPA

IE = 4 ms, tGABAEI =
tGABAII = 2 ms, tNMDA

EE = 80 ms, tNMDA
IE = 40 ms, JAMPA

EE = 4.20 mS/cm2,
JGABAEI = −1.135 mS/cm2, JAMPA

IE = 6.25 mS/cm2, JGABAII =
−1.70 mS/cm2, JNMDA

EE = JAMPA
EE , and JNMDA

IE = JAMPA
IE .

Synaptic plasticity. xBjk is the amount of synaptic resources available
at the synaptic terminals of neuron ( j, B) before the spike tBjk , and uBjk is
the fraction of these resources used by this spike. The dynamics of these two
variables are responsible for the short-term plasticity experienced by the
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synapses. We model them as in the following (Hansel and Mato, 2013):

uBjk+1 = uBjk e−DtBjk /tF + U(1− uBjk e−DtBjk /tF ), (28)

xBjk+1 = xBjk (1− uBjk+1) e
−DtBjk /tD + 1− e−DtBjk /tD , (29)

whereDtBjk is the interspike interval for neuron ( j, B) between spikes tk and
tk−1.

In the simulations, we took tD = 250 ms, tF = 600 ms and U =
0.05 for the maximal utilization parameter.

FF input. At each time point, we assume that the FF input, IFFAi (t) ,
into neuron (i, A), is weakly tuned with a random phase U(t). This leads
to the emergence of spatial correlations in the recurrent layer. We model
this as follows:

IFFAi (t) =
���
KE

√
JA0 + SA0���

KE
√ cos (uAi −V(t))

[ ]
, (30)

where JA0 is the strength of the external input, at each time step, V(t) is
drawn uniformly between 0 and 2p, and SA0 controls the strength of the
FF correlations. In the simulations, we choose JE0 = 1.95 mS/cm2,
JI0 = 1.675 mS/cm2, SE0 = 0.016, and SI0 = 0.0134 when not men-
tioned otherwise.

Since correlations in the recurrent input are quite small in strongly
recurrent networks (Darshan et al., 2018), most of the correlations in
the net input to a neuron come from the FF contribution:

bFF
A (a) = IFFAi (ui + a) IFFAi (ui)

〈 〉
i = S2

A0 cos(2a), (31)

where a [ [−p, p] is the distance between neurons on the ring.

Stimulus input. During stimulus presentation, the excitatory popula-
tion receives an additional tuned input:

IStimEi (t) = ���
KE

√
AStim[1+ sStim cos (uEi − uStim)]

for t [ [tONStim, tOFFStim], 0 otherwise, (32)

where uStim is the location of the stimulus, AStim is the strength of the
stimulus, and sStim is the footprint of the stimulus. The inhibitory pop-
ulation receives no stimulus.

In the simulation, we took AStim = 0.1 mS/cm2 and sStim = 1.

Bump dynamics and model responses. We compute bump amplitude,
center, diffusivity, and endpoint deviations in the same way we did for
the rate model.

NB stimulation. We model NB stimulation’s main effect as an
increase of the mean FF input to the excitatory neurons:
JONE0 = JE0 + dJE0. In our last analyses, we also consider the cases where,
in addition to an increase in the FF input, (1) the excitatory synaptic
strength, JAE , ∀ A [ E, I, increases; (2) the inhibitory presynaptic
strength, JAI , ∀ A [ E, I, decreases; and (3) the modulation of the spa-
tial FF correlations to the E neurons, SE0, decreases.

Code accessibility
Custom code used for simulations of the models and for analysis of beha-
vioral data can be accessed at https://github.com/comptelab/NB_ODR_
JNeurosci_24.

Results
Homogeneous, continuous attractor models
We used numerical simulations to investigate the network mech-
anisms underlying the reported cholinergic neuromodulation of

the prefrontal activity in a visuospatial WM task (Qi et al., 2021).
In this task (Fig. 1A), monkeys were trained to saccade to the
location of one of two sequentially presented visual cues follow-
ing a delay period. In alternating blocks of trials, the color of the
fixation dot signaled to the monkey whether a reward would be
given for an accurate saccade to the remembered location of
the first target S1 (Remember first trial) or the second target S2
(Remember second trial). Here, we used a computational
approach to reconcile evidence collected during the distractor
condition (Remember first; Qi et al., 2021). Monkeys showed a
general increase in performance in this task following NB stim-
ulation, except for trials when S2 appeared close to S1, where
NB stimulation impaired performance (Fig. 1B). This general
increase in performance by NB stimulation was mirrored at the
neural level by erosion of PFC neural tuning to the stimulus
(Fig. 1C). We developed a simple continuous bump attractor
rate model to understand the conditions for this modulation of
neuronal tuning by NB stimulation (Fig. 1D; Amari, 1977;
Ben-Yishai et al., 1997; Itskov et al., 2011). In the model, follow-
ing the presentation of a location-tuned stimulus (S1, S2), the
network maintains information about the stimulus’ spatial loca-
tion through a localized and persistent increase in activity
(Fig. 1E; Wilson and Cowan, 1972; Compte et al., 2000). We
model distraction with a second stimulus weaker than the first
on average (see Material and Methods) to simulate variable
attentional filtering mechanisms occurring in upstream areas.
In the model, the network goes from an unstructured low-activity
state to a selective high-activity state after stimulus presentation.
This is because the network has different stable attractors before
and after stimulus presentation, which is achieved by an untuned
attentional input to all neurons (marked as “Attention” in
Fig. 1E; Itskov et al., 2011). In addition, we modeled NB stimula-
tion (Fig. 1E, right panel) as a nonspecific increase in the excit-
ability of the excitatory neurons in the circuit through slight
upregulation of FF inputs to the network.

