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Abstract 

Population genomics has re v olutioniz ed our ability to study bacterial e v olution b y enabling data-driv en disco v ery of the genetic architecture of 
trait variation. Genome-wide association studies (GWAS) ha v e more recently become accompanied by genome-wide epistasis and co-selection 
(GWES) analysis, which offers a phenotype-free approach to generating hypotheses about selective processes that simultaneously impact 
multiple loci across the genome. Ho w e v er, e xisting GWES methods only consider associations between distant pairs of loci within the genome 
due to the strong impact of linkage-disequilibrium (LD) o v er short distances. Based on the general functional organisation of genomes it is 
ne v ertheless e xpected that majorit y of co-selection and epist asis will act within relatively short genomic pro ximity, on co-v ariation occurring 
within genes and their promoter regions, and within operons. Here, we introduce LDWeaver, which enables an exhaustive GWES across both 
short- and long-range LD, to disentangle likely neutral co-variation from selection. We demonstrate the ability of LD Wea v er to efficiently generate 
hypotheses about co-selection using large genomic surv e y s of multiple major human bacterial pathogen species and v alidate se v eral findings 
using functional annotation and phenotypic measurements. Our approach will facilitate the study of bacterial e v olution in the light of rapidly 
expanding population genomic data. 
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he rapid rate of evolution of bacterial genomes has made
hem a popular target of studying selection in both exper-
mental and natural populations. The emergence of afford-
ble high-resolution population genomics a decade ago ush-
red us into a new era with improved possibilities to inves-
igate both microscopic and macroscopic evolution of bac-
erial genomes, including for example codon bias ( 1 ), inter-
enic selection ( 2 ) and variation in gene content ( 3 ). Despite
teady progress in genome-wide association study (GWAS)
ethodologies specifically designed for bacterial populations

 4 ,5 ), the difficulty of measuring quantitative phenotypic vari-
tion in large numbers of isolates has restricted the use of
WAS mostly to the study of antibiotic resistance, with a

ew exceptions covering for example duration of coloniza-
ion ( 6 ), genome-wide transcriptomics ( 7 ) and virulence ( 8 ).
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Traits such as reproductive rate, survival and transmissibil-
ity are of key interest in bacteria but remain difficult to mea-
sure in sufficient numbers in natural populations. Motivated
by this obstacle, phenotype-free approaches to uncovering sig-
nals of selection have been introduced ( 9–12 ), based on the
rationale that positively selected variation in complex traits
would likely be caused by synchronized changes in multiple
genes and / or regulatory elements that are detectable from ex-
cess linkage disequilibrium (LD) between distant sites across
a sample of genomes. This provides a methodological toolkit
complementary to GWAS enabling analyses termed genome-
wide epistasis and co-selection studies (GWES), which has
been recently used to unravel signals of selection due to epista-
sis for a wide diversity of bacteria ( 13–16 ). Arnold et al., using
positive, negative and sign epistasis models, demonstrated that
under selection, even relatively weak epistasis is sufficient for
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driving adaptation in moderately to highly recombinogenic
bacteria, which provides a more theoretical justification for
GWES analysis ( 17 ), see also the recent work on the possi-
bly saltational role of epistasis in highly recombining bacterial
species ( 18 ). 

Existing GWES approaches are limited to discovering links
between distant loci within the region where LD asymptotes
towards its lower bound. However, many co-evolving loci are
organized into clusters of genes (e.g. co-transcribed in oper-
ons). Therefore, studying only long-range links ignores most
of the allelic co-variation occurring in genomes. A fine-scale
haplotype structure analysis of Neisseria gonorrhoeae indeed
revealed numerous likely examples of positive co-selection in
different regions of the chromosome of this highly recom-
binant species, and extensive population genetic simulations
suggested that such LD patterns could be explained by either
directional selection on horizontally acquired alleles, or bal-
ancing selection maintaining the diversity ( 19 ). Motivated by
these insights, we aimed at developing a scalable statistical
approach that disentangles neutral LD from co-selection and
epistasis at any genomic distance. Apart from co-selection and
epistasis, LD can also be influenced by various other factors,
including population structure, population expansion, muta-
tion and admixture. While disentangling neutral LD remains
a valuable approach for identifying co-selection and epistasis,
sole reliance on it cannot distinguish between underlying evo-
lutionary factors. Since wet-lab-based validation would typ-
ically be necessary to resolve causal factors underlying ob-
served deviations from a baseline neutral LD, this serves as a
useful starting point towards identifying important molecular
drivers of success in bacterial populations. 

GWES methods generally exploit the decay of LD as a func-
tion of genomic distance to label SNP pairs as ‘outliers’ with
respect to the background distribution of LD estimated from
population data. The intuition here, for example in the con-
text of synergistic epistasis, is that when the combined effect
on selection of two or more polymorphic loci is greater than
the sum of their individual effects, this allele combination will
be maintained in association in the population, giving rise to
discernable patterns of LD. Similar to Arnold et al. ( 19 ), it is
possible to extend the notion of ‘outlier’ LD level to SNPs in
close proximity to each other by simulating the distribution of
LD strength as a function of base pair distance using a neutral
Wright-Fisher model. These simulations approximate the pop-
ulation level co-variation of alleles expected under neutrality
and can be used to screen pairs of loci for outliers that may be
due to co-selection. We show that this approach works well
and maintains a low false positive rate. However, as fitting
of the neutral model parameters and forward simulation of
the fitted model in a sufficiently large number of replicates is
computationally costly, we developed an empirical model-free
approximation that is scalable to large population genomic
datasets. The model-free method is motivated by the common
assumption that a majority of the observed LD within a bacte-
rial population reflects near-neutrality ( 20–23 ), which implies
that a majority of observations are not strongly influenced by
selection. As a result, it is possible to analyse and interpret LD
patterns without relying on additional assumptions about un-
derlying genetic models or selection pressures. By extension,
it then becomes feasible to use the empirical LD decay distri-
bution to call outliers. Moreover, the approach accounts for
heterogeneity in evolutionary rates, such as mutation and re-
combination hotspots. 
The model-free algorithm is implemented 

as an open-source R package ‘LDweaver’ 
( https:// github.com/ Sudaraka88/ LD W eaver ), which can 

be used to perform a comprehensive GWES in large-scale 
bacterial datasets. LD W eaver incorporates the functionality 
of the popular GWES package Spydrpick for long-range LD 

outlier detection ( 12 ) and extends this by allowing analysis of 
LD at any genomic distance. LD W eaver provides automated 

functional annotations on all putative co-selected SNPs 
and generates an array of visualizations to allow users to 

efficiently explore the results. We use published population 

genomic data for the major human pathogens Streptococcus 
pneumoniae ( 24 ,25 ), Campylobacter jejuni ( 26 ), Esc heric hia 
coli ( 27 ) and Enterococcus faecalis ( 28 ) to identify both 

known and novel signals of co-selection linked to the molec- 
ular basis of pathogenicity, survival and other key bacterial 
phenotypes. 

