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� Fumonisins (FUMs) contamination
occurs globally in food and causes
significant economic losses.

� Strategies from the points of pre- and
post-harvest are developed to
manage FUMs contamination.

� Mechanisms of some major strategies
based on prevention and
decontamination are summarized.

� Application of biotechnological
approaches and emerging
technologies is discussed.

� Recommendation and prospects are
provided for management of
fumonisins contamination.
g r a p h i c a l a b s t r a c t
a r t i c l e i n f o

Article history:
Received 1 June 2022
Revised 5 April 2023
Accepted 2 August 2023
Available online 6 August 2023

Keywords:
Mycotoxins
Fumonisins
Control strategies
Food safety
Decontamination
Biotechnology
a b s t r a c t

Background: Fumonisins (FUMs) are among the most common mycotoxins in plant-derived food prod-
ucts. FUMs contamination has considerably impacted human and animal health, while causing significant
economic losses. Hence, management of FUMs contamination in food production and supply chains is
needed. The toxicities of FUMs have been widely investigated. FUMs management has been reported
and several available strategies have been developed successfully to mitigate FUMs contamination pre-
sent in foods. However, currently available management of FUMs contamination from different phases
of food chains and the mechanisms of some major strategies are not comprehensively summarized.
Aim of review: This review comprehensively characterize the occurrence, impacts, and management of
FUMs contamination across food production and supply chains. Pre- and post-harvest strategies to pre-
vent FUMs contamination also are reviewed, with an emphasis on the potential applications and the
mechanisms of major mitigation strategies. The presence of modified FUMs products and their potential
toxic effects are also considered. Importantly, the potential application of biotechnological approaches
and emerging technologies are enunciated.
Key scientific concepts of review: Currently available pre- and post-harvest management of FUMs contam-
ination primarily involves prevention and decontamination. Prevention strategies are mainly based on
limiting fungal growth and FUMs biosynthesis. Decontamination strategies are implemented through
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alkalization, hydrolysis, thermal or chemical transformation, and enzymatic or chemical degradation of
FUMs. Concerns have been raised about toxicities of modified FUMs derivatives, which presents chal-
lenges for reducing FUMs contamination in foods with conventional methodologies. Integrated preven-
tion and decontamination protocols are recommended to control FUMs contamination across entire
value chains in developed countries. In developing countries, several other approaches, including culti-
vating, introducing Bt maize, simple sorting/cleaning, and dehulling, are suggested. Future studies should
focus on biotechnological approaches, emerging technologies, and metagenomic/genomic identification
of new degradation enzymes that could allow better opportunities to manage FUMs contamination in
the entire food system.
� 2024 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Mycotoxins are secondary fungal metabolites that are toxic to
plants, animals and humans. The widespread contamination of
mycotoxins in food products is becoming an important public
health issue and carries substantial social and economic impacts
[1]. Consequently, extensive efforts have been made toward prac-
tical science-based mycotoxin management strategies [2]. FUMs
are a class of the most common mycotoxins and are ubiquitous
contaminants of cereal grains globally, especially in maize [3].
FUMs are produced primarily by the Fusarium species, F. verticil-
lioides and F. proliferatum [4]. In addition, some Aspergillus (e.g.,
A. niger) produce fumonisin B2 (FB2) and FB4 while Tolypocladium
species (e.g., T. cylindrosporum) produce fumonisin B1 (FB1) and
FB2 [5,6]. Nevertheless, these non-Fusarium fungi do not produce
high enough levels of FUMs to cause health concerns. Moreover,
some Alternaria strains produce toxins that show structural and
toxicological similarity to FUMs [7]. The identification of FUMs
produced by other fungi would improve our understanding of
FUMs contamination and biosynthesis.

