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Abstract 
With advances in artificial intelligence, machine learning (ML) has been widely applied to predict functional outcomes in clinical 
medicine. However, there has been no attempt to predict walking ability after spinal cord injury (SCI) based on ML. In this situation, 
the main purpose of this study was to predict gait recovery after SCI at discharge from an acute rehabilitation facility using various 
ML algorithms. In addition, we explored important variables that were related to the prognosis. Finally, we attempted to suggest an 
ML-based decision support system (DSS) for predicting gait recovery after SCI. Data were collected retrospectively from patients 
with SCI admitted to an acute rehabilitation facility between June 2008 to December 2021. Linear regression analysis and ML 
algorithms (random forest [RF], decision tree [DT], and support vector machine) were used to predict the functional ambulation 
category at the time of discharge (FAC_DC) in patients with traumatic or non-traumatic SCI (n = 353). The independent variables 
were age, sex, duration of acute care and rehabilitation, comorbidities, neurological information entered into the International 
Standards for Neurological Classification of SCI worksheet, and somatosensory-evoked potentials at the time of admission to the 
acute rehabilitation facility. In addition, the importance of variables and DT-based DSS for FAC_DC was analyzed. As a result, RF 
and DT accurately predicted the FAC_DC measured by the root mean squared error. The root mean squared error of RF and the 
DT were 1.09 and 1.24 for all participants, 1.20 and 1.06 for those with trauma, and 1.12 and 1.03 for those with non-trauma, 
respectively. In the analysis of important variables, the initial FAC was found to be the most influential factor in all groups. In 
addition, we could provide a simple DSS based on strong predictors such as the initial FAC, American Spinal Injury Association 
Impairment Scale grades, and neurological level of injury. In conclusion, we provide that ML can accurately predict gait recovery 
after SCI for the first time. By focusing on important variables and DSS, we can guide early prognosis and establish personalized 
rehabilitation strategies in acute rehabilitation hospitals.

Abbreviations: AIS = American Spinal Injury Association Impairment Scale, CVD = cardiovascular disease, DM = diabetes 
mellitus, DSS = decision support system, DT = decision tree, FAC = functional ambulation categories, FAC_DC = functional 
ambulation categories at discharge, ML = machine learning, NLI = neurological level of injury, RF = random forest, RMSE = root 
square mean error, SCI = spinal cord injury, SSEP = somatosensory-evoked potential.

Keywords: functional ambulation category, gait recovery, machine learning, prediction algorithm, spinal cord injury

1. Introduction and literature review

1.1. Introduction

Spinal cord injury (SCI) is a devastating disorder that causes 
abnormalities of bodily function below the level of injury due 
to sensory, motor, and autonomic dysfunctions. The worldwide 
incidence of traumatic SCI varies between countries, but the 
overall incidence is suspected to be 23.0 cases per million world-
wide.[1,2] Although the global epidemiology of nontraumatic SCI 
(e.g., degenerative myelopathy or neoplasm) is less robust, it has 

been reported to be increasing in developed countries.[3] Since 
it often leads to extensive physical and emotional disabilities 
in patients, families, and even in society, accurate prediction of 
recovery is critical for healthcare professionals to enable deci-
sions regarding the most suitable types of rehabilitation strate-
gies and facilities.[4]

Many previous studies and systematic reviews have identi-
fied prognostic factors and algorithms for predicting functional 
outcomes.[5,6] There has been extensive research regarding 
the prediction of gait recovery because gait dysfunction is a 
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serious consequence of SCI and recovery of walking ability 
is of the highest priority for such patients. For example, van 
Middendorp et al[7] developed a clinical prediction rule based 
on the age and clinical neurological parameters, such as motor 
and sensory scores, to predict the long-term probability of 
walking independently after traumatic SCI. Furthermore, com-
bining neurophysiological data, such as motor and sensory 
evoked potentials, and nerve conduction studies with other 
clinical evaluations have been suggested to improve the pre-
diction of ambulation capacity.[8,9] Advances in neuroimaging 
studies have allowed for the investigation of the association 
between walking ability and various neuroimaging biomarkers, 
such as midsagittal tissue bridges and diffusion tensor imaging 
parameters.[10,11]