Materials and methods 

Measuring LD 

By default, LD W eaver removes sites with MAF < 0.01 and gap 

frequency > 0.15. Sites with ‘gap’ as the second most common 

allele are also discarded from the analysis by default, but LD- 
Weaver has a filtering option called ‘relaxed’ that retains these 
sites in the analysis. This option could be particularly useful 
for alignments with a limited number of SNPs, as gaps can 

reflect insertions or deletions with functional effects ( 80 ). 
Following SpydrPick ( 12 ), we use MI to measure LD. The 

pairwise MI between two sites (modelled as discrete random 

variables) is given by: 

MI ( X, Y ) = 

∑ 

x ∈ X 

∑ 

y ∈ Y 
p ( x, y ) log 

(
p ( x, y ) 

p ( x ) p ( y ) 

)
(1) 

Where X and Y denote two sites with alleles x ∈ X 

and y ∈ Y, respectively. For SNP data, the alphabet com- 
prises nucleotides A, C, G, T and the gap character N. Here 
p( x, y ) denotes the joint probability of x = X and y = Y 

and p (x ) , p (y ) are the corresponding marginal probabilities 
which are estimated from count data ( 12 ). 

Let n s denote the number of sequences in the alignment,
then: 

ˆ p ( x, y ) = 

n ( x, y ) + 0 . 5 

n s + r x r Y × 0 . 5 

(2) 

where n ( x, y ) = | S xy | is the number of sequences with X = x
and Y = y , r X 

= | X| and r Y = | Y | . 
Strong population structure in bacteria presents a prob- 

lem for analysis ( 80 ). We adopt a widely-used sequence- 
reweighting approach ( 10–12 , 81 , 82 ). The weight w i ∈ 

[ 1 /n, 1 ] for sequence i is computed as the reciprocal of 
the number of sequences with mean per-site Hamming dis- 
tance < t , where t is a dataset-dependent threshold that 
typically satisfies t ∈ ( 0 . 1 , 0 . 25 ) . This population structure 
correction is applied to the LD structure estimation by sub- 

stituting effective counts in Eq. ( 2 ) given by n s = 

n ∑ 

i =1 
w i and 

n ( x, y ) = 

∑ 

i ∈ S xy 

w i . 

In practice, the MI computation process is optimised using a 
sparse matrix representation and performed in blocks of SNPs 
( 83 ), which can be feasible even in systems with relatively low 

https://github.com/Sudaraka88/LDWeaver
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emory. LD W eaver requires genome-wide short-range links
o be retained in memory (see below), but most long-range
inks with low MI values are discarded after processing each
NP block. The user specifies an approximate number of long-
ange links to be retained for downstream analysis. 

odelling short-range links. 

y default, SpydrPick ( 12 ) uses S = 10 kb as the threshold
or defining a short-range link, but in LD W eaver we chose 
 = 20 kb as the default threshold to better capture the re-
ion of rapid LD decay. The user can adjust this parameter as
equired. 

Additionally, LD W eaver accounts for genome-wide varia-
ion in local LD patterns, which can arise due to varying mu-
ation and / or recombination rates, by introducing a clustering
nd segregation step. First, for each coding sequence (CDS)
egment in the annotations file, the per-site number of mis-
atches between the CDS and its reference sequence (i.e. the
er-site Hamming distance) is computed. Next, the CDS are
lustered using the k -means algorithm ( 84 ). Due to the chal-
enges in accounting for heterogeneity stemming from popula-
ion structure ( 80 ), LD W eaver avoids estimating this parame-
er and the choice of the number of clusters is a user modifiable
default k = 3 ). A user can avoid clustering by setting the 
 = 1 . Generally, the LD W eaver output with CDS diversity
nd clustering (similar to Figure 1 B) can be useful to deter-
ine k . In Supplementary Figures S2 , S3 , S6 , S8 and S9 , for

ach dataset analysed, we show our choice of k and the out-
ut CDS diversity and clustering plot. Generally, increasing 
 beyond a sensible value will have a limited impact on final
nalysis, provided that enough CDS remain in all clusters to
pproximately estimate the decay of background LD. 

Since CDS regions exclude intergenic regions, each inter-
enic SNP is manually merged into the cluster closest to its
enomic location. 

We used the C. jejuni dataset to compare the modelling of
hort-range rapid LD decay between ( 1 ) the LD W eaver model-
ree approach and ( 2 ) computationally demanding neutral
imulations. For each cluster, we used mcorr ( 85 ) to estimate
he parameter triplet: mutation rate, recombination rate and
he recombination tract length. For each parameter triplet,
00 neutral replicates were generated using bacmeta ( 86 ). In
ach simulation 20 subpopulations of bacteria, each compris-
ng 1000 individuals with a 200 kb gen-me were included to
enerate a sufficiently large and diverse alignment. Migration
ate probability was set at the default 0.01. Each simulation
as performed for 20 000 generations to ensure convergence

nd then 1000 individuals were sampled. The mean LD decay
as directly estimated from this neutral data as a function of
p-sep (base-pair separation). 
LD W eaver directly models the LD-decay using the genomic

lignment, separately for each cluster. At each discrete bp-sep,
he 95th percentile ( q 95 ) MI value is extracted from the ge-
omic data. Here, q 95 was chosen intuitively as a reasonable
hoice to model the background LD ( 87 ). Next, the linear
odel: log ( q 95 ) ∼ log ( bp _ sep ) is fitted and the exponent
f the fitted values of this model (i.e. ˆ q 95 ) is chosen as the
p-sep dependent short-range background-LD threshold. The
5th percentile is chosen to be modelled because it is close to
he upper tail of the distribution, which is the region of inter-
st, but little affected by large outliers so that the fitted curve
s reasonably smooth. 
Outlier calling and link ranking. 

Outlier calling is performed at each discrete bp-sep value. Let
d ∈ [ 1 , S ] denote the bp-sep of interest, let L (d) denote

all the links that are d bp-sep apart and let L 

∗(d) de-
note the subset with MI ( L ( d) ) ≥ ˆ q 95 (d) . First, the model:
MI ( L ( d) ) − ˆ q 95 (d) ∼ Beta ( α, β ) is fitted ( 88 ) in order to

compute an approximate, ∀ L 

∗(d) , a short-range p-value (re-
ferred to as ‘srp’ in LD W eaver to denote short-range p-value).
Links with MI < 

ˆ q 95 (d) are always discarded and the user
can choose a srp cut-off value (default p = 1 e − 3 ) to further
reduce the set of links retained. 

Although a model-free, permutation analysis is available to
compute the srp, it would greatly add to the computational
burden for large bacterial genomic datasets and is not re-
quired because the Beta distribution provides a good approxi-
mation. We confirmed this empirically by performing multiple
trials comparing permutation-based and beta-approximation
p-values using the descdist() function available in the R pack-
age, fitdistrplus ( 88 ). 

The ˆ q 95 values are modelled separately for each genome
cluster. The srp for links between sites from the same cluster is
computed using the LD-decay model fitted to data from that
cluster. When a link spans two clusters, the maximum of the
two srp values is used. 

Filtering indirect links 

Because of its success in inferring gene expression networks
( 89 ) and its utility in SpydrPick, we added ARACNE as a fil-
tering step to the LD W eaver pipeline to overcome the inability
of pairwise methods to distinguish ‘direct’ associations. For
a dataset with 100 000 SNPs, MI values will be computed
for approximately 5 billion unique links. When performing
GWES, the interest is typically focussed on links with high MI
values (i.e. with larger than normal linkage). However, many
of these links will be driven by the same underlying associa-
tion. Identifying the causal link is extremely challenging, es-
pecially for bacterial data due to factors such as clonality and
genome plasticity ( 80 ). 