Approximately 30 fumonisin derivatives have been reported
that can be divided into four major groups (A, B, C, and P) based
on their chemical structures, with B type fumonisins (FBs) being
the most common [8,9]. Among these, FB1 is the most prevalent
and most toxic type accounting for 70–80% of all FB contamina-
tions [10]. FB2 and FB3 are the second and third most common
FBs, respectively [3], and are identical structures other than the
location of hydroxyl side groups. FB4 contains a single hydroxyl
14
side group, and FB5 has two hydroxyl groups. Overall, most atten-
tion is paid to FB1 due to its relatively high frequency of occurrence
and its high toxicity.

Modified FBs may be produced by either fungal biotransforma-
tion or by thermal or chemical treatment of foods [11]. The Euro-
pean Food Safety Authority (EFSA) defines biotransformation to
include hydrolysis of the parent toxin (phase I metabolites:
hydrolysed FBs) and conjugation with endogenous molecules
(phase II metabolites: O-fatty acyl-FB1, N-fatty acyl-FB1 and
N-fatty acyl-hydrolysed FB1 and FB2) [11]. Among process-
derived modified FBs, hydrolysed or partially hydrolysed FUMs
are produced under thermal conditions after reaction with
reducing sugars, including the production of N-(carboxymethyl)-
fumonisin B1 (NCM-FB1) or N-(1-deoxy-D-fructos-1-yl)-
fumonisin B1 (NDF-FB1). Other modified forms of FUMs also exist,
including, for example, N-acetyl-FB1 and N-palmitoyl hydrolysed-
FB1, as described by the EFSA discussion of Fumonisin HBGVs
[12]. Modified FUMs are typically undetected using conventional
analytical and commercial screening methods for the parent
mycotoxins [13]. Indeed, analytical standards for modified FBs
are not commercially available, with the exception of those for
HFB1 [12]. Importantly, some modified FBs, e.g. N-fatty acyl-FBs,
are more cytotoxic in vitro than the original FBs [12]. Therefore,
modified FBs can substantially alter assessments of overall FUMs
occurrence and toxicity. Thus, more attention should be paid to
managing modified FBs when considering the effectiveness of
FUMs contamination mitigation efforts in the food system, as
discussed below.
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Occurrence and impacts

FUMs contamination frequently occurs globally in different
plant-derived foods, but primarily in maize. The World Health
Organization (WHO) has previously reported that about 50% of glo-
bal maize and maize-based products were contaminated by FB1 to
various extents [14]. In particular, FUMs contamination has
become a critical issue in Sub-Saharan Africa, South America, Latin
America, and South/Southeast Asia, where an especially high
demand for maize and maize-based food products has grown in
recent years [14]. In South Africa, approximately 90% of maize con-
tained FB1 at levels up to 118 mg/kg. Samples of home-brewed
maize beer from the former Transkei region of South Africa con-
tained between 38 and 1,066 ng/mL of FB1 [15]. A recent review
of mycotoxin contamination in China found FUMs contamination
of maize country-wide [16]. Further, two surveys demonstrated
that total fumonisin levels of some maize samples from Guizhou
(FB1 + FB2), Sichuan (FB1 + FB2), Gansu (FB1 + FB2), and Shandong
(FB1 + FB2 + FB3) provinces were higher than the maximum limit
(2,000 lg/kg) set by the United States Food and Drug Administra-
tion (FDA) [17]. A study conducted during 2007–2010 in Brazil
indicated that FB1 and FB2 were detected in 82% and 51% of exam-
ined corn-based food products, respectively [18]. In a study in the
United States, FB1 was identified in all 10 corn grit samples and 15
of 16 corn meal samples that were collected from grocers’ shelves,
with mean levels of 0.6 and 1 ppm, respectively, while FB1 was
detected in canned and frozen sweet corn in 35 of 97 samples at
maximum levels of 0.2 and 0.4 ppm, respectively [19]. A survey
of 29 nationally distributed brands of beer in the United States also
found 86% were positive for FB1 or FB2 in a range from 0.3 to
12.7 ng/mL for FB1 [19].