Figure 2 depicts the relationship between the FF input and the
network’s tuning in the bump state for two neuronal input/output
(I/O) functions. When the neuronal I/O function is nonsaturating
(Fig. 2A), the network’s tuning increases monotonically with the
input (Fig. 2B). Figure 2C plots the population tuning curves for
two values of the FF input. As the input increases, neurons at
the center of the bump increase the activity, inhibiting neurons
on the edge and sharpening tuning. This appears qualitatively
inconsistent with the observation that NB stimulation (modeled
here by an increase in FF input) results in broader PFC tuning
(Qi et al., 2021). However, tuning becomes nonmonotonic in the
FF input when the neuronal I/O function saturates (Fig. 2D). It
decreases with the external drive for sufficiently large inputs
(Fig. 2E). Figure 2F plots the network’s population tuning curves
for two simulated conditions: NBOFF and NBON. NBONdiffers
from NB OFF by an increase in the strength of the FF input that
simulates the cholinergic activation. As the neurons at the center
of the bump reach saturation, neurons on the edges increase their
activity, and the tuning broadens. Therefore, the saturated contin-
uous bump attractormodel can display population responses qual-
itatively similar to the neural responses observed in the PFC
following NB stimulation (Qi et al., 2021).

To better understand the networkmechanisms underlying the
balance between enhanced cognitive function and reduced tun-
ing under neuromodulation, we analyzed the behavior generated
by our model in repeated network simulations. Specifically, we
investigated how changes in network excitability, modeled
through changes in the strength of the FF input, affected network
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performance. In the bump attractor model, errors can arise from
the diffusion of the bump’s center. This can occur due to stochas-
tic fluctuations in the net inputs into the neurons that change
randomly and might shift the bump’s center of mass. We
assessed the relationship between FF input strength and the
diffusion of the bump’s location from 1,000 simulations with
different stochastic noise realizations (Fig. 3A). In the bump
attractor model with saturation, we found that the diffusivity of

the bump decreases in an intermediate range of FF inputs
(Fig. 3B). Figure 3C shows the distributions of bump centers
around the presented targets at the end of the simulated trials.
The bump center distribution narrows for larger FF inputs, indi-
cating more precise storage of the target’s location and better
network performance. These findings are consistent with the
general improvement in behavioral performance following NB
stimulation (Qi et al., 2021). This shows how, in a bump attractor

Figure 1. A rate model to reconcile cholinergic modulation of behavior and neural tuning in a visuospatial WM task task. A, Visuospatial WM task with distraction (Qi et al., 2021). B,
Performance of the monkeys in control and NB-stimulated trials. Performance was measured as percent of trials with responses within 7° visual angle of the target stimulus. C, Average prefrontal
neuron location selectivity in the delay period (adapted from Qi et al., 2021). Blue: control trials. Orange: NB-stimulated trials. Dots: data. Lines: fits. D, Network scheme. The network consists of a
population of 1,000 rate units with tuned connections. E, Activity versus neurons versus time, left: NB OFF (IOFF0 = 10 Hz) condition, right: NB ON condition (IONO = IOFF0 + 20 Hz simulates
increased excitability induced by NB stimulation). After 1 s in baseline activity, neurons receive a tuned stimulus, S1, and a nonspecific attention signal is switched on. The activity becomes
structured into a bump. The bump is only slightly perturbed by a second weak stimulus, S2, so the bump maintains a location around S1. Triangles show the locations of the stimuli.