Machine learning (ML) algorithms are widely adopted in 
the medical field for various purposes, including disease diag-
nosis, drug discovery, and medical data analysis.[12] In partic-
ular, ML has several advantages over traditional statistical 
methods (e.g., linear or logistic regression) in predicting and 
developing prognostic models of certain diseases. It has few 
restrictions on the number of predictors derived from a given 
dataset and is suitable for determining complex nonlinear rela-
tionships within datasets. Owing to these advantages, ML has 
also been increasingly applied in the predictive modeling of 
various outcomes following SCI (e.g., quality of life, duration 
of opioid prescription, duration of intensive care unit stay, and 
mortality).[13–15] A few ML studies have been conducted regard-
ing the prognostication of neurological outcomes. One retro-
spective study attempted to predict self-reported ambulation 
ability and functional independence using an artificial neural 
network.[16] Another recent study developed an unsupervised 
ML algorithm that could predict walking function 1 year after 
the traumatic SCI. The study also demonstrated equivalent 
performance to that of the logistic regression model (see more 
details in Section 1.2.).[17]

Predicting gait ability at discharge from acute rehabilita-
tion hospitals when establishing a discharge plan is important 
(e.g., transfer to a subacute inpatient rehabilitation facility 
or home discharge). It also is of paramount importance in 
designing rehabilitation strategies. For individuals who are 
expected to recover sufficiently with independent gait func-
tion, rehabilitation approaches mainly focus on restorative 
techniques, such as endurance training, balance training, and 
lower-extremity strengthening, to promote neuroplasticity 
and enhance independent gait. In contrast, for individuals 
with limited potential for neurorecovery, there is more empha-
sis on compensatory techniques, such as wheelchair mobility 
or bed transfer.[18] However, despite its importance, studies on 
this topic have been lacking[19] and most have focused on the 
final walking ability when neurologic recovery reaches a pla-
teau.[5–7] In particular, no study has employed a ML approach. 
In addition, previous studies have mainly focused on the 
effects of individual prognostic factors, and few studies have 
considered the interaction between each factor and optimized 
the modeling by considering the confounding factors between 
each variable.[2]

This retrospective study aimed to predict gait function at 
discharge from an acute inpatient rehabilitation facility follow-
ing SCI using a ML algorithm. Since we aimed to analyze the 
integrated data of all kinds of SCI syndrome, admission data 
from both traumatic and non-traumatic SCI and cauda equina 
syndrome were integrated and analyzed. Considering that the 
clinical data area is complex and potentially nonlinear, we 
hypothesized that a ML approach would outperform conven-
tional regression analysis. In addition, we explored important 
variables that were closely related to walking ability. Finally, we 
attempted to maximize the explainability of the ML approach 
by suggesting decision tree models that can be incorporated into 
clinical decision-making.

1.2. Literature review

ML has become a popular tool and contributed to improve-
ment in diagnosis, risk assessment, and predicting prognosis.[20] 
Accurate prediction of a disease outcome and establishing reha-
bilitation strategy to maximize the estimated functional gain is 
the one of the key component of rehabilitation medicine. As a 
result, studies regarding outcome prediction have been increas-
ing in the field of SCI medicine. In this section, we summarized 
recent previous ML studies in the SCI medicine for outcome pre-
diction (Table 1). Especially, we focused on the studies regarding 
prediction of functional gain which is the main topic of this 
article. Therefore, other research topics such as prediction of 
mortality, opioid usage, and pressure ulcers are excluded in the 
review.

As a result, a total of 6 studies were reviewed.[16,17,21–24] All 
were retrospective designed and the etiology of the subjects 
was trauma. Two studies focused on walking ability prediction 
measured by Functional Independence Measure, and other 2 
studies predicted functional independence using Spinal Cord 
Independence Measure, and the others tried to predict AIS grade 
after injury. Three studies tried to predict acute prognosis of 
neurological outcome (AIS grade,[23] Spinal Cord Independence 
Measure[22,24] at 1 month after injury or at the time of discharge. 
However, no study has focused on gait recovery at the early 
rehabilitation phase. Moreover, all the studies were conducted 
with patients with traumatic SCI.

2. Materials and methods

2.1. Participants

This retrospective study included data of patients with acute 
SCI who were admitted to the acute rehabilitation facility of 
the Department of Physical Medicine and Rehabilitation in 
Korea University Anam Hospital, Seoul, Republic of Korea, 
during June 2008 to December 2021. Patients’ demographic 
data and study variables were retrospectively reviewed by clin-
ical research coordinators who were blinded to the study. From 
the dataset, we extracted data for all adult (≥18 years) patients 
with acute SCI, including cauda equina syndrome. Then, we 

Table 1

Summary of recent literature review of ML study in neurological 
outcome prediction after spinal cord injury.