The overall global FUMs contamination in corn or corn-based
products is shown in Fig. 1. Importantly, developing countries face
greater FUMs contamination risk than developed countries (Fig. 1).
In developing countries, regulatory measures are either lacking or
poorly enforced, which is particularly evident in rural subsistence
farming communities with informal market [20]. In addition, when
Fig. 1. Overview of the worldwide occurrence of FUMs in maize or maize-based foods. F
FUMs represent the maximum levels reported by previous research and Rapid Alert Syst
window/screen/search). The contents of FUMs and related references used for this Figur
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high-quality foods are exported and poor quality foods are left in
developing countries, the risk of FUMs exposure further increases.
Developed countries have high standards for major food suppliers
and the regulatory controls on FUMs contamination that greatly
limit the importation and marketing of heavily contaminated prod-
ucts [20]. Hence, management of FUMs in these two major crops,
particularly in developing countries, is critically important.

Other FUMs contaminated products include sorghum, white
bean, barley, soybean, rice, black tea, and even medicinal herbs
[14]. Besides, postharvest fruit may be particularly susceptible to
FUMs contamination due to the prevalence of FUMs-producing
fungal species in some of these products [21,22]. Additionally, both
FB1 and FB2 have been identified in dried figs [23,24], suggesting
the occurrence of FUMs in some processed fruit products, though
contamination is limited to a single type. Nevertheless, the natural
occurrence of FUMs in some postharvest fruits broadens the scope
of concern for mycotoxin-related food safety issues beyond staple
crop.

FUMs contamination can impact human and animal health. The
toxic effects of FUMs are attributable to the specific inhibition of
ceramide synthase, which disrupts de novo sphingolipid biosynthe-
sis and turnover, thereby interfering with sphingolipid-mediated
signal transduction [25,26]. The impacts of FUMs on animal health
(e.g. intestinal toxicity) have been confirmed in laboratory [27].
Among farm animals, FB1 may cause leukoencephalomalacia in
horses and porcine pulmonary edema in pigs [28]. In addition,
FB1 is hepatotoxic in mice, rats, equids, rabbits, pigs, and primates
[29]. Moreover, FUMs are also nephrotoxic in pigs, rats, sheep,
mice, and rabbits [29]. Consequently, farmers may experience
additional costs for veterinary drugs to treat indirect health prob-
lems caused by FUMs contamination.

Based on the above observations, the International Agency for
Research on Cancer (IARC) has classified FB1 as a group 2B possible
human carcinogen [30]. Further, the WHO has indicated that a pri-
mary concern regarding FUMs is their potential to contribute to
human cancer (WHO/NHM/FOS/RAM/18.2). An association
between FUMs and a risk of carcinogenicity as well as esophageal
Bs: FUMs incorporate FB1 or FB2 only, or the sum of different FUMs. The contents of
em for Food and Feed (RASFF) public database (https://webgate.ec.europa.eu/rasff-
e were listed in Table S1.
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squamous cell carcinoma (ESCC) has been reported in humans by
different studies [31,32]. Increasing evidence associates fumonisin
exposure with child growth impairment and neural tube defects
(NTDs) [8,25]. Consequently, the EFSA has listed FUMs as mycotox-
ins of highest significance for both human health and agroeco-
nomics based on risk assessments [33]. The EFSA Panel on
Contaminants in the Food Chain suggested a tolerable daily intake
of 1.0 lg FB1/kg body weight per day [12]. Clearly, increasing levels
of FUMs contamination results in considerable global health and
food losses. Munkvold et al. [34] reported that losses caused only
by FUMs were $11 million/year or even higher in Iowa, USA. The
above observations and the broad distribution of FUMs in food
products alongside their evident effects on agricultural products
and public health have led to the listing of FUMs as one of the most
important mycotoxins in food supply chains. Consequently,
enhanced management of FUMs contamination is vital to ensure
global food safety.
Management of FUMs contamination