Figure 2. Rate saturation accounts for the broadening of tuning following NB stimulation. A, Nonsaturating I/O function. B, Relative bump amplitude (i.e., the ratio of Fourier modes F1/F0 of
the population rate vector; see Materials and Methods) versus the strength of the FF input. Tuning sharpens with stronger FF inputs. C, Population tuning curve for NB ON and NB OFF conditions
(matching colors in B). D, Saturating I/O function (saturation occurs at 15 Hz). E, Relative bump amplitude versus FF input. Tuning broadens with stronger FF input values. F, Population tuning
curve for NB ON and NB OFF conditions (matching colors in E).
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model of this spatial WM task, reduced neural tuning (Fig. 2F)
can be associated with improved performance (Fig. 3C), provided
neurons have saturating responses. Increased performance is
explained by a reduction of bump diffusion upon network depo-
larization. For low FF inputs, neuronal responses are not saturat-
ing, and the increase in network performance occurs parallel to
neural tuning enhancement (Fig. 3B).

This insight from the computational model led us to examine
whether the improvement in the behavioral performance of the
monkeys after NB stimulation (Qi et al., 2021) could be attributed
to a reduction in diffusive errors, that is, an increase in memory
precision. To test this hypothesis, we analyzed saccadic endpoint
distributions in control and NB-stimulated trials in the behavioral
data of (Qi et al., 2021). In the dataset, responses exhibit two dis-
tinct sources of errors (Fig. 3D). The first, the “response bias,” is a
characteristic offset between the mean response to a fixed target
stimulus and this target, and it quantifies the memory accuracy.
The second, the “response variance,”measures memory precision
computed as the dispersion of the reported locations around the
mean response. The continuous bump attractor model predicted
that this response variance should be reduced following NB stim-
ulation. Figure 3E and F shows the distribution of response vari-
ance in control and NB-stimulated trials, that is, saccadic
endpoints corrected from response biases. Remarkably, we found
that the distribution of these corrected reported locations was sign-
ificantly sharper in NB-stimulated than in control trials for both
Remember first and Remember second trials (corrected saccades:
standard deviations 6.09+ 0.27◦ and 5.0+ 0.23◦ for control
and NB stimulation in Remember first, Levene’s test F = 44.75,
p = 2.68 10−11; 7.31+ 0.35◦ and 5.49+ 0.28◦ for Remember
second, Levene’s test F = 68.18, p = 2.38 10−16, errors are 95%
confidence intervals; regression analysis of squared corrected
saccade: bNB = −12.2 deg2, p = 0.0005, bNB/Task = −12.4 deg2,
p = 0.014; seeMaterials andMethods). This suggests that a reduc-
tion in diffusive errors could explain the observed improvement in
task performance. Our model explains the counterintuitive

performance enhancement seen in the behavioral data: reduced
neuronal selectivity can still be associated with improved perfor-
mance if a reduced bump diffusion characterizes network dynam-
ics during the delay period. Our simulations show this is a
reasonable condition in bump attractor network models (Figs.
2F, 3C).

Next, we investigated if our model could explain how perfor-
mance modulation by NB stimulation depended on how far S2
was presented from S1 (Fig. 1B; Qi et al., 2021). In our network sim-
ulations, we tested the effect of distractor proximity on bump
dynamics (Fig. 4A–C). Distractors have been reported to attract
memory bumps toward their locations (Herwig et al., 2010;
Almeida et al., 2015; Lorenc et al., 2018).We found a similar attrac-
tive effect in the simulations. Still, these distractor biases did not
differ in NB OFF and NB OFF trials (Fig. 4B). Moreover, we found
that distraction also affected bump diffusion. In particular, nearby
distractors (+45◦) increased response variance compared with far
distractors (+90,+180◦). This was particularly accentuated inNB
ON trials (Fig. 4C). This pattern was also reflected in the saccadic
responses of monkeys. Firstly, distractors biased the distribution of
saccadic errors in control and NB-stimulated trials similarly
(Fig. 4E, regression analysis, bNB = −0.54◦, p = 0.357; see
Materials and Methods). Secondly, close distractors (+45◦)
increased response variance similarly for NB-stimulated and con-
trol trials, with comparable bias in both conditions (Fig. 4F, regres-
sion analysis, bNB = −2.66 deg2, p = 0.723; see Materials and
Methods). Finally, response variance was significantly lower in
NB-stimulated trials than in control trials for far distractors (±90,
±180°, Fig. 4F, regression analysis, bNB/distance = −23.10 deg2,
p = 0.011; seeMaterials andMethods). This suggests that a specific
reduction in bump diffusion in distant distractor conditions under-
lies improved task performance following NB stimulation.