Author Year Type of ML Purpose and summary of the study

Belliveau 
et al[16]

2016 Artificial neural 
network

Predict functional outcome (self-reported 
ambulation ability and FIM) 1 yr after 
traumatic SCI

DeVries  
et al[17]

2020 Unsupervised ML, 
linear regression

Prediction of walking recovery (FIM) 
following SCI at discharge or 1 ≥yr 
follow-up

Facchinello 
et al[21]

2021 Regression tree Functional outcome prediction (SCIM) 
within the first-year post-injury

Torres-
Espin  
et al[22]

2021 Topological 
extraction, logistic 
regression

Predict neurological recovery measured 
by AIS grade at discharge from 
the hospital on the basis of mean 
arterial pressure during surgery

Okimatsu 
et al [23]

2022 Deep learning-based 
radiomics and 
convolutional 
neural network

Determine the functional prognosis 
of patients (AIS grade) assessed at 
1 mo after injury with cervical SCI 
based on MRI findings

Chihiro  
et al [24]

2024 Ensemble ML Predict functional outcomes (SCIM) 
with features present at the time of 
rehabilitation admission

AIS = American Spinal Injury Association Impairment Scale, FIM = functional independence 
measure, ML = machine learning, MRI = magnetic resonance image, SCI = spinal cord injury, 
SCIM = spinal cord independence measure.
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excluded who were admitted for more than 120 days for acute 
care before rehabilitation. We assumed that such a long period 
of acute care might be a risk factor (e.g., very severe SCI com-
bined with other organ or musculoskeletal injury) that prohibit 
active rehabilitation and considered it as an outlier.

Finally, patients with complete medical information on the 
study variables were included. This study was approved by the 
Institutional Review Board of Korea University Anam Hospital 
(2022AN0473). The requirement for informed consent was 
waived by the institutional review board.

2.2. Variables

The dependent variable was walking ability at discharge in an 
acute rehabilitation setting, as measured using the functional 
ambulation category (FAC), a clinical-based assessment that 
distinguishes 6 levels of walking ability based on the amount of 
physical support required (0–5; 0 indicates inability to walk and 
5 indicates walking independently).[25]

Independent variables were selected on the basis of previ-
ous literature indicating the possibility of the correlation with 
functional recovery after SCI and the availability of the ret-
rospective data set.[2,7,26,27] Especially, we tried to add as many 
variables as possible to maximize the strength of ML algo-
rithms. Among them, we selected variables that can be easily 
assessed or routinely evaluated in most of the SCI clinics so 
that the study results can be widely applied to other institu-
tions. We excluded laboratory and magnetic resonance image 
findings since it can be affected by various conditions and dif-
ficult to interpret any changes compared to pre-injury state. 
The selected independent variables were as follows: age; elderly 
(yes, defined as ≥65 years or no); sex; periods of acute care, 
defined as admission dates for acute medical or surgical man-
agement before transfer to rehabilitation ward; periods of  
rehabilitation, defined as admission dates in the rehabilitation 
ward; etiology of SCI (traumatic or nontraumatic), concomitant 
cardiovascular disease (CVD) (yes or no); diabetes mellitus (DM) 
(yes or no); and all neurological information entered on the 
International Standards for Neurological Classification of SCI 
worksheet: neurological level of injury (NLI; cervical, thoracic, 
lumbar or cauda equina), American Spinal Injury Association/
International Spinal Cord Society neurological standard scale 
(AIS) grades, injury completeness (yes or no), motor scores, light 
touch and pinprick scores, voluntary anal contraction, and anal  
sensation.[28] Presence of neurogenic bladder after SCI, and 
initial FAC were also included. Furthermore, we added the 
somatosensory-evoked potentials (SSEP) of the lower extremity 
data as input variables. The SSEP data were categorized into 
3 groups: normal, prolonged, or shallow waveforms, and no 
response. All independent variables were recorded within the 
first 3 d after admission to the rehabilitation ward. We applied 
ML algorithms using these independent variables as inputs to 
predict FAC at discharge (FAC_DC).