The wide occurrence of FUMs and the concomitant lack of ade-
quate prevention technologies have led to food safety problems.
Multiple international organizations have significant concerns
about FUMs contamination in plant-based food products and have
accordingly set maximum advisory levels. For example, the Euro-
pean Commission regulation (EC) specifies a maximum level for
total FUMs (FB1 and FB2) in different human foods at between
200 lg/kg (food for infants and young children) to 4,000 lg/kg
(raw-unprocessed maize) (Commission Regulation EC No.
1126/2007). The Codex Alimentarius Commission specifies the
maximum level for FUMs in raw maize in international trade as
4,000 lg/kg (WHO/NHM/FOS/RAM/18.2). Likewise, the USA FDA
specifies a maximum FUMs level of 2,000 lg/kg for maize and
maize-based products intended for human consumption [35]. In
addition, the FDA specifies a range of FUMs concentrations from
1 to 50 mg kg�1 is allowable for animal feed, depending on the ani-
Fig. 2. The major practices and mechanisms for management of FUMs contamination. M
induced gene silencing. CRISPR: Clustered regularly interspaced short palindromic repea
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mal species [35]. The maximum recommended levels of total FUMs
for animal feed often are higher than those for human foods, and
some corn-based products unfit for human food can be used as ani-
mal feed [3]. Biofuel production is another use of corn that could
allow higher levels of FUMs than allowed for human food, as levels
up to 37.4 mg/g have no effect on fermentation rates or ethanol
yields [36]. However, FUMs enrichment has been predicted in Dis-
tiller Dried Grains (DDGs) that is the co-product of ethanol indus-
try. Hence, the amounts retained in the DDGs must be considered
when DDGs is utilized as valuable livestock feed component [36].
Thus, appropriate utilization strategies are important management
strategy for FUMs-contaminated agricultural products.

However, in some countries, such as countries in Central Amer-
ica and Subsaharan Africa, corn is a staple food and an important
trading commodity. FBs are the main mycotoxin contamination
risk in many places and the presence of FBs in some maize exceeds
the maximum limits set by the FDA and EC, whereas Maximum
Residue Limit (MRLs) or regulations have not been established
for FUMs in human food [16,37]. Due to the lack of high-volume
alternative uses for corn, FUMs should be managed at safe levels
or completely eliminated through integrated practices. Controlling
mycotoxin contamination includes pre-and post-harvest strategies
[1] as shown in Fig. 2, Tables 1 and 2. In fact, the control of FUMs
contamination almost runs through the entire maize supply chains
including farmers, maize traders, feed millers and retailers of
maize based products.
Pre-harvest practice

Pre-harvest practices to prevent FUMs contamination include
agronomic practices and use of chemical fungicides, which can
inhibit fungal infections and FUMs production, in addition to
breeding FUMs-resistant varieties. Biotechnological approaches
provide an alternative approach to inhibit FUMs biosynthesis or
degradation, although these approaches have not been widely
tested under field conditions.
AP: Modified atmosphere packaging. HIGS: Host induced gene silence. SIGS: Spray-
ts. RNAi: RNA interference.



Table 1
The major pre-harvest managements of FUMs contamination.

Treatments Application Mechanisms of action Application status Reference

Agronomic
practices

Crop rotation and tillage Crops Inhibiting fungal growth and
then FB1 production

Already applied in field and
partially successful

[40]

Field conditions (Light,
Temperature, aw, moisture)

Corn, rice and wheat Regulating fungal growth and
FUM expression

Scientifically conceivable and can
be applied in field

[45,46,47]

Insecticides Maize Inhibiting fungal growth and
then FUMs production

Already applied in field but not
recommended

[39]

Plant
breeding

Bt maize hybrids Maize Less Fusarium infection and
reduced fumonisin levels via
reducing corn-borer damage

Already applied in field and
partially successful

[20]

Conventional breeding Maize Higher genetic resistance to
FUMs contamination

Applied in the field and effective [49]

Molecular breeding Maize Increased resistance to fungi or
FUMs

Scientifically conceivable with
limited application in field

[34]

Genomic selection Maize Improving Fusarium ear rot
resistance

Scientifically conceivable with
limited application in field

[51]