Inhomogeneous attractor models
Having shown that the findings of Qi et al. (2021) are compatible
with a simple continuous attractor network model formulation,

Figure 3. A diffusion process underlies NB stimulation-induced improved performance. A, Bump center versus time for 50 network initializations (for a cue presented at 0°). The bump center
follows a random walk. B, Diffusivity versus FF input. Diffusion decreases for strong enough FF inputs. Shaded area: bootstrapped 95% confidence intervals. Gray line, relative bump amplitude
(see Materials and Methods). C, Distributions of bump centers’ endpoint location for two different values of the FF input (for 1,000 initial conditions). Lines are kernel density estimates. D, Two
sources of errors in the experimental data: response bias and response variance. E, F. Distributions of saccades (i.e., mean corrected saccadic endpoint; see Materials and Methods) in Remember
first and Remember second trials in the data. NB stimulation leads to a sharper distribution of endpoints (see regression analysis, Materials and Methods). Line are Gaussian fits. Blue: control.
Orange: NB-stimulated trial.
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we wondered about the generality of our results in more realistic
network realizations. There are theoretical arguments to expect
possible differences. It has been shown that bump diffusivity in
an attractor network depends directly on the noise magnitude
and the spatial correlations of the inputs and inversely on
bump strength (Kilpatrick and Ermentrout, 2013; Krishnan et
al., 2018). In the continuous bump attractor network model
with neural saturation, NB stimulation modeled as an increase
in cellular excitability does not significantly affect the magnitude
of noisy fluctuations because recurrent currents in all-to-all
homogeneous networks contribute little noise compared with
external inputs. Thus, the primary effect of depolarization in
this network is increased bump size, which promotes inertia
against diffusion (Kilpatrick and Ermentrout, 2013; Krishnan
et al., 2018). However, increased excitability in more realistic net-
work implementations where neurons are connected inhomo-
geneously to their neighbors may result in changes in the
properties of noisy inputs or in distortions of the attractor land-
scape (Tsodyks and Sejnowski, 1995; Zhang, 1996; Seung et al.,
2000; Renart et al., 2003; Itskov et al., 2011; Kilpatrick and
Ermentrout, 2013; Kilpatrick et al., 2013) and induce qualita-
tively different memory diffusion properties.

Indeed, Figure 5 shows how structural heterogeneities impact
the diffusion of the bump. Diffusivity decreases markedly with
heterogeneity in the network connectivity (Fig. 5A; Kilpatrick
and Ermentrout, 2013; Kilpatrick et al., 2013). Figure 5B, left
(resp. right), plots the time course of the bump’s center for differ-
ent network initializations of the homogeneous (resp. heteroge-
neous) bump attractor network. Strong heterogeneities modify
the diffusion properties of the bump. This is because, in the pres-
ence of heterogeneity, the network undergoes symmetry break-
ing: the attractor goes from continuous to discrete with only a
few stable fixed-point locations (Fig. 5B, right; Zhang, 1996).
At the fixed point, the bump diffuses weakly in a small basin of

attraction instead of being free to diffuse on the entire ring attrac-
tor. Nevertheless, even in the presence of strong heterogeneity,
tuning and diffusivity of the bump are nonmonotonic, with
changes with the FF input (Fig. 5C–E) qualitatively similar to
the homogeneous attractor model, albeit much weaker for the
case of diffusivity.

The marked impact that connection heterogeneities have on
memory diffusion made us consider how more realistic networks
might respond to changes in excitability. In these networks, the
conditions to observe lower memory diffusion following increased
excitability may depend on the specific biophysical mechanisms
that help maintain a quasicontinuous attractor dynamical regime
(Stein et al., 2021). We investigated these mechanisms in a biolo-
gically realistic model of spiking neurons. The model consists of
two populations—excitatory (E) and inhibitory (I)—of strongly
recurrent leaky integrate-and-fire neurons with tuned connections
(Van Vreeswijk and Sompolinsky, 2005). We assumed that the
excitatory-to-excitatory synapses are facilitating (Markram et al.,
1998; Tsodyks et al., 1998). Facilitation has been shown to promote
persistent activity states with highly heterogeneous neural activity
(Mongillo et al., 2012; Hansel and Mato, 2013). The network
exhibits multistability with an unstructured baseline and struc-
tured persistent states (Fig. 6B). Additionally, short-term synaptic
facilitation has been shown to significantly improve the robustness
of WM by slowing down the drift of bump activity in heteroge-
neous networks (Itskov et al., 2011; Hansel and Mato, 2013). In
our current context, we reasoned that short-term plasticity might
serve as a potential synaptic saturationmechanism to regulate net-
work activity and tuning in responses to changes in excitability,
such as those induced by NB stimulation.

In a strongly recurrent framework, the network dynamically
evolves into a state where strong excitation is balanced by strong
inhibition such that the net input into the neurons is comparable
to their thresholds (van Vreeswijk and Sompolinsky, 1996, 1998).