Given multiple links that can be explained by the same un-
derlying causal effect, we use ARACNE to retain only the link
with the strongest signal (called a ‘direct’ link). This can re-
duce the number of links retained by several orders of mag-
nitude, greatly reducing the manual curation task. ARACNE
scans the entire LD landscape and a link ( X, Y ) is consid-
ered to be indirect if MI ( X, Y ) ≤ [ MI ( X, Z ) , MI ( Z, Y ) ] for
any SNP Z. A detailed explanation of the ARACNE algorithm
and this specific filtering step is available in ( 12 ). 

Detecting outliers in long-range links 

Long-range (bp-sep > S ) background LD varies little with
bp-sep, so the genome clustering step that was used to model
short-range links is not required. To determine a background-
LD threshold ( 12 ), we adopt an approach similar to that of
SpydrPick in which LD W eaver computes the Tukey ( 90 ) out-
lier threshold: T 1 = Q 1 + 1 . 5 × I QR , where I QR = Q 1 −
Q 3 and Q 1 and Q 3 are the first and third quartiles, respec-
tively. Links with MI > T 1 are directly ranked based on the
MI value. In cases where < 5000 links surpass T 1 , LD W eaver
retains the top 5000 (default) links based on MI value. 

The Tukey outlier detection approach is simple, but we
prefer it to a permutation approach for two reasons. Firstly,
this threshold has limited impact on the long-range GWES

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
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analysis itself. While an outlier is defined based on whether
its MI value passes this threshold, it has no bearing on link
ranking itself. Downstream analysis and the eventual manual
curation can be performed on the highest-ranked subset of
ARACNE direct links without requiring a threshold. Secondly,
due to the high degree of LD observed in bacteria, the back-
ground MI values computed from the observed MSA could be
larger than the null MI values computed from a label-shuffled
model. Therefore, the computed permutation threshold could
potentially be too conservative. 

While LD W eaver can perform GWES analysis on both
short- and long-range links, it is fully compatible with the
SpydrPick output for long-range link analysis. For a dataset
that has already been analysed using SpydrPick, users have
the option to first perform only the short-range analysis in
LD W eaver, then present the SpydrPick output as input to LD-
Weaver to perform the downstream analyses of long-range
links. 

Downstream analyses and visualizing putative links
and sites. 

We have integrated several powerful R visualization tools into
LD W eaver ( 91 ,92 ). To prioritize and perform wet-lab based
modelling and validation, it is helpful to understand the func-
tional annotations of the SNPs involved in high-MI links.
Therefore, functional annotations are added to all such SNPs
using SnpEff ( 29 ). Additionally, LD W eaver classifies each SNP
as non-synonymous, synonymous, or intergenic. The non-
synonymous versus synonymous distinction is based on the
most common allele at multi-allelic sites. Based on this clas-
sification, LD W eaver generates an additional output compris-
ing, by default, a set of 250 top ranked links excluding links
between two synonymous sites. 

GWES Manhattan plots were introduced to visualize the
distribution of MI as a function of bp-sep ( 12 ). LD W eaver
generates the long-range GWES plot introduced in SpydrPick,
along with two plots for short-range links. The first short-
range plot is similar to the long-range GWES plot but with
points shaded according to the srp value. The second plot
shows the segregation of links into genomic clusters. While
these plots are less informative compared to Manhattan plots
in genome-wide association studies (GWAS) due to the lack of
genomic positions, they can be useful to assess the LD-decay
fit between 

ˆ q 95 and the genomic data. 
LD W eaver also generates a linear tanglegram using the R

package ChromoMap ( 93 ) to indicate the genomic positions
of top ranked links in the short range. These tanglegrams span
the whole genome and are broken down into segments for im-
proved utility . Additionally , LD W eaver generates a figure de-
picting a genome-wide overview of the LD structure in the
dataset. First, a sparse, SNP-level LD matrix is created using
the MI values of the saved link data. Then, an averaging kernel
is applied to reduce the dimensions of the matrix to approxi-
mately 1000 × 1000 ( 94 ). The resulting matrix is plotted in
the form of a heatmap with SNP positions as x and y labels
( 95 ). This bird’s-eye view can be useful in some analyses to
quickly identify high-LD regions and blocks. 

Additionally, LD W eaver generates a network plot for top
ranked links using the R package ggraph ( 96 ). The gene-level
regions of each site are extracted from the annotations file
and the links between these regions are coerced into a net-
work ( 97 ). To reduce clutter in the network plot, edges with
only 1 link between nodes are removed. Afterwards, any nodes 
with no edges between them are also dropped from the plot.
The edges are coloured to depict the number of links between 

genes. Furthermore, the edge width and transparency are also 

moderated to reflect the MI value of the highest ranked link 

between the two regions. Furthermore, LD W eaver provides 
the option to generate a similar gene network for any chosen 

gene. The user can decide whether to use short-range, long- 
range or both link lists to generate this plot. 

Using a user-provided phylogeny, LD W eaver can generate 
a tree-plot of user-determined putative sites and phenotypes.
This type of plot is inspired by some of the visualization op- 
tions available in Microreact ( 98 ) and has also been widely 
used in the previous GWES literature ( 11 ,15 ). The phylogeny 
will be midpoint rooted by default ( 99 ,100 ) and the SNP data,
user provided phenotypes are sorted in the same order as the 
phylogeny . Finally , the plot is generated using the R package 
ggtree ( 101 ). 

Finally, LD W eaver generates the output required to 

dynamically visualize links using the R package GWE- 
SExplorer ( https:// github.com/ jurikuronen/ GWES-Explorer ).
This Node.js based shiny app can be used to generate the 
GWES Manhattan plot, circular tanglegram and the tree-plot 
for an arbitrarily chosen subset of putative links. 

Runtime 

A complete LD W eaver analysis with default parameters on a 
dataset comprising 2000 sequences with 80 000 SNPs on av- 
erage requires 4756 s ( ∼80 min) on a computer with 32GB of 
ram and 10 parallel CPU cores running R version 4.2.2 with 

openBLAS v0.3.21 support. 

Results 

Overview of LDWeaver 

Performing GWES analysis using LD W eaver requires two in- 
puts, a multiple sequence alignment (MSA) and the annotation 

file of the reference in Genbank or Gff3 format. Initially, LD- 
Weaver filters out sites with low minor allele frequency (de- 
fault: 0.01) and high gap frequency (default: 0.15), with an 

option for a ‘relaxed’ filter to retain sites with gap (N) as 
the second most common allele. Following SpydrPick ( 12 ),
LD between each SNP pair is measured using mutual infor- 
mation (MI). To address population structure, a sequence- 
reweighting approach is applied, where the weight for each 

sequence is computed as the reciprocal of the number of se- 
quences with a mean per-site Hamming distance below a user 
definable threshold (default: 0.1). 