Enriched flavonoids maize hybrid Maize Reduced appearance of Fusarium
ear rot symptom and lower level
of FUMs

Demonstrated experimentally [52]

iological
practices

‘‘Fusaclean” and ‘‘Biofox C” (non-
pathogenic F. oxysporum)

Vegetables Inhibiting fungal growth Already applied as seed coating [20]

‘‘Epic” and ‘‘Kodiak” (B. subtilis) Cotton and legumes Inhibiting fungal growth Already applied as seed coating [20]
‘‘Intercept” (Pseudomonas cepacia) Maize, vegetables and

cotton
Inhibiting fungal growth Already applied as seed coating [20]

‘‘Mycostop” (Streptomyces
griseoviridis)

Ornamental and
vegetables crops

Inhibiting fungal growth Already applied as seed coating [20]

T-22G and T-22HB (Trichoderma
harziatum)

Grains, soya, cotton and
vegetables

Inhibiting fungal growth Already applied as seed coating [20]

‘‘Biofungus” (Trichoderma spp) Citrus and pome fruit Inhibiting fungal growth Already applied as seed coating [20]
‘‘Blue circle (Burkholderia cepacia) Vegetables Inhibiting fungal growth Already applied as seed coating [20]
‘‘Deny” (B. cepacia) Grain crops Inhibiting fungal growth Already applied as seed coating [20]
‘‘Cedomon” and ‘‘Cerall”
(Pseudomonas chlororaphis)

Wheat, rye and triticale Inhibiting fungal growth Already applied as seed coating [20]

Debaryomyces hansenii Maize grains Inhibiting growth and FB1

production
Already applied as seed coating [60]

Afla-Guard� (non-aflatoxigenic A.
flavus strain (NRRL21882))

Maize seed Reducing the frequency of F.
verticillioides through
competition for substrate or
space, and consequently,
fumonisin production

Already applied as seed coating [58]

Biotechnology HIGS/SIGS Potential application in
plant-derived food

Biosynthesis inhibition (FUM
cluster regulation)

Scientifically conceivable and will
be promising

[65,71]
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Agronomic practice

Agronomic practices focus on growing healthy plants that are
not excessively stressed by environmental factors, thereby reduc-
ing mycotoxigenic fungal infections. Infection by FUM-producing
fungi usually occurs in the field, and thus good agricultural prac-
tices to prevent or control pre-harvest FUMs contamination are
particularly important. For example, Fusarium ear rot caused by
F. moniliforme through silk and kernel infection is one of the promi-
nent diseases of maize worldwide, thus resulting in frequent FUMs
contamination [38]. Meanwhile, agrochemical treatment with
insecticide can also decrease FUMs levels in maize grains by con-
trolling insects stress and reducing corn-borer damage [39].

Crop rotation and tillage procedures are the primary agronomic
techniques that can prevent the growth of toxigenic fungi and
reduce mycotoxin accumulation in infected grains [40]. For exam-
ple, conventional tillage (soil prepared with a disc plough and
heavy-disc harrow followed by a light-disc harrow) reduced FUMs
contamination in corn in a study conducted in Brazil over two
growing seasons [41]. An analysis of corn samples from 16 fields
in north-eastern Spain revealed the lack of a clear effect of tillage
system on FUMs levels [42]. The advantages of conventional tillage,
including reducing fungal inoculation and alleviating drought
stress, suggest that it is beneficial for farmers, and especially
17
farmers that primarily utilize mechanized operations. Higher
F. verticillioides incidence in addition to FB1 and FB3 content have
been detected in maize-maize crop rotation system [43]. Further,
forage maize should be harvested as soon as it reaches the middle
dent stage to reduce FUMs contamination risks [44]. Field-grown
crops are highly sensitive to environmental conditions, such as
light, temperature and moisture, and all of these affect fungal
growth and FUMs production [45–47] (Fig. 2). Thus, good agro-
nomic practices, alongside hazard analysis and critical control
point (HACCP) practices can help prevent FUMs contamination
by reducing fungal growth and FUMs production.