2.3. ML analysis

Conventional linear regression analysis and 3 ML approaches 
were compared for the prediction of FAC_DC: random forest 
(RF), decision tree (DT), and support vector machine. A DT 
consists of internal nodes (the tests of independent variables), 
branches (the outcomes of the tests) and terminal nodes (the 
values of the dependent variable). A RF consists of many DTs, 
which take a majority vote on the dependent variable (“boot-
strap aggregation”). A support vector machine creates a line or 
space (“hyperplane”), which separates data with the maximal 
distance between different groups. These 3 models were adopted 
because they are among the most popular machine-learning 
models.[29,30]

The study samples were split into training and test sets with a 
75:25 ratio. The performance of each algorithm was evaluated 
using the root mean squared error (RMSE), the square root for 
the average of the squares of errors among the test set. The unit 
of the RMSE is the unit of the dependent variable, FAC_DC. 
Since the total number of data is not enough and data splitting 
in limited data for validation set might make a trained model 
unstable, we created a new data set from the existing data using 
random splitting and average technique. More specifically, the 
random split and analysis were repeated 10 times, and the aver-
age was used for external validation.

The maximum depth was not predetermined for the deci-
sion tree. The number of trees was 1000 for the random for-
est. Weight optimization was based on the limited-memory 
Broyden–Fletcher–Goldfarb–Shanno algorithm and each of 2 
hidden layers had 10 neurons in the artificial neural network.

RF variable importance (residual-sum-of-squares decrease, 
averaged over 500 decision trees, from the creation of a branch 
on a certain predictor) was introduced for identifying the most 
important predictors of FAC_DC. For example, let us assume 
that the random forest variable importance of initial FAC for 
the prediction of FAC_DC for 353 participants is 180.45. This 
indicates that the residual sum of squares for 353 participants 
(averaged over 500 decision trees) decreases by 180.45 in case 
a branch is created by initial FAC. In other words, the RMSE 
(averaged over 500 decision trees) decreases by 0.71 in case a 
branch is created by initial FAC.

2.4. Decision support system

Finally, the DT in the 10th run (last run) was derived as a deci-
sion support system (DSS) for FAC_DC for the clinical implica-
tion. The DSS was developed for each of 3 groups, that is, all 
patients, those with trauma and those with non-trauma. As to 
be seen later, the DT based DSS is expected to show 3 notable 
strengths compared to traditional statistical approaches such 
as linear regression. Firstly, it can deal with and classify both 
categorical and numerical variables and simple to comprehend. 
Secondly, it logically presents variables that should be priori-
tized in the clinical decision-making process. Especially, it is 
capable of handling variable interactions in terms of sequential 
information.[31] Thirdly, it can guide the effective cutoff points of 
a continuous predictor for different groups (e.g., initial FAC < 2 
in the trauma group vs. initial FAC < 1 in the non-trauma group 
regarding good clinical outcome). All analyses were conducted 
in November 2021 using R-Studio 1.3.959 (R-Studio Inc., 
Boston, MA).

3. Results

3.1. Demographics of the participants

A total of 363 adult patients with acute SCI were enrolled in this 
study, and their medical records were retrospectively reviewed. 
Among them, patients with missing clinical data (n = 7) and 
outlier data (n = 3) were excluded in the final analysis. As a 
result, 353 patients (155 with traumatic SCI and 198 with non-
traumatic SCI) with complete information were included in the 
study (Fig. 1). Descriptive statistics for all participants, includ-
ing those with and without trauma, are presented in Table 2. 
Participants with nontraumatic SCI tended to be older than 
those with traumatic injury and were more likely to have con-
comitant CVD or DM. In the case of traumatic SCI, the male 
sex ratio was relatively higher (76.5%) compared to that of 
non-traumatic SCI (59.1%). In addition, the periods of acute 
care were longer in the nontraumatic group, probably because of 
other comorbidities that could affect admission dates. The other 
initial demographic and neurological data were similar between 
the traumatic and nontraumatic SCI groups. Overall, AIS grade 
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D was the most common impairment scale in all groups and 
about half of patients injured cervical cord. Prolonged or shal-
low waveforms were the most commonly observed SSEP find-
ings. The mean initial FAC score was around 1, suggesting most 
of the patient required maximal support for ambulation. On the 
other hand, the mean FAC_DC score was around 2, indicating 
most of patients need less support after adequate rehabilitation.