Generally, SNPs in genomic proximity tend to have very 
high LD, but LD levels rapidly decline with base-pair distance 
to a constant value for all long-range SNP pairs (see Figure 
1 A). First, LD W eaver uses a user-definable genomic distance 
threshold to classify short range links (default: links between 

sites < 20 kb apart are considered short range). To determine 
a threshold for outlier calling, it is necessary to model the de- 
cay in LD with genomic distance and the shape of this decay 
is determined by many factors. These may include the type of 
species, population structure, local mutation and recombina- 
tion rates, variation in gene content and selection pressures. To 

account for this heterogeneity, LD W eaver measures the per- 
site mean Hamming distance within coding regions around 

the chromosome and clusters them using k -means based on 

https://github.com/jurikuronen/GWES-Explorer
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Figure 1. Ov ervie w of the LD Wea v er pipeline. ( A ) Genome-wide linkage disequilibrium (LD) f or 1480 Camp ylobacter jejuni isolates ( 26 ). LD is measured 
using mutual information (MI) and a weighting strategy is emplo y ed to account for population str uct ure. T he ax es correspond to genomic positions in the 
NCTC 1 1 1 68 reference genome, and the colour intensity reflects the strength of LD . Blue triangles outline regions of long-range LD , while the 
short-range high-LD region is outlined in red. ( B ) Genomic diversity (measured using Hamming distance compared to the reference) within each coding 
region (CDS) is used to account for local variation in short-range background LD. Each point corresponds to a CDS, and the vertical axis shows the 
a v erage number of sites that differ from the reference. K-means clustering is used to divide the CDS into three clusters (see legend). Sites from 

intergenic regions are allocated to the nearest cluster. ( C–F ) GWES Manhattan plots show the distribution of LD measured using weighted MI ( y -axis) at 
varying genomic distances ( x -axis). For better visualisation in this overview figure, numeric values are removed from the y -axis. All links (between 
synon ymous, non-synon ymous and intergenic sites) are included in these plots. Plots are sho wn f or short-range links in the three clusters (C–E) and 
long-range links (F). Modelled background LD is shown respectively using red, green, blue, and black dashed lines, respectively. The colour shading of 
each point indicates the ranking given to outlier links (see the colour bar in the rightmost panel - numeric values removed to reduce clutter). The topmost 
(bright red) colour signifies rank 1, highlighting the most extreme outlier. Decreasing ranks follow the colour bar from top-bottom. For short- and long- 
range analyses, link ranking is based on the estimated short-range P -value and the measured MI, respectively (see Materials and methods). Links that 
are either inferred as indirect or with MI below the background LD are shown in grey and not ranked. In (F) the background LD is invariant to genomic 
distance and computed using the Tuk e y criteria (dashed black line). ( G ) The LDWeaver network plot generated for metE summarises all the outlier links 
in v olving a site in the gene. Here, the edges are coloured based on the number of links between linked genomic region nodes (see Campylobacter 
results section). ( H ) In v estigating the allele distribution within the linked region (alleles panel) shows that several deletions and mutations observed 
within se v eral clonal comple x es are driving the high LD signal pick ed up b y LD Wea v er. T his and the subsequent ph ylogenetic trees sho wn in this 
manuscript were generated using FastTree 2 ( 102 ). 
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the estimated local diversity (see Figure 1 B). Based on the out-
put in Figure 1 B (generated by LD W eaver), the user has the
option to select the most appropriate number of clusters for
the dataset (default: 3). 

Background decay in LD is modelled separately for each
cluster. Here, a linear model is fitted to log transformed 95th
percentile MI values and the corresponding base pair separa-
tion. Afterwards, the exponent of fitted values is used as the
base pair separation dependent background LD (see Figure
1 C–E). Since long-range background LD is uniform (see Fig-
ure 1 F), the Tukey outlier approach in SpydrPick can be used
to estimate the background LD. 

After calling outliers based on the estimated background
LD, LD W eaver provides a list of locus pairs ranked in or-
der of strength of evidence for co-selection. This ranking is
based on the outlier short-range P -value (see Materials and
Methods). LD W eaver includes several options to ease the task
of generating a list of potential epistatic SNP-pairs for ex-
pert manual curation and wet lab validation. First, all out-
lier links are annotated using SnpEff ( 29 ) and links that in-
clude a non-synonymous substitution are given a higher pri-
ority. Afterwards, this SNP classification is leveraged to gen-
erate an additional output comprising a set of (default: 250)
top-ranked links after discarding links between two synony-
mous sites. All short-range results presented in this manuscript
using real data are based on analysing these top 250 most sig-
nificant links. Furthermore, LD W eaver summarizes links into
networks (see Figure 1 G), which helps to prioritize the most
promising genome regions. Finally, LD W eaver can be used to
visualize the allele distributions within these networks (see
Figure 1 H). 

LDWeaver detects co-selection signals in simulated 

genomes. 

With the detection of long-range links validated previously
( 12 ), the primary objective here is to detect links short-range
under epistasis by looking for signs of co-selection between
SNPs. We validated LDWeaver using Wright-Fisher models
representing several evolutionary scenarios that were simu-
lated using SLiM version 4 ( 30 ). Although the original de-
sign of SLiM does not support simulating bacterial evolu-
tion, recent advances ( 31 ) now enable considering circular
genomes, horizontal gene transfer, and bacterial recombina-
tion. Notably, SLiM is one of the only available options with
the ability to simulate epistasis in bacterial populations and
generate full genome alignments as output, which is necessary
for LD W eaver analysis. 

To make the simulations as realistic as possible, we chose
the first 200 kb from the ATCC 700669 ( S. pneumoniae ) refer-
ence genome as the ancestral sequence. Each simulation com-
prised 10 000 isolates, equally distributed across 10 subpop-
ulations. Recombination tract lengths were drawn from a ge-
ometric distribution with a mean of 500 bp, while mutation
and recombination rates were fixed at 2e-7 (per bp, per gen-
eration) and 8e-7 (per bp, per generation), respectively. The
simulations allowed migration between all 10 subpopulations
at a rate of 5e-2 (per bp, per generation). 

Introducing positive or negative synergistic epistasis alone
led to a loss of genetic diversity through fixations after several
generations, which stands in contrast with observations in real
bacterial populations ( 32 ). While such epistatic interactions
are undoubtedly present in bacterial populations, these simu-
lations lack the complexity needed to model the processes that 
continuously shape the LD within populations. To address this 
and to maintain more realistic levels of genetic diversity, we 
opted to simulate a balancing selection scenario employing a 
version of negative multiplicative (synergistic) epistasis. 

We identified the 22 longest coding regions (CDS) from 

within the first 200kb of the ATCC700669 reference genome,
each with length > 1500 bp, as potential ‘target regions’ for 
epistatic interactions. The distribution of these 22 regions on 

the genome is illustrated in Figure 2 A. Initially, each CDS was 
randomly allocated to one of five groups represented here us- 
ing different colours: magenta, green, blue, purple and orange 
(see Figure 2 ). Utilizing these groups, we constructed five sim- 
ulation scenarios, denoted as s1 - s5 . In s1 , all 22 CDS from 

the five groups were selected as targets , covering a combined 

target region length of 23.8% of the total genome. For s2 ,
four groups were chosen, resulting in 18 target CDS cover- 
ing 20.8% of the genome. Similarly, s3 involved three groups 
with 14 CDS with 17.5% coverage, s4 involved two groups 
with 10 CDS with 13.7% coverage, and s5 involved only one 
group with six CDS and 9.5% coverage. This design ensures 
that s5 is considerably more challenging than s1 because only 
two orange regions near 70 Kb (see Figure 2 A) can contribute 
to ‘between target-region’ short-range links. The remaining 
target links in s5 are from ‘within target-regions’. 