Figure 4. Distraction effect on response variance is distance dependent. A, Distraction by S2 shifts model responses (distraction bias). B, Distraction bias versus absolute distance between S1
and S2. C, Response standard deviation (SD), computed as the square root of the response variance, versus the absolute distance between S1 and S2. We estimated distraction bias and response
SD for responses within 30° of S1. Blue: NB OFF condition (I0 = 10 Hz). Orange: NB ON condition (I0 = 30 Hz). D, Distractor shifts responses in the task. E, Distraction bias versus absolute
distance between S1 and S2 in Remember first trials in the data. F. Same but for response SD. Error bars 95% bootstrapped confidence interval. Orange dots are shifted on the x-axis for visibility.
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Neurons exhibit temporally irregular spiking patterns and het-
erogeneous firing rates and tuning. However, diffusion in the
bump state is particularly weak, as previously observed in
sparsely coupled spiking networks (Hansel and Mato, 2013;
Stein et al., 2021) and consistent with the effect of heterogeneity
in rate-model networks (Fig. 5; Kilpatrick et al., 2013; Kilpatrick
and Ermentrout, 2013). To recover a sizable amount of diffusion,
we assumed that the network receives spatially correlated FF
inputs that simulate inputs from other areas (Fig. 6A). As a result
of these correlated inputs, the network exhibited weak

spatiotemporal activity patterns during baseline activity, and self-
sustained bumps in the network showed pronounced memory
diffusion, consistent with experimental observations (Wimmer
et al., 2014; Stein et al., 2020).

We performed extensive simulations to investigate how
parameters affect the model’s dynamics. Figure 6B shows popu-
lation activity through a single simulated trial for parameters for
which the network is multistable: The network goes from an
unstructured low-rate baseline state to a structured high-rate
bump state after stimulus presentation. In the bump state, bumps

Figure 5. Heterogeneities impair bump diffusion. A, Diffusivity versus heterogeneity strength (averaged over 8 cues and 25 initial conditions per cue and 100 network realizations). B, Bump
center versus time in the homogeneous (left panel) and heterogeneous (right panel) bump attractor network (for 8 cues and 10 initial conditions per cue for 1 network realization). C, Diffusivity
(averaged over 8 cues and 250 initial conditions per cue, blue) and bump amplitude (black) versus FF input in the heterogeneous network model (averaged over 8 cues and 125 initial conditions
per cue and 1 network realization, sHeter = 0.25; see Materials and Methods). D, Population tuning curve for NB ON and NB OFF (matching colors in C). E, Bump endpoint deviation (i.e., mean
corrected endpoint) for NB ON and NB OFF. Lines: kernel density estimates. Error bands 95% confidence intervals.

Figure 6. Enhanced excitability weakens network tuning but weakly impacts bump diffusion in spiking attractor networks. A, Network scheme. Spiking EI network with tuned connections
(ring model) and facilitating E-to-E synapses. Neurons receive a weakly tuned FF input with a random phase at each time step to induce spatial correlations. B, Local average firing rate versus
time versus preferred location for one trial in the NB OFF condition. C, Population activity center of mass in 30 simulations for eight different cue locations. D, Diffusivity (blue) and tuning
amplitude (black) versus FF input at time t= 5 s in the simulations of panel C (averaged over 8 cues and 60 random initializations per cue). E, Population tuning curves averaged over trials at the
end of the delay period (tuning curves were recentered before averaging). Increased excitability leads to weaker tuning in the NB ON condition. F, Endpoint deviations (mean corrected endpoint).
Colors match dots in D. Lines are kernel density estimates. Error bands 95% confidence intervals.
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exhibit little drift and diffuse around the cue’s location (Fig. 6C).
We investigated how network excitability affected the bump tun-
ing and the bump diffusion in this network by systematically
varying the strength of FF tonic inputs onto excitatory neurons
(Fig. 6D). Bump tuning and diffusivity changed with excitability
in a qualitatively similar way as observed in the simpler contin-
uous attractor rate model (Fig. 3B). Short-term plasticity is the
saturation mechanism leading the spiking model to nonmono-
tonic bump width and diffusion in a range of FF inputs. Note
that for weak network excitability, multistability was lost, and
only the low-rate state remained stable (Fig. 6D, gray area; for
short simulations, 5 s in our case, the network still exhibited tran-
sient tuning after stimulus presentation due to the dynamics of
short-term plasticity). Diffusivity varied only weakly in the
bump state of the network, even when tuning changed signifi-
cantly. As a result, also for this more biophysically detailed net-
work model, we observed a broadening of population tuning
curves upon increasing network excitability (Fig. 6D), but this
was not accompanied by a significant difference in the distribu-
tions of bump center endpoint locations corrected for response
biases (Fig. 6E). This is consistent with the sharp reduction in
endogenously generated bump diffusion caused by network het-
erogeneity (Fig. 5). In realistic EI networks, the mere depolariza-
tion of the circuit is unable to reproduce the increased memory
precision that would explain task performance improvements
upon NB stimulation, whichmay thus depend on additional cho-
linergic effects in the circuit.