3.2. Model performance

The performance measures (RMSEs) of each model for FAC_
DC are listed in Table 3. Three sets of models were considered 
for 3 groups of participants: all participants, those with trauma, 
and those without. The performance measures of the RF and 
the DT showed the best performance: 1.09 and 1.24 for all par-
ticipants, 1.20 and 1.06 for those with trauma, and 1.12 and 
1.03 for those with nontrauma, respectively. The conventional 
linear regression analysis showed high RMSE, especially with a 
small data subset (1.30 for all participants, 2.43 for those with 
trauma, and 2.12 for those with nontrauma)

3.3. Important variables

The RF variable importance results for the 10th run (the last 
run) are presented in Table 4. The 10 most significant predic-
tors of FAC_DC for all participants were the initial FAC, lower- 
extremity motor scores (bilateral hip flexor, bilateral ankle 

dorsiflexor, and left knee extensor), NLI, age, periods of acute 
care, and periods of rehabilitation. Although the rankings of 
the important variables were somewhat different, the selected 
important variables were similar between the analyses of 
patients with traumatic and nontraumatic SCI. Especially initial 
FAC score was found to be the most important variable across 
all groups. For instance, the residual sum of squares of initial 
FAC (180.45) was much higher than that of the 2nd import-
ant variable, NLI (52.97) in all participants group. Sensory 
scores entered on the International Standards for Neurological 
Classification of SCI worksheet, concomitant medical diseases 
(CVD or DM) and SSEP were not ranked among the 10 most 
important variables.

3.4. Decision support system based on the decision trees

The DSS based on the DT in the 10th run (last run) is presented 
in Figures 1–3. The figure represents the DSS of all patients 
(Fig. 2), those with trauma (Fig. 3), and those without trauma 
(Fig. 4). The initial FAC was the most influential factor in all 
groups which is concordant with variable importance analysis. 
In addition, AIS grades A–C and NLI at the cervical or thoracic 
level negatively affected gait recovery in all groups. As shown 
in Figure 2, we expected that patients with an initial FAC level 
below 2 would still have gait disturbance at the time of discharge 
even if they are AIS grade D or E; FAC_DC would be 0, 1, or 2. 
This indicates that the initial gait function is the most important 

Figure 1.  Flowchart of the data enrollment. A total of 353 patients were finally included on the following process.
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factor in gait recovery. In particular, an initial FAC < 2 and AIS 
grades A, B, or C with impaired pinprick touch on the L2 seg-
ment are likely to have a poor prognosis.

In Figure 3, which describes DSS for traumatic SCI, the 
patients with an initial FAC level below 2 with ankle dorsi-
flexor weakness and NLI in the cervical or thoracic region 
showed the worst outcome (FAC 0). Like the DSS of all 
patients, initial FAC score 2 was the most important cutoff 

point for predicting FAC_DC, followed by ankle dorsiflexion 
weakness and NLI (cervical or thoracic versus lumbar). If the 
initial FAC score is less than 2, they will still need support at 
the discharge (FAC_DC will be 0,1 or 2) and not be able to 
gait independently.

In patients with nontraumatic SCI, FAC 1 was the most 
important cutoff point. Patients with an initial FAC value of < 1 
with AIS grades A to C and NLI in the cervical or thoracic region 

Table 2

Demographic and neurological information of the study participants.

Variables All participants (n = 353) Participants with traumatic SCI (n = 155) Participants with non-traumatic SCI (n = 198)

Age at injury (yr) 61.39 ± 16.48 56.75 ± 16.74 65.02 ± 15.37
Elderly (≥65 yr); n (%) 172 (48.7) 54 (34.8) 118 (59.6)
Sex (male/female) 231/122 114/41 117/81
Periods of acute care (d) 63.19 ± 62.83 43.57 ± 53.39 78.55 ± 65.46
Periods of rehabilitation (d) 30.04 ± 13.25 30.6 ± 15.63 29.6 ± 19.58
CVD, n (%) 175 (49.6) 64 (41.3) 111 (56.1)
DM, n (%) 86 (24.4) 29 (18.7) 57 (28.8)
AIS grades, n (%)
 � Grade A 29 (8.2) 22 (14.2) 7 (3.5)
 � Grade B 18 (5.1) 11 (7.1) 7 (3.5)
 � Grade C 53 (15.0) 30 (19.4) 23 (11.6)
 � Grade D 251 (71.1) 92 (59.3) 159 (80.4)
 � Grade E 2 (0.6) 0 (0.0) 2 (1.0)
NLI, n (%)
 � Cervical 195 (55.2) 113 (72.9) 82 (41.4)
 � Thoracic 101 (28.6) 27 (17.4) 74 (37.4)
 � Lumbar or cauda equina 57 (16.2) 15 (9.7) 42 (21.2)
SSEP, n (%)
 � Normal 77 (21.8) 34 (21.9) 43 (21.7)
 � Prolonged or shallow 149 (42.2) 61 (39.4) 88 (44.4)
No response, n (%) 127 (36.0) 60 (38.7) 67 (33.9)
Initial FAC 1.224 ± 1.42 1.123 ± 1.53 1.303 ± 1.33
FAC_DC 2.176 ± 1.61 2.052 ± 1.76 2.273 ± 1.47