Breeding practice

Breeding strategies represent another important pre-harvest
practice for FUMs control. A previous study of 369 maize samples
collected from across China demonstrated that FUMs contamina-
tion can be greatly reduced using insect- and pathogen-resistant
maize varieties [48]. Conventional breeding programs including
backcross breeding, pedigree selection approaches and recurrent
selection have been applied in the field to generate higher genetic
resistance to FUMs contamination [49]. Importantly, high-yielding
hybrids obtained by conventional breeding alone have contributed
low rates of fungal infection and mycotoxin contamination.



Table 2
The major post-harvest managements of FUMs contamination.

Treatments Food commodity Mechanisms of action Application status Reference

Physical practices Thermal processing Corn flour, kernels, grits,
maize-based meal and
bread

Reducing FUMs through
transformation or
modification of

Demonstrated experimentally
and partially successful in
application

[76]

Modified atmospheres (high
CO2 and low O2

concentration)

Corn Inhibiting fungal growth and
FB1 production

Demonstrated experimentally
and can be applied

[89,90]

Milling Corn grits Redistributing the existing
fumonisins into different
fractions

Already applied and partially
successful

[80]

k-irradiation Corn Hydrolysis and decomposing Demonstrated experimentally
and can be applied

[82]

Dehulling Maize Direct remove Already applied and partially
successful

[81]

Cleaning and sorting Maize Direct remove Already applied and partially
successful

[81]

Adsorbents Animal feeds Bind or reduce bioavailability Demonstrated experimentally
and can be applied

[91]

Chemical
practices

Essential oil Not application in planta Degrading fumonisin B1 Demonstrated experimentally
and lack information for
application

[106]

Essential oils Corn and foodstuff, maize
grain

Inhibiting growth and then,
FB1 production

Demonstrated experimentally
and can be applied

[104]

Nixtamalization maize meals Alkaline hydrolysis of FBs Demonstrated experimentally
and can be applied

[103]

Biological
practices

Yeast Animal Feed Adsorption Demonstrated experimentally
and can be applied

[20]

Lactic acid bacteria Maize meal and maize
kernels

Adsorption or binding Demonstrated experimentally
and can be applied

[111]

FUMzyme� Maize, Feeds for pigs and
poultry

FB esterase FumD: hydrolyze
the tricarballylic acid groups

Already applied [120,121,126]

FumI Potential application in
food and feed

Aminotransferase:
deaminating hydrolyzed
fumonisin B1

Demonstrated experimentally
and lack in vivo information

[123]

AnFAO Potential application in
food and feed

Oxidatively deaminate intact
fumonisins

Demonstrated experimentally
and lack in vivo information

[122]
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Furthermore, commercial hybrid breeding in many parts of the
world has been very effective in controlling fumonisin contamina-
tion (Table 1). Likewise, development of new hybrids that are resis-
tant to abiotic stresses through conventional breeding methods
can also help mitigate FUMs contamination of maize in the field
[50]. Hybrid selection during breeding can help eliminate highly
susceptible genotypes to ear-rot pathogens, then contributes to
reduce FUMs production [34]. Conventional breeders should lever-
age abundant breeding materials, large-scale tests, and long-term
screening of resistant genotypes to select for resistant genotypes
that can reduce FUMs contamination.

Molecular biology techniques also have provided effective
approaches to conventional breeding. Various techniques, includ-
ing transcriptome profiling, genotyping-by-sequencing and
genome-wide association (GWAS) methods, have been used to
identify molecular markers linked to quantitative trait loci (QTL)
and candidate genes associated with FUMs contamination resis-
tance [34]. Significant progress has been made in recent years by
using molecular markers to bring in partial resistance. However,
applications of marker-assisted breeding for improving resistance
to FUMs are still limited to the laboratory scale, with only a few
putative minor genes. Major genes are yet to be identified
[34,51]. It is worth to note that genomic selection (GS) is an emerg-
ing tool to improve disease resistances in maize. Considering that
GS has been used to predict selection response including lethal
necrosis resistance, Diplodia ear rot resistance, and Northern corn
leaf blight resistance in different maize lines, it seems to be
promising for FER resistance breeding [51]. Certainly, there are
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shortcomings to overcome, though GS can reduce cost, time and
labour in breeding programs.