For all simulation scenarios, three types of mutations were 
introduced to the population. All regions outside the target 
CDS were assigned mutation type m1 , which had a slightly 
deleterious selection coefficient of −0.00001, reflecting the as- 
sumed near-neutrality in bacterial genomes. The target CDS 
were randomly allocated either mutation type m2 or m3 , both 

were beneficial with an additive selection coefficient of 0.001.
Since both mutation types had the same effect, in the ab- 
sence of epistasis, they would fix after several generations. An 

epistatic interaction was introduced between m2 and m3 ; car- 
rying both will result in a 5% reduction in fitness. 

The simulation was continued for 20000 generations and 

1000 genotypes were sampled at the end. Each scenario ( s1–
s5 ) was replicated 100 times, totalling 500 simulations. At the 
end of each replicate, the extracted genome alignment was 
used for LD W eaver analysis. Importantly, since this simulation 

does not account for the complexities of amino acid modi- 
fications, SnpEff annotations were avoided, and no distinc- 
tions were made between synonymous and non-synonymous 
mutations. 

In s1 , only 2.4% of examined links were true target links 
(i.e. a link from within or between two target CDS regions),
which reduced to 1.3% for s5 (see Supplementary Table S1 ).
Since LD W eaver is primarily a link ranking algorithm, its per- 
formance was evaluated based on its ability to include target 
links in the top subset of ranked links. This best aligns with 

the analysis method used for real biological data presented in 

the manuscript. 
For scenarios s1– s5 , 70.4%, 62.6%, 61.8%, 52.4% and 

49.8% of top 5 ranked links were target links, respectively.
Next, examining the top 20 ranked links revealed that at least 
one target link appeared in all 400 replicates for s1– s4 , and in 

97 of 100 s5 replicates (see Figure 2 B). Furthermore, compar- 
ing the top 25 link ranking to a random allocation revealed 

that LD W eaver performs approx. 30 times better across all 
scenarios (see Supplementary Figure S1 ). 

Finally, to assess the possibility of a target link being tagged 

by an alternative site in genomic proximity due to LD, we cal- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
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Figure 2. Validation of LD Wea v er using bacterial population simulations. ( A ) Simulated genomic region (first 200kb of ATCC700669) showing the target 
Coding Sequences (CDS). In each simulation scenario, grouped target CDS (depicted by colours) were chosen for epistatic interactions. In s1 , all 22 CDS 
selected and in s5 , only the 6 CDS in the orange group were selected (see main text for a detailed breakdown). ( B ) For each simulation (see legend), 
each curve shows the variation between the number of links c hec ked in ranking order ( x -axis) and the probability of detecting a ‘target link’, a link from 

within or between two target regions ( y -axis). This reaches 1 when all replicates contain a target link. All replicates from s1–s4 and 97% of replicates 
from the most challenging s5 contain a target link within the top 20 ranked . The challenge in s5 is 2-fold: only < 10% of the genome is under epistasis, 
and only two orange regions near position 70 Kb (panel a) can contribute to ‘bet ween t arget-region’ short-range links. ( C ) For each simulation scenario 
( x -axis), y -axis shows the genomic distance between sites in the top 5 ranked links and the closest target region. Most replicates in s1–s5 contain at 
least one target link in the top 5 ranked (blue diamond shows median = 0, purple diamond shows mean < 3, which increases from s1 to s5 ). Each 
orange dot corresponds to a replicate that does not contain a target link, and the y -axis shows the minimum genomic distance from a target region to a 
site. To elaborate, two replicates in s1 do not contain a target region link in the top 5 ranked , and the closest site in each case is approx. 100 and 500 bp 
to a target region. 
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ulated the genomic distance between all 10 detected sites and
heir closest target regions for the top 5 ranked links in each
eplicate (see Figure 2 C). In replicates containing a target link
ithin the top 5 ranked, this distance is 0. For others, it rep-

esents the distance to the nearest target region for the site
hat is in the closest genomic proximity to a target region.
he analysis revealed that 94.2% of replicates contain a tar-
et link in the top 5 ranked, as indicated by a median distance
f 0. 

DWeaver detects co-evolutionary links in multiple 

athways in S. pneumoniae. 

. pneumoniae is a naturally transformable nasopharyngeal
ommensal and respiratory pathogen. It causes a substantial
lobal disease burden in humans, representing a major cause
f pneumonia, meningitis, and otitis media. There are > 100
immunologically distinct capsule types, termed serotypes, of
S. pneumoniae . Serotype replacement after the introduction
of pneumococcal conjugate vaccines (PCVs) is a serious con-
cern, particularly given the association of many pneumococcal
genotypes with multidrug resistance ( 33 ). 

The LD W eaver analysis of pneumococci focussed on two
populations isolated from carriage in contrasting settings:
Mae La, Thailand and Massachusetts, USA. The Mae La
sample comprised 2663 high quality assemblies (accessions
available in Supplementary information ) ( 32 ) collected from
mother and infant pairs ( 34 ). The Massachusetts sample
( 25 ) comprised 616 draft genomes (accessions available in
Supplementary information ) of similar quality ( 32 ). Both
datasets were aligned to the ATCC 700669 (accession code
FM211187) reference genome ( 35 ), and after filtering out
sites with minor allele frequency (MAF) < 0.01 and gap fre-
quency > 0.15, respectively 88603 and 89386 SNPs were

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data


8 NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

retained for analysis (see Supplementary Figures S2 and S3
for LD W eaver plot panels). Analysed and detected link counts
are summarised in Supplementary Table S2 . 

Long-range interactions included strong signals of co-
evolution between pbp2b and pbp2x in both populations.
These genes are key in determining resistance to beta lactam
antibiotics and these interactions were reported previously
( 12 ). Another interaction conserved across both populations
was that between three loci encoding immunogenic surface-
exposed degradative enzymes ( 36 ): the beta-galactosidase
BgaA, the immunoglobulin A protease ZmpA, and PabB, en-
coded by a gene directly downstream of that for the ZmpA
paralogue, ZmpB. These co-evolutionary signals may arise
through direct interactions on the surface, or indirect effects
emerging through immune selection for particular combina-
tions of antigens ( 37 ). 

The short-range interactions were more similar between
the two populations. Adjacent genes functioning in the
same metabolic pathway included links consistently iden-
tified between the neighbouring coding sequences cdsH
(SPN23F08030) and thiI (SPN23F08040), which are both in-
volved in thiamine biosynthesis ( 38 ). Similarly, the adjacent
genes SPN23F02450 and SPN23F02460 both encode proteins
predicted to function as N-acetyltransferases. Signals were
also identified in both populations between the overlapping
genes SPN23F08250 and SPN23F08260, encoding subunits
of a transporter of unknown function ( 39 ). Hence, LDweaver
can identify signals of proteins likely to be co-evolving as par-
ticipants in the same metabolic pathways. 