Data are expressed as mean ± standard deviation or n unless otherwise indicated.
AIS = American Spinal Injury Association Impairment Scale, DM = diabetes mellitus, FAC = functional ambulation categories, FAC_DC = functional ambulation categories at the time of discharges, 
NLI = neurological level of injury, SCI = spinal cord injury, SSEP = somatosensory evoked potential.

Table 3

Model performance using root mean squared error.

All participants (n = 353) Participants with traumatic SCI (n = 155) Participants with non-traumatic SCI (n = 198)

Random forest 1.09 1.20 1.12
Decision tree 1.24 1.06 1.03
Support vector machine 1.28 1.32 1.09
Linear regression 1.30 2.43 2.12

SCI = spinal cord injury

Table 4

Variable importance for the prediction of FAC_DC.

All participants (n = 353) Participants with traumatic SCI (n = 155) Participants with non-traumatic SCI (n = 198)

1st Initial FAC (180.45) Initial FAC (78.69) Initial FAC (62.57)
2nd NLI (52.97) Hip Flexor, Lt. (41.04) NLI (38.42)
3rd Ankle Dorsiflexor, Lt. (49.13) Long Toe Extensor, Lt. (21.84) AIS Grade (19.16)
4th Hip Flexor, Lt. (39.87) Ankle Dorsiflexor, Lt. (17.79) Knee Extensor, Rt. (18.27)
5th Hip Flexor, Rt. (26.85) NLI (16.33) Age (16.42)
6th Knee Extensor. Lt. (24.07) Ankle Dorsiflexor, Rt. (12.07) Periods of rehabilitation (13.22)
7th Age (23.48) Hip Flexor, Rt (11.17) Ankle Plantar Flexor (11.49)
8th Periods of acute care (22.84) Knee Extensor. Lt. (10.99) Hip Flexor, Rt (11.21)
9th Periods of rehabilitation (21.97) Age (10.47) Ankle Dorsiflexor, Rt. (8.63)
10th Ankle Dorsiflexor, Rt. (21.75) Periods of acute care (9.89) Periods of acute care (7.66)

FAC = functional ambulation categories, FAC_DC = functional ambulation categories at the time of discharges, NLI = neurological level of injury, SCI = spinal cord injury.
*The residual sum of squares for 353 participants (averaged over 500 decision trees) decreases by 180.45 in case a branch is created by initial FAC. In other words, the root mean squares of errors 
(averaged over 500 decision trees) decrease by 0.71 in case a branch is created by the initial FAC.
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were less likely to recover gait function at the time of discharge. 
Interestingly, if the AIS grade was D or E and the NLI was at 
the lumbar level, the patients had the possibility of recovering 
gait function to FAC 3, even if they were FAC 0 at the time of 
admission. These findings indicate that not only initial FAC but 
also the AIS grade is important in predicting the gait recovery 
in nontraumatic SCI group. Especially, active rehabilitation for 
independent gait is important in lumbar SCI patients with AIS 
grade D or E.

4. Discussion
Predicting gait recovery after SCI is paramount for an effec-
tive rehabilitation strategy; however, this remains challenging. 
In this study, we demonstrated that ML models can accurately 
predict gait function at discharge from acute rehabilitation 
hospitals in patients with acute SCI. Through the ML algo-
rithm, we could predict FAC_DC more accurately and with 
good performance by combining demographic features and 

neurologic evaluation at admission to an acute rehabilitation 
facility. In addition, we identified variables on admission, 
such as initial FAC, lower extremity motor scores, and NLI, as 
strong predictors of gait function recovery. In particular, using 
a simple DSS, we developed a sequential decision algorithm 
that can be applied in a clinical setting. To the best of our 
knowledge, this is the first ML study to predict gait function 
at discharge from an acute rehabilitation hospital in patients 
with SCI.