Reverse genetics can also be used to evaluate the effects of
pathway disturbance on crop resistance to FUMs contamination.
For example, a maize hybrid with enriched flavonoids in the kernel
pericarps reduced Fusarium ear rot (FER) symptoms and exhibited
lower levels of FUMs than the isogenic hybrid without flavonoids
[52]. Certainly, other factors should be considered in breeding pro-
grams of flavonoids-enriched maize such as palatability. Similarly,
Diaz-Gomez et al. [53] observed that increased carotenoid content
in maize grains reduces levels of FUMs, suggesting that carotenoids
are resistant to FER and FUMs production. Differences in starch
content between carotenoid-enriched maize lines and isogenic
lines suggest that the application of this genetically engineered
corn hybrid requires further investigation, since starch content is
associated with FUMs contamination resistance. Whether the
amount of starch present or the chemical form plays a role in FUMs
reduction need to study in detail.

Genetic modification of maize crops (e.g. Bt maize) also pro-
vides a safe and highly effective method for insect control and
reduced Fusarium infection and/or FUMs production [20]. Bt
crop-derived foods have been approved by numerous global regu-
latory agencies. Importantly, transgenic Bt maize exhibits less
FUMs contamination than corresponding non-Bt isolines [54]. It
is worth to note that Bt products are not directly targeted to FUMs
reduction. Due to less insect damage, Bt corn has fewer holes that
prevents fungal access to the interior of the plant, thus is more
resistant to FUMs contamination.
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Although considerable benefits exist for low FUMs contamina-
tion, production of Bt maize has faced increasing challenges in
recent years, due to increasing insect resistance and unstable effec-
tiveness. For example, low concentrations of FUMs were observed
in Bt maize during the season when the European corn borer (O.
nubilalis Hübner) was prevalent, but not when the corn earworm
(H. zea Boddie) was prevalent [20]. Furthermore, the high cost of
Bt hybrid seed limits its use by farmers in rural areas compared
to other varieties, such as herbicide tolerant seed.

Plant breeding has generally led to significant progress over the
past decade in increasing resistance to Fusarium ear rot in commer-
cial hybrids. Despite that plant breeding is the most recommended,
cost-effective and ecologically safe method for managing FUMs-
producing fungal infections, it has still been challenging for multi-
ple reasons. Firstly, resistant selection involves the consideration of
multiple factors, including breeding material, climatic conditions,
labour requirements, and time costs. Secondly, the commercial or
public deployment of improved hybrids is limited and some corn
hybrids via molecular breeding have been identified only at the
lab-scale in a few countries. Thus, significant efforts are still
needed to produce hybrids that effectively prevent FUMs contam-
ination in the field. Concomitantly, plant breeding should be used
to achieve a balance between FUMs-resistance and high quality or
yields of crops.

Biological practice

The early development of seed coatings using bio-agents is con-
sidered an environmentally friendly strategy to prevent mycotoxin
contamination. Biocontrol has been reported as an effective
method for aflatoxin control while some commercial aflatoxin bio-
control products have been registered at different times and in dif-
ferent countries [55,56]. Most of aflatoxin biocontrol practices do
not effectively reduce FUM contents [57]. Interestingly, a non-
aflatoxigenic A. flavus strain (NRRL 21882) is the active ingredient
of Afla-Guard� and has been demonstrated as a promising biocon-
trol agent to prevent F. verticillioides growth and FUMs production
in maize [58]. Likewise, the use of Serratia marcescens SerEW01
was efficient in suppressing F. proliferatum growth and FUMs accu-
mulation in rice medium [59]. S. marcescens SerEW01 application is
particularly promising for the development of seed coatings to
control FUMs contamination in some crops. In addition,
Debaryomyces hansenii is effective against Aspergillus sp., F. prolifer-
atum and F. subglutinans infection, as well as reducing FUMs pro-
duction in maize grains [60]. A significant concern remains in
how to improve the efficacy of these biocontrol agents under field
conditions or during storage. Important commercially used biolog-
ical practices for preventing effectively FUMs contamination are
shown in Table 1.