Another regulatory locus involved in short range interac-
tions across both datasets is that encoding the competence reg-
ulator TfoX. Multiple sites were in strong LD in the subset of
isolates encoding this locus, which was absent in a minority of
isolates (see Figure 3 A). Yet these sites are not in the gene itself,
but in the flanking intergenic regions, or the adjacent alaDH
pseudogene that encodes an apparently functionally unrelated
alanine dehydrogenase. This suggests that these paired sites do
not interact functionally. A search for the functional sequence
of the alaDH gene identified intact versions in other strepto-
cocci. Further alignments indicated that the tfoX-alaDH pair-
ing was intact in Streptococcus anginosu s. Hence, the vari-
able distribution of this locus in S. pneumoniae is likely the
consequence of one, or more, interspecies transfers through
homologous recombination introducing the gene cassette into
pneumococci, followed by degradation of the alaDH gene into
a non-functional form ( 40 ). Hence the elevated LD identified
in this case may be the consequence of a relatively recent in-
trogression ( 41 ) from another streptococcal species, demon-
strating LD W eaver can identify loci under sufficiently strong
selection to drive interspecies transfers ( 40 ). 

Another transporter (encoded by SPN23F03500) was
linked to an adjacent pseudogene (SPN23F03510) in both
populations (see Supplementary Figure S4 ). The undisrupted
sequence of SPN23F03510 is predicted to function as a lan-
tibiotic synthesis protein, suggesting the associated trans-
porter is likely to be a self-immunity protein. Hence, this pair-
ing likely represents an example of a non-producing, immune-
only ‘cheater’ bacteriocin phenotype ( 42 ), common in pneu-
mococci ( 43 ). The most variable bacteriocin-encoding locus
in the pneumococcal genome is the blp gene cluster ( 44 ),
in which multiple interactions between genes were detected.
These included interactions between the genes encoding the
BlpRH quorum sensing two component system, and the gene
encoding the cognate peptide pheromone, BlpC ( 45 ), identi- 
fied in both populations. Further links were found in the Mas- 
sachusetts sample only, which likely represent relationships 
between the synthesized bacteriocins and corresponding im- 
munity proteins ( 44 ). 

In addition to performing biological analyses, we used the 
Massachusetts dataset to compare the effect of varying the 
CDS clustering parameter ( k ). We repeated the LD W eaver 
analysis using k = 1, 3 and 5 and fitted the decay model to the 
95th percentile of the empirical distribution. Fitted parame- 
ters for each case are shown in Supplementary Table S3 . Each 

parameter pair corresponds to the slope and intercept of the 
fitted model (see Materials and methods). Corresponding de- 
cay curves are shown in Supplementary Figure S5 a. Next, we 
examined the variation between the top 250 ranked links from 

each analysis. Links between the same coding regions were 
pooled together irrespective of the ranking and the counts are 
shown in Supplementary Figure S5 (b). Here, the qualitative 
difference between the choice of k = 1 and k = 3 is clear,
however, choosing between k = 3 and k = 5 only results in a 
marginal difference. 

LDWeaver identifies patterns of co-evolution of 
cytolethal distending protein toxin subunits in 

C. jejuni 

C. jejuni is a leading cause of food-borne bacterial gastroen- 
teritis worldwide, associated with the consumption of con- 
taminated poultry meat. It is well-adapted to colonize the gut 
of the majority of mammalian and avian host species and has 
been isolated from many environmental sources. The success- 
ful colonization of strains is often host-specific for the major- 
ity of lineages (specialist clonal complexes) and this is reflected 

in the population structure during phylogenetic comparison of 
genomes. Certain clonal complexes (CCs) are also known to 

be host generalists, where the same lineage is well-adapted to 

colonize and to survive in multiple different hosts. 
The population of C. jejuni is structured by well-defined, ge- 

netically similar clusters of isolates (clonal complexes) which 

are documented to be maintained over time ( 26 ), despite the 
very frequent homologous recombination occurring across 
the known lineages ( 26 ,46 ). This high frequency of recom- 
bination, which is not limited to any particular region of 
the genome, would generally break down the LD observed 

in C. jejuni lineages and therefore, potentially disrupt co- 
selected / epistatic functional groups of genes throughout the 
genome. Despite the high recombination, the population 

structure has remained stable over long periods of time ( 26 ),
making C. jejuni an excellent candidate species for the analysis 
of short- and long-range epistasis and co-selection links. 

A collection of 1480 previously published C. jejuni genomes 
( 26 ) consisting of 18 different human, animal, and environ- 
mental sources and 37 CCs were selected for LD W eaver analy- 
sis (accessions available in Supplementary information ). These 
were aligned against the NCTC 11168 reference genome ( 47 ) 
using snippy. After removing sites with MAF < 0.01 and gap 

frequency > 0.15, 102591 SNPs were retained for LD W eaver 
analysis (see Supplementary Figure S6 for the LD W eaver plot 
panel). 

Analysis of short-range interactions identified strong sig- 
nals of co-evolution between genes with functions mostly 
related to virulence such as: amino acid ABC transporters,
flagellar biosynthesis, periplasmic and outer membrane pro- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
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Figure 3. Ov ervie w of genomic v ariations of the flanking region of the Tf oX competence regulator demonstrated using the Massac huset ts S. 
pneumoniae dataset. ( A ) T he ph ylogenetic tree ( n = 616) is coloured according to the serotype shown to the right of the tree. The 4 bars immediately to 
the right denote the antimicrobial resistance data for ceftriaxone, erythromycin, benzyl penicillin and trimethoprim, respectively. The key above indicates 
the colour shadings for S – sensitive, I – intermediate and R – resistant. Allelic variation in the tfoX locus is shown by the rightmost heatmap and the k e y 
abo v e sho ws the colour f or each nucleotide with N indicating an ambiguous base. SNP positions abo v e the heatmap are based on the ATCC 700669 
reference. This suggests that the tfoX locus is present in most pneumococci and can be divided into three genotypes: that containing the major alleles 
at each polymorphic site; that containing the minor alleles at sites 850664 and 852539, and that containing the minor alleles at these two sites, as well 
as sites 851543 and 852789. ( B ) The alignment of representatives of the four observed genotypes in the dataset, demonstrated here using sample data 
from selected isolates. Colour shading indicates the identity between regions. In ND6000 (ERR129187) and CH2106 (ERR129095), the flanking region is 
intact with multiple insertion sequences, two functional genes, a non-coding region and an alaDH pseudogene. The locus is intact, but the insertion 
sequences are not observed in BR1 07 6 (ERR129048). In contrast, the entire locus is missing in BR1058 (ERR129043). With reference to the 
phylogenetic tree in (A): ND60 0 0 is a serotype 7C isolate between regions 19F and 11A, CH2106 is a 19F isolate, BR1 07 6 is 6C isolate and BR1058 is a 
7C isolate. ( C ) Shows the alignment between FM21 1 187 and S. anginosus NCTC10713 genomes. For the region of interest, this is the most similar locus 
among streptococcal species. Despite the general divergence between S. pneumoniae and S. anginosus , the tfoX-alaDH gene pair is intact in both 
species with high similarity (same k e y as in (B) to show region identity). Ho w e v er, the dissimilarity between the flanking regions demonstrates the 
typical le v el of div ergence betw een the genomes. Hence, the localiz ed similarity indicates a possible recent introgression into the pneumococcus. 
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eins, antibiotic efflux genes, among others. One of the most
romising findings was multiple highly significant links lo-
ated within the cytolethal distending toxin (CDT) genomic
egion. The CDT is a protein toxin composed of three sub-
nits: CdtA, CdtB and CdtC encoded by a cdtABC operon,
nd is considered one of the most important virulence factors
or Campylobacter pathogenesis. CDT acts to halt host cell
ivision by cell cycle arrest at the G 2 stage occurring before
itosis ( 48 ). CdtA and CdtC are anchored into the membrane