Modeling cholinergic neuromodulation solely as an increase
in excitatory neuron excitability neglects important impacts of
acetylcholine release in the cortex. Indeed, acetylcholine has
been reported to intricately affect multiple cortical mechanisms
(Picciotto et al., 2012; Thiele et al., 2012; Minces et al., 2017;
Colangelo et al., 2019). We selected a set of specific mechanisms
with particular prevalence in the neocortex to test our network
model. In particular, in addition to the cellular depolarization
of pyramidal neurons that we modeled so far (McCormick and
Prince, 1986; Andrade, 1991; Haj-Dahmane and Andrade,
1996), acetylcholine modulates cortical function through (1)
increased synaptic excitatory transmission (Nuñez et al., 2012;
Fernández de Sevilla et al., 2021), (2) reduced GABA release

(Salgado et al., 2007; Nuñez et al., 2012), and (3) reduced neuro-
nal correlations (Thiele et al., 2012; Minces et al., 2017).

Therefore, we investigated how, in addition to a change in
excitability, changes in synaptic strength or correlations
impacted tuning and diffusion in the spiking network model
(Fig. 7). In the model, increasing excitatory synaptic strength
(to both excitatory and inhibitory neurons) had a minimal
effect on tuning but instead significantly reduced bump diffusion
(Fig. 7B, inset). The reduction of inhibitory synaptic strengths
had instead the opposite effect, enhancing bump diffusion
(Fig. 7C, inset). Finally, reducing spatial correlations in the FF
input in the NB ON condition led to comparable tuning and a
marked reduction in bump diffusion (Fig. 7D, inset). We con-
clude that the interplay between strengthened excitatory synaptic
transmission, diminished neuronal correlations, and increased
neuronal excitability reflects the cholinergic modulations respon-
sible for Qi et al.’s neural and behavioral observations following
NB stimulation (Fig. 3E,F).

Our simulations, thus, support the association between
reduced neuronal tuning and improved memory precision based
on attractor dynamics, which is the basis of our interpretations in
the bump attractor model simulations. In addition, the model
proposes a role for the cholinergic reduction of neuronal correla-
tions in achieving behavioral improvements in WM.

In summary, bump attractor dynamics in inhomogeneous
ring networks with short-term plasticity, which effectively causes
saturation in recurrent inputs, naturally explain the contrasting
effects of NB stimulation on monkey behavioral and neural
responses: response variance is generally reduced, while neural
tuning broadens.

Discussion
Here, we show how bump attractor models can reconcile the
dynamics of PFC neurons and the behavior of monkeys perform-
ing a visuospatial WM task under cholinergic neuromodulation
(Qi et al., 2021). We explain how behavior correlates with PFC
neural data: cholinergic neuromodulation of the PFC reduces
neural tuning while reducing bump diffusion, thus enhancing
decoding precision and behavioral performance in the task. We

Figure 7. Cholinergic synaptic neuromodulation impacts bump tuning and diffusion, while cholinergic input decorrelation decreases bump diffusion. A–D, Top, population tuning curves
(averaged over 8 cues after recentering, with 20 trials per cue) at the end of the delay period. Bottom, endpoint deviation (mean corrected endpoint). Blue: NB OFF condition
(JE0 = 1.95 mS cm−2). Orange: NB ON condition ((JE0 = 2.24 mS cm−2)). The NB ON condition has additional modulations in B–D: in B JEE and JIE are doubled; in C JEI and JII are decreased
by 20%; and in D FF correlation modulation, SE0, is divided by half. Inset, response SD in the two conditions. Error bars are 95% bootstrapped confidence intervals.
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found that network depolarization can lead to broader tuning
and reduced diffusion in bump attractor models with cellular
or synaptic saturation, which can be enhanced by other synaptic
and population effects associated with acetylcholine. Our results
provide a mechanistic understanding of how elevated prefrontal
excitability, possibly combined with other cholinergic mecha-
nisms, impacts spatial WM through changes in bump attractor
dynamics in the PFC. Our model interpretation is strengthened
by the match with the specific distractor condition dependencies
observed by Qi et al. (2021). NB stimulation improved or
impaired WM depending on the distance between the target
and the distractor. Our model associates impairments in nearby
distractor filtering with a broadening of the bump activity that is
not counteracted by reduced bump diffusion upon network
depolarization. Conversely, increased performance for distant
distractors results from robust reductions in bump attractor
diffusion.