The FAC is a widely used clinical gait assessment scale that 
categorizes walking disability according to dependency.[25] Since 
it is a reliable, valid, and convenient tool to evaluate walking 
ability at clinical admission, the authors’ institution assesses 
the gait function of hospitalized patients using FAC routinely. 
Previous studies also have used FAC to measure gait function 
in patients with SCI.[32,33] It is not only known to be correlated 
with walking velocity and step length,[34] but is also often used 
for treatment and transfer planning during the stay in the 
rehabilitation setting.[35] Therefore, early prediction of FAC at 

Figure 2.  Decision support system of all patients with spinal cord injury. Initial FAC is the key variable on the decision support system. FAC = functional ambu-
lation categories.

Figure 3.  Decision support system of patients with traumatic spinal cord injury. Initial FAC is the key variable on the decision support system. FAC = functional 
ambulation categories.
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discharge is fundamental in establishing rehabilitation strategies 
through accurate goal setting. Depending on the expected gait 
function, home discharge or transfer to a subacute rehabilita-
tion facility where intensive inpatient care is possible can be 
planned. In addition, by guiding achievable goals, maximizing 
patients’ motivation and engagement in rehabilitation programs 
is possible.[36]

In this study, RF and DT performed better and predicted 
FAC_DC more accurately than conventional linear regression. 
RF and DT have gained massive popularity in various ML 
fields because of their good ability in classification and pre-
diction.[37,38] In particular, they have been applied in statisti-
cally challenging settings in which the number of variables is 
high.[39] To make use of the advantages of ML, we included 
as many demographic and neurophysiological variables as 
possible. We also included variables related to time, such as 
admission dates for acute care and admission dates in the 
rehabilitation ward. These time-related variables are expected 
to have strong interactions with other independent variables, 
and RT and DT seem to effectively analyze nonlinear and 
complex medical records.

Previous studies have evaluated the predictive power of neu-
rological variables on ambulation outcomes. van Middendorp 
et al[7] suggested that age and motor- and light touch scores of 
L3 and S1 were the best predictors of 1-year ambulation out-
comes after traumatic SCI. Another study on traumatic SCI 
indicated that the AIS grades and age were highly correlated 
with walking function at discharge.[19] Although some variables 
were not included in this study, a recent ML study mentioned 
age, AIS grades, concomitant degenerative spine diseases and 
some radiographic information; these were highly correlated 
with functional motor status 6 months after traumatic cer-
vical SCI.[40] In our study, the initial FAC value was the most 
important variable predicting FAC_DC in both traumatic and 
nontraumatic SCI, indicating that the initial gait function is the 
most important factor in the prognosis. NLI, AIS grades, and 
age were also designated as important predictors, in keeping 
with previous studies.[7,19,40–42] In a previous study, SSEP was 
known to be related to the outcome of ambulatory capacity.[43] 
Even though the SSEP was not selected as one of the 10 most 
significant predictors in this study, it was ranked as the 15th, 
12th, and 11th most important predictor in the analysis of all 
patients, patients with traumatic SCI, and those with nontrau-
matic SCI, respectively. Therefore, we believe that evaluation of 

SSEP provides additional diagnostic value for the assessment of 
acute SCI. Although the order of variable importance differed 
slightly, the overall results were similar between the traumatic 
and nontraumatic SCI groups.