nd act to deliver CdtB to the host cell which arrests the cell
ycle. CdtB has the toxin activity but is reliant on CdtA and
dtC for its binding and delivery to the host cell ( 49 ). 
Our results showed that the three subunits were well con-

erved throughout the dataset, except for three distinct clus-
ers of isolates identified in wild birds (see Figure 4 ). There
as high variability of the presence / absence and allelic vari-

tion of the three CDT subunits across these three clus-
ers of isolates. For example, all three subunits were ab-

ent from the wild bird-associated ST-1287 CC. Another 
wild bird-associated clade, ST-1034 CC (mixed) consisted of
synonymous / non-synonymous nucleotide changes in all sub-
units compared with other sources. Finally, isolates belonging
to the third wild bird-associated clade, ST-1325 CC consisted
of a mix of both the same synonymous / non-synonymous nu-
cleotide changes as seen in ST-1034 CC, some of the isolates
in this cluster also exhibited the same variation as observed in
the other sources and CCs within the dataset, while some iso-
lates had an absence of various CDT subunits (see Figure 4 ).
A recent study comparing the gene sequences of the cdtABC
operon of wild bird, broiler chicken and human sources ( 50 )
confirms the LD W eaver-generated hypothesis of significant
co-selection occurring within this operon. The study identi-
fied high variability of cdtABC alleles in wild birds with sev-
eral alleles producing no functional CDT. Sequence conser-
vation outside of wild bird sources, such as broiler chickens
and humans, was also observed, suggesting that the variation
of the cdtABC operon may play a role in the host range of
Campylobacter ( 50 ). 
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Figure 4. Ov ervie w of allelic v ariation of CDT subunits in the C. jejuni dataset. ( A ) T he ph ylogenetic tree ( n = 1480) is coloured according to the clonal 
complex and the key to the left of the tree is labelled according to the corresponding topology of each clonal complex. Allelic variation of the three CDT 
subunits (CdtA, CdtB and CdtC ( x axis )) encoded by the cdtABC operon across the tree is represented by the heatmap to the right of the tree. ( B ) The 
association of a particular clonal complex with a source is highlighted by the first panel. The darker the shading (explained by percentage keys at the 
bottom of the panel), the higher the percentage of isolates from each source belonging to the particular clonal complex (rows). The rows are ordered by 
abundance (column N ) in the C. jejuni dataset. Three panels to the right represent the allelic variation within CdtA (red), CdtB (blue) and CdtC (green) 
subunits. The shading represents the percentage of isolates associated with a particular clonal complex / source with either: 1) the unaltered allele; 2) a 
nucleotide change (mutated); or, 3) a deletion of the CDT subunit. Shaded k e y s at the bottom of the three panels represent the percentage of isolates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Potential co-selection was also identified in the gene cluster
containing genes metE and metF (see Figure 1 ). These genes
are located on an operon involved in methionine synthesis
which has been proven to have a vital role in the colonisa-
tion of C. jejuni to the gastrointestinal tract of different hosts
(Kelley et al., 2021). Similar patterns of the presence / absence
and mutated versions of this locus were observed within the
same wild bird clusters as the cdtABC operon (Figures 1 H
and 3 ) while also remaining relatively conserved in the remain-
ing sources and CCs. 

In addition to performing biological analyses, in C. jejuni ,
we also explored the impact of the choice of background LD
modelling (LD W eaver approximate vs. using a neutral simu-
lation) on short-range outlier ranking ( Supplementary Figure 
S7 ). Link ranking was robust to the modelling choice for gen-
erally high LD links (MI > 0.5) ( Supplementary Figure S7 a),
however, the LD W eaver model allocates systematically higher
ranks to links that are further apart ( Supplementary Figure 
S7 b). Given the primary goal of short-range epistasis analysis
is to accurately rank high LD outliers in genomic proximity,
these findings indicate that the choice of background LD mod-
elling has a minimal impact. Furthermore, both approaches
on average allocate the same score to links between same site
pairs ( Supplementary Figure S7 c). 

LDWeaver recapitulates co-evolving links involved 

in clade evolution and success of the E. coli 
pandemic clone ST131 

To investigate epistasis and co-selection in E. coli , we consid-
ered a dataset consisting of 2156 ST131 genome assemblies
(accessions available in Supplementary information ) aligned
against the EC958 reference genome ( 51 ) using Snippy. Loci 
with MAF ≥0.01 and gap frequency < 0.15 were included,
leading to 44 092 SNPs (see Supplementary Figure S8 for the 
LD W eaver plot panel). It is noted that the E. coli dataset had 

the highest amount of LD among all analysed datasets, and 

the asymptote of Supplementary Figure S8 b cluster 1 has the 
largest intercept among all LD W eaver panel plots. 

The E. coli ST131 lineage belongs to the phylogroup B2 

that emerged globally around 20 years ago and is associated 

with urinary tract (UTI) and bloodstream infections (BSI) ( 52–
54 ). Large epidemiological studies have identified major dif- 
ferences in the virulence and antibiotic resistance between the 
three main clades of ST131 (A, B and C) ( 55 ). Clade C, which 

is associated with fluoroquinolone resistance arising from mu- 
tations in gyrA and parC has further been split into two sub- 
lineages (C1 and C2) with a distinct pattern of mobile ge- 
netic elements (MGEs) and associated antimicrobial resistance 
(AMR) genes ( 56 ,57 ). 

The long-range loci pairs in E. coli ST131 corresponded 

to clade C specific SNPs differentiating sub-lineages C1 

and C2 ( 58 ). These included links between sites in sbmA 

(EC958_0513), a transporter involved in the internalisation 

of peptide antibiotics into the cytoplasm ( 59 ) and identified 

as a virulence factor in avian extraintestinal E. coli (APEC) 
( 60 ), and sites in (i) nikA (EC958_3870), a periplasmic pro- 
tein from the ATP-binding cassette type nickel transport sys- 
tem acting as the initial receptor of nickel ( 61 ), (ii) acrF 

(EC958_4822) encoding an efflux pump with homology to 

the major pump AcrB ( 62 ), (iii) lepA (EC958_2875) encod- 
ing a conserved GTPase with a role in the initiation phase 
of translation ( 63 ) and (iv) iscS (EC958_2841) , encoding a 
cysteine desulfurase implicated in the activity of a number of 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
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e-S proteins ( 64 ). These clade-specific SNP pairs are spread
cross the E. coli chromosome, separated by at least 1 Mbp,
nd may have contributed to the recent expansion of the E.
oli sub-lineage C2. 