Nonmonotonic cholinergic neuromodulation of prefrontal
neurons
The effects of acetylcholine on neuronal activity have been inves-
tigated in nonhuman primates with microiontophoresis and sys-
temic drug administration. Cholinergic agonists generally
increase the activity of prefrontal neurons (Yang et al., 2013;
Sun et al., 2017; Dasilva et al., 2019). Conversely, systemic admin-
istration of the muscarinic antagonist scopolamine reduces pre-
frontal activity (Zhou et al., 2011), as does microiontophoresis of
muscarinic and nicotinic-α7 inhibitors (Yang et al., 2013; Major
et al., 2015; Galvin et al., 2020b). However, the increase in activity
by agonists is selective for the preferred location of the neuron so
that tuning is enhanced, in contrast to the effect of NB stimula-
tion observed by Qi et al. (2021). This discrepancy may be
resolved by noting that the sharpening of prefrontal neurons’
tuning takes place with low doses of cholinergic agonists, while
high doses of carbachol or M1R allosteric inhibitors lead to
broader tuning in WM tasks (Major et al., 2018; Vijayraghavan
et al., 2018; Galvin et al., 2020b). The continuous bump attractor
model provides a mechanistic explanation for this nonmono-
tonic relationship between neural tuning and cholinergic modu-
lation. Figure 2E shows that progressive depolarization of the
network initially renders neural tuning sharper but then makes
it progressively broader when neurons start engaging the saturat-
ing part of their input–output function. Under this framework,
intrinsic cholinergic neuromodulation through the stimulation
of NB represents a strong release of acetylcholine that mimics
the effect of high-dose agonists. A direct empirical exploration
of the nonmonotonic dependence predicted by our model could
be achieved with graded activation of NB, possibly using optoge-
netic approaches.

Cholinergic neuromodulation of prefrontal circuits and
performance
The decrease in selectivity by cholinergic overstimulation (Major
et al., 2018; Vijayraghavan et al., 2018; Galvin et al., 2020b) has
been assumed to correspond to the descending section of an
inverted-U function, representing a regime over which choliner-
gic agonists would impair performance (Galvin et al., 2020a).
This interpretation is based on robust behavioral results with
drugs targeting the dopamine system, showing parallel
inverted-U dose–response of dopaminergic drugs at the beha-
vioral and neural levels (Arnsten, 2011). However, the behavioral
impact of cholinergic drugs needs to be clarified. Available evi-
dence from the manipulation of intrinsic acetylcholine release

suggests that WM performance may depend monotonically on
acetylcholine prefrontal concentration: prefrontal cholinergic
input depletion leads to selective WM impairment (Croxson et
al., 2011), while electrical stimulation of NB leads to WM perfor-
mance enhancement (Blake et al., 2017; Liu et al., 2017; Qi et al.,
2021). Our network model is consistent with this apparent
monotonic relationship. Still, it predicts that a finer sampling
of cholinergic modulation of prefrontal circuits should reveal a
nonmonotonic component in the behavioral dose–response
curve (Fig. 3B). Notably, our network simulations in Figure 3B
show that the nonmonotonic dose–response relationships for
neural tuning and behavior are not aligned in their maximum/
minimum, thus breaking the intuition that neural tuning maps
directly to behavioral performance.

Relationship between neural tuning and behavioral
performance
Sharper tuning is typically associated with increased perfor-
mance. This is particularly clear for conditions in which decoding
precise stimulus information is essential, as in discrimination
tasks after perceptual learning (Li et al., 2004; Yang and
Maunsell, 2004; Raiguel et al., 2006; Sanayei et al., 2018).
Theoretical studies have shown, however, that broader tuning
curves can produce either worse or better performance depend-
ing on the task and noise conditions in the network (Pouget et al.,
1999; Zhang and Sejnowski, 1999; Butts and Goldman, 2006; Ma
et al., 2006a). For conditions in which stimuli are highly discri-
minable, and performance depends on the ability to filter distrac-
tors or other intervening noise during a memory period, our
modeling shows that broader prefrontal tuning can be associated
with better memory performance. The connection between
reduced neural tuning and increased WM precision depends
on specific network implementations and may not generalize
to other behavioral readouts inWM tasks. Indeed, previous stud-
ies have investigated how improved selectivity can lead to better
performance in WM tasks (Yang and Maunsell, 2004; Compte
and Wang, 2005; Raiguel et al., 2006; Busse et al., 2008; Sanayei
et al., 2018). A network far from saturation shows this tendency.
Optimizing mechanisms to increase signal durability during
delays may occur at the cost of accuracy, and a stability–accuracy
trade-offmay determine performance in a task. Unlike the effects
of perceptual learning, learning to perform a WM task also
induces a broadening of neural selectivity (Qi et al., 2011; Qi
and Constantinidis, 2013).

Based on our model, we propose that NB stimulation leads to
reduced bump diffusion in the PFC, resulting in a more precise
neural code at the end of the delay. This could be tested with large
population recordings in the PFC during this task. We predict
contrasting results of decoders trained on the activity of simulta-
neously recorded neurons compared with decoders trained on
the activity of pseudopopulations of neurons. Decoders trained
on pseudopopulations of neurons pooled from different sessions
would show reduced accuracy after NB stimulation, likely reflect-
ing the broadening of neural tuning. In contrast, decoding from a
true population of simultaneously recorded neurons should show
higher accuracy in NB-stimulated trials due to lower levels of cor-
related noise within the population.

