Skip to main content
. 2024 Jun 6;18:21. doi: 10.1186/s13037-024-00403-1

Table 6.

Evaluation criteria for comparison performance of machine learning models (LR, RF, SVM and k-NN)

Evaluation criteria Model
variables RF LR SVM K-NN
Accuracy 0.922 0.876 0.901 0.887
Sensitivity 0.851 0.675 0.733 0.804
Specificity 0.944 0.918 0.909 0.923
Positive predictive value 0.722 0.783 0.701 0.688
Negative predictive value 0.884 0.849 0.803 0.794
AUC 0.905 0.827 0.851 0.883

RF: Random forest; LR: Logistic regression; SVM: Support vector machine; k-NN: k- nearest neighbor; AUC: area under the curve of mean receiver operating characteristics