The genome wide distribution of LD estimated from LD-
eaver revealed multiple interesting patterns (see Figure 5 ).

or example, the short-range co-evolving SNP pairs highly
anked by LD W eaver correspond to regions involved in
he synthesis of the E. coli capsule polysaccharide ( kpsM
C958_3343 , kpsC EC958_3337 , kpsS EC958_3338 ) and
ype II secretion system located downstream in the chromo-
ome ( gspL EC958_3345 , gspM EC958_3344). The observed
ight linkage in the E. coli capsular region might be critical for
aving a functional system since the capsule plays an impor-
ant role as a major virulence factor contributing to 

the colonization of different eukaryotic host niches, reduc-
ng the efficacy of the immune system by complement inacti-
ation and shaping the horizontal gene transfer mediated by
GEs ( 65–67 ). These results indicate that the variation within

he capsule region is also 

linked to SNPs present in the conserved type II secretion
ystem. Variation in these regions could thus alter the capsule
xpression in E. coli , contributing to a non-capsulated state
hat allows the introduction of a new pool of MGEs ( 67 ). 

DWeaver detects novel interactions between sites 

ssociated with virulence in E. faecalis . 

. faecalis represents a classical generalist microorganism,
ith little phylogenetic divergence and limited host special-

zation over the population ( 68 ). Few hospital-associated E.
aecalis clusters have been identified, with some overrepre-
entation of virulence factors and AMR genes ( 28 ,69 ). How-
ver, these lineages as well as the traits potentially underlying
heir success predate the modern hospital settings ( 28 ,70 ). The
. faecalis dataset analysed using LD W eaver comprised 2027

solates (accessions available in Supplementary information )
ligned against the V583 reference genome ( 71 ) using Snippy.
fter filtering out sites with MAF < 0.01 and gap fre-
uency > 0.15, we analysed 85982 SNPs (see Supplementary 
igure S9 for the LD W eaver plot panel). 
Inspecting the short-range links within the E. faecalis pop-

lation revealed multiple top-ranking links in known entero-
occal virulence genes. Particularly, the elr operon was repre-
ented in several links (see Supplementary Figure S10 ). The
enes in the elr operon code for putative surface proteins and
heir overexpression have been associated with increased vir-
lence and ability to evade host immune defence by resistance
o phagocytosis ( 72 ). Three elr genes, elrB, elrC and elrR , were
inked to each other, and the positive regulator elrE ( 73 ) was
lso linked to an ATP-binding cassette transporter. 

Another cluster of links involved ace , a widespread viru-
ence gene in E. faecalis , coding for adherence factor ( 74 ,75 ).
n addition to a gene coding for a hypothetical protein, it
as linked to a bacteriocin-encoding entV . This bacteriocin
as been shown to act against fungal Candida albicans co-

nfection by the inhibition of biofilm formation ( 76 ,77 ) . In-
riguingly, the absence of ace has also been shown to result
n reduced biofilm formation in vivo , but despite both ace
nd entV being partly involved in biofilm-associated entero-
occal infections ( 78 ), we are not aware of any report of a
irect link between the functions of the two. These findings
emonstrate the ability of LD W eaver to highlight both known
and putative functional links between enterococcal genes.
Supplementary Figure S10 further illustrates that the minor al-
lele haplotypes at the candidate sites under co-selection are not
enriched in hospital-associated multi-drug resistant lineages.
Given that the ages of these lineages have been estimated as
50–150 years ( 28 ), and that they all share the major alle-
les at these variable sites, the co-selective pressure may have
acted more recently in some other ecological setting outside
hospitals. 

Discussion 

Bacterial population genomics research is rapidly moving to-
wards an era where hundreds of thousands of whole-genome
sequences will be available for many species. These data repre-
sent an unprecedented opportunity to seek signals of selection
in natural populations and to unravel genomic clues for adap-
tation under changing ecology, which can contribute towards
improved understanding about evolution, dissemination and
maintenance of antibiotic resistance and virulence traits. Ex-
isting GWES methodology has already enabled discoveries of
co-selection affecting polymorphisms across distant genomic
sites in a variety of human pathogens ( 13–15 ). By extending
GWES to joint screening of polymorphisms in close proximity,
we increase the potential of data-driven molecular discovery
for bacterial populations, which are particularly challenging
for GWAS due to the difficulty of large-scale measurement of
traits. 

Applying our methodology across a diverse spectrum of
bacterial species: S. pneumoniae , C. jejuni , E. coli and E. fae-
calis , has revealed fresh insights into genomic interactions be-
tween proximate variants . Notably, our results were obtained
without use of phenotype data and would not be detected
via conventional genome-wide association (GWAS) methods
as they would typically be discarded due to the influence of
short-range linkage disequilibrium. Our results included find-
ings associated with host range, antibiotic resistance, viru-
lence, and immune evasion. Furthermore, our top results of-
ten represented links from genomic islands: tfoX in S. pneu-
moniae , cdtABC in C. jejuni, capsular locus in E. coli and
elr genes in E. faecalis , all of which are self-contained units
that may evolve differently to the rest of the chromosome
due to reduced functional integration. While these novel po-
tential interactions require experimental validation, our ap-
proach drastically reduces the number of pairwise relation-
ships that need to be considered. Recent advances in compu-
tational protein structure prediction could further reduce the
need for time-consuming wet-lab experiments by rapidly con-
sidering the impacts of the identified intragenic interactions
on the resulting protein structure. 

A potential target for further development of genome-wide
short-range LD analysis is to consider genomic variation be-
yond reference-based core genome alignments. With the in-
creasing availability of long-read based assemblies of chromo-
somes and plasmids, it would be attractive to consider detec-
tion of co-selection both within plasmids and between plasmid
and host chromosome polymorphisms, to potentially uncover
either compensatory evolution or pre-adaptation to stable car-
riage of particular plasmids ( 79 ). 

Furthermore, while wet-lab-based validation will remain
the gold standard to verify combined effects of mutations,
future developments should incorporate information beyond
the DNA sequence, such as gene expression levels, protein

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae061#supplementary-data
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Figure 5. Genome-wide distribution of e x cess LD in the E. coli ST131 dataset ( n = 2156) measured using LD Wea v er. Appro ximate genomic positions 
are marked to the right and bottom of the LD map as per the EC958 reference genome. Brown shading indicates the amount of LD between sites (see 
k e y at bottom right for MI values scaled between 0 and 1). Entire genomic regions without excess LD are dropped from the figure to enhance the 
visibility of variation within high LD regions and each new region is coloured in an alternating shade of blue and purple in the right panel. Additionally, the 
right panel shows genomic regions comprising short-range excess-LD links. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

structure alterations and epigenetic variations, which has the
potential to greatly contribute towards improved detection.
Using only DNA sequence information about LD is lim-
iting because, in addition to selection acting on combined
sets of mutations, LD signals can reflect evolutionary factors
such as population expansion, elevated mutation rates, and
hitchhiking. 

Given its existing and future potential for enabling molec-
ular discoveries, we anticipate that GWES will continue to at-
tract a wide interest from both methodological and applied
perspectives. 

Data availability 

LD W eaver v.1.5 is available as an R package under a GNU
General Public License (Version 3) on GitHub ( https://github.
com/ Sudaraka88/ LD W eaver ) and the source code is available
on Zenodo ( https:// zenodo.org/ records/ 10016711 ). Genomic 
data accessions used in this analysis are available via figshare 
( https:// doi.org/ 10.6084/ m9.figshare.24079491 ). An interac- 
tive phylogenetic tree (Figure 3 A) clearly marking the detected 

isolates can be accessed on microreact ( https://microreact.org/ 
project/s94ZeKRZUSkz7JZrkwsuFY-spnmschtree ). 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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