Circuit mechanisms controlling memory diffusion and neural
tuning
Weaker tuning in our continuous attractor network framework
can lead to better performance when it is concomitant with a
reduction of the noisy diffusion of the memory traces (Pouget
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et al., 1999; Zhang and Sejnowski, 1999; Butts and Goldman,
2006; Ma et al., 2006b; Stein et al., 2021). How these two compo-
nents are integrated into attractor dynamics depends on specific
network implementations. We explored here several different
network implementations, which have been extensively studied
in the literature in relation to the formation of bump attractors
in rate models (Wilson and Cowan, 1972; Amari, 1977) and in
spiking models (Compte et al., 2000; Hansel and Mato, 2013),
diffusion of the bump (Zhang, 1996; Compte et al., 2000;
Kilpatrick and Ermentrout, 2013; Wimmer et al., 2014;
Krishnan et al., 2018), sensitivity to distractors (Compte et al.,
2000), or the impact of heterogeneities (Hansel and Mato,
2013; Kilpatrick and Ermentrout, 2013; Kilpatrick et al., 2013;
Seeholzer et al., 2019). We specifically asked how neural excit-
ability jointly affects bump diffusion and tuning in these models.
In idealized homogeneous networks, the mere depolarization of
the network close to saturation provides both broader tunings
and reduced diffusion; in heterogeneous networks, however, addi-
tional mechanisms are required to observe a significantly reduced
bump diffusion. Ourmodeling selects a set of possible mechanisms:
decreased inhibition reduces neural tuning strongly, but increases
diffusivity, while enhanced excitation can contribute to reduced
tuning and diffusivity mildly. However, only reduced spatial corre-
lations are able to induce a marked reduction in bump diffusion
(Fig. 7). It is plausible that NB stimulation produces a combination
of effects in PFC circuits.

A marked role for a reduction in spatial correlations in mod-
ulating bump diffusion is consistent with results in the literature.
Indeed, changes in neuronal correlations significantly impact the
diffusion of bump attractors (Kilpatrick and Ermentrout, 2013),
and bump diffusion is a determinant of behavioral imprecisions
in these tasks (Wimmer et al., 2014). A role for modulation of
neuronal correlations in our data is plausible since cholinergic
activation is known to reduce neuronal correlations in multiple
brain areas (Thiele et al., 2012; Minces et al., 2017).
Furthermore, a reduction in correlated variability between neu-
rons has been linked to increased attention (Cohen and
Maunsell, 2009; Mitchell et al., 2009; Herrero et al., 2013), typi-
cally associated with improved cognitive performance.

We do not view our modeling approach as a commitment to a
specific mechanistic basis for neuromodulating neuronal correla-
tions. Previous computational work has explored the effect of FF
excitation on correlations in recurrent E–I networks (Rosenbaum
et al., 2017), showing that fluctuations in the FF inputs can drive
correlated activity. Here, we implemented a similar mechanism
but did not explore in depth the possible role of recurrent
dynamics on the neuromodulation of neural correlations.
Indeed, Darshan et al. (2018) have shown that recurrent struc-
tural motifs can generate collective network activity. How specific
neuromodulation of such motifs might impact correlations
induced by recurrent circuitry remains an open question. From
this point of view, the mechanisms analyzed in Figure 7 may
not be independent. Synaptic effects of NB stimulation may alter
spatial correlations in more complex network architectures. This
could be further disentangled with targeted optogenetic manipu-
lations of circuit elements (e.g., inhibitory connections) during
NB stimulation.

A methodological approach to identifying mechanisms of
behavioral alterations
The challenge of relating cellular or synaptic mechanism modu-
lations with changes in cognitive function using biological neural
network models has been pointed out before (Stein et al., 2021).

To constrain network models, obtaining neural-level informa-
tion about how the considered cellular changes affect neural cir-
cuits implicated in the behavioral readout is crucial. We applied
this approach by constraining our models with neural tuning
curves obtained with and without NB stimulation and testing
their behavioral predictions. This has allowed us to identify a
role for neural saturation dynamics, excitatory synaptic trans-
mission, and neural covariability in determining cholinergic
WM improvements. This approach is necessary to advance
toward a circuit-level understanding of how alterations in neuro-
modulators and receptors underlie cognitive dysfunctions, so
efforts must be put into generating relevant neural-level data
upon hypothesized cellular and synaptic perturbations.

In sum, we show that the bump attractor model can provide a
causal link between PFC electrophysiology and the complex pat-
tern of behavioral improvement and impairment in WM caused
by endogenous acetylcholine release. The relevant mechanisms
in these network models are cholinergic cellular depolarization,
cholinergic excitatory synaptic enhancement, neuronal satura-
tion, and cholinergic reduction of input correlations. Our evi-
dence supports that attractor dynamics in the PFC are under
the neuromodulatory control of cholinergic centers to improve
cognitive performance in WM.
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