The main strength of this study is that we proposed a 
DT-based DSS that aids in the prediction of FAC_DC. The most 
notable characteristic of DT is its ability to predict the depen-
dent variable by learning simple decision rules inferred from the 
feature set.[38] Unlike previous studies, which summated values 
of relevant variables to predict target outcomes,[7,14,44] we pro-
vided sequential decision rules based on key predictors. Such a 
sequential algorithm would guide clinical decision making more 
logically. In addition, we attempted to predict multiclass out-
comes, FAC 0 to 5, which is statistically more challenging than 
previous binary classification tasks.[7,14,44] In the DSS results, 
the common key predictors were initial FAC and NLI. In par-
ticular, it was found that the initial FAC, which was also the 
most important variable in the Gini analysis, had a significant 
influence on discharge planning. Referring the DSS derived from 
all patients group (Fig. 2), patients with an FAC value <2 still 
needed assistance in walking, even at the time of discharge (FAC 
0–2), indicating that they still required further inpatient rehabil-
itation. In particular, if a patient’s initial FAC score was less than 
2 and AIS grade is A, B or C with impairment of pin prick touch 
at L2 dermatome, the patient will hardly gain gait recovery. In 
that case, early adaptation of compensatory techniques can be 
benefit. In contrast, patients with a FAC value ≥2 could consider 
home discharge or at least continue rehabilitation at outpatient 
clinic because they were likely to need little assistance (FAC 3) 
or recover to independent gait (FAC 4 or 5). Interestingly, there 
was a subgroup that can show excellent prognosis even if the 
initial FAC score is 0 in non-traumatic SCI group (Fig. 4). If a 
patient NLI is D or E and the NLI is lumbar lesion, the patient 
will recover to FAC score 3. This is quite contradictory result to 
that of traumatic SCI group, which has poor prognosis when 
the initial FAC score is less than 2. Although the suggested DSS 
might require further revision, an initial evaluation based on 
the suggested predictors can guide the rehabilitation strategy 
and discharge planning. However, care must be taken since 
uncertainty and imprecision are inherent in modeling clinical 
real-world.

A number of studies have investigated walking outcomes 
after traumatic SCI, while studies with nontraumatic SCI are 
still scarce.[45] In contrast, we analyzed 2 groups with different 

Figure 4.  Decision support system of patients with non-traumatic spinal cord injury. Please note that if the AIS grade was D or E and the NLI was at the lum-
bar level, the patients had the possibility of recovering gait function to FAC 3, even if they were FAC 0 at the time of admission. AIS = American Spinal Injury 
Association Impairment Scale, FAC = functional ambulation categories, NLI = neurological level of injury.
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etiologies and proposed DSS that integrated both traumatic and 
nontraumatic SCI in order to maximize clinical utility. Another 
strength of this study is that the retrospective data were reliable 
because the dependent and independent variables were assessed 
by well-trained physicians and recorded appropriately. Despite 
these strengths, this study had some limitations. First, because 
the study data were generated from a single unbalanced cohort, 
the predictive ability may not be generalizable to other insti-
tutions. Therefore, it is uncertain whether the suggested ML 
algorithms and DSS will show similar results in other cohort. 
From this perspective, the decision boundaries (e.g., FAC score 
2 in DSS of all patients group) or variable importance can be 
changed in other data set. Additionally, the cohort might be 
imbalanced (e.g., the NLI and AIS grades are not evenly dis-
tributed) and it would negatively affect the reproducibility of 
the study results. Second, the sample size may have been rel-
atively small for ML research. We concluded the sample size 
was not enough to construct a validation set. Instead, we used 
internal validation with data splitting and averaging. For these 
reasons, multi-cohort modeling with larger data set and external 
validation are needed to advance the model. Finally, applying 
the study results, including the DSS model, in actual practice is 
essential to determine the clinical usefulness and feasibility of 
the study.

5. Conclusion
Early prediction of gait ability after SCI and the establishment 
of a rehabilitation strategy are the most important steps before 
beginning acute rehabilitation. Besides, ML has considerable 
predictive accuracy and is a promising prediction tool for var-
ious conditions. Here, we reported the possibility that ML, 
especially RT- and DT-based models, could accurately predict 
the degree of gait recovery using clinical data at the time of 
admission to an acute rehabilitation facility. Additionally, this 
study demonstrates the strength of ML as an explainable arti-
ficial intelligence for identifying the most important predictors. 
Finally, we provided a DSS based on the DT for a more intui-
tive understanding and suggest clinical applicability of ML in 
practice. This is the first to demonstrate simple DSS based on 
ML approach which can be directly applied to real- world. This 
cutting-edge approach provided insights that early prediction 
can be achieved with clinical features at the timing of admis-
sion. In conclusion, the results of this study could guide opti-
mal rehabilitation plans based on realistic therapeutic goals and 
optimize the efficiency and efficacy of treatment strategies. This 
study highlights the importance of ML application and could be 
the cornerstone of future SCI rehabilitation research in predict-
ing prognosis, diagnosis, and personalized treatment. We believe 
that this study will contribute to the best-practice guidelines for 
managing patients with acute SCI.
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