Similar to Bt products, some bio-agents also exhibit side effects
rather than directly target to FUMs reduction. For example, Afla-
Guard� application results in a competition for substrate or space
between a non-aflatoxin-producing A. flavus and F. verticillioides
strains, thus reducing the frequency of F. verticillioides and FUMs
production in maize [58].

Application of biotechnology

Biotechnological approaches are widely accepted as effective
controls of fungal disease and mycotoxin production in food sys-
tems [61]. Significant advances have been made in the identifica-
tion of FUMs biosynthesis pathways [62]. Hence, management
could be achieved by engineering crops to regulate FUMs biosyn-
thesis. Degradation of FUMs can also be achieved through biotech-
nological protocols. Current biotechnology applications primarily
involve in heterologous expression of foreign genes in crops and
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gene-editing within crops. An additional strategy, host-induced
gene silencing (HIGS), involves host expression of foreign genes
that target pathogens, which has emerged as a novel transgenic
approach for breeding mycotoxin resistant cultivars [63]. Further,
RNA interference (RNAi) via double-stranded RNA (dsRNA) synthe-
sis is an effective strategy for inhibiting fungal secondary metabo-
lism [64]. For example, Johnson et al. [65] used dsRNA constructs to
efficiently inhibit FB1 production by downregulating the expres-
sion of FUM1 and FUM8 in F. verticillioides. Thus, transgenic crops
produced through RNAi-mediated HIGS can lead to overexpression
of dsRNA complementary to a fungal gene critical for biosynthesis,
thereby reducing FUMs production.

Several studies have found that FUMs contribute to fungal viru-
lence in crops while FUMs-producing defective strains are less vir-
ulent for crops, although results are inconsistent in different hosts
[66,67]. Hence, transgenic approaches may simultaneously inhibit
FUMs synthesis and generate fungal resistant cultivars. The effects
on target genes caused by dsRNA are particularly prominent.

Another potential application of dsRNA is RNA fungicides.
Spray-induced gene silencing (SIGS) based on RNAi technologies
is environmentally-friendly and sustainable, but does not induce
resistant or tolerant mutated pathogenic strains [68]. SIGS is a
promising implementation of dsRNA technology considering pub-
lic concern for production of genetically modified crops (GMOs)
and provides an alternative strategy for commercial application
in corn production. However, current regulatory practices don’t
provide a standardized legal framework worldwide for SIGS [69].
For example, the legal framework for SIGS-based products in Aus-
tralia is more inspiring than that in the European Union [69]. Thus,
developing ‘RNA fungicides’ by targeting genes vital to biosynthe-
sis of FUMs can open avenues for environmentally-friendly control
of FUMs contamination.

There is no doubt that SIGS could accelerate elimination of
FUMs in crops and its commercial application will be imminent
in future. It is consequently important to understand biosynthesis
of FUMs to promote the development of biotechnology approaches
for preventing FUMs contamination, including inhibiting the
growth and infection of FUMs-producing fungi in the field
(Fig. 2). The rapid development of biotechnological approaches,
such as clustered regularly interspaced short palindromic repeat
(CRISPR)/ CRISPR-associated (Cas) systems that delete FUMs-
biosynthetic gene clusters instead of single gene modifications,
can provide a powerful solution for making non-toxigenic fungal
strains to compete with fumonisin-producing Fusarium strains for
the eventual elimination of FUMs production [70]. Importantly,
the dual-plasmid CRISPR/Cas system can efficiently and stably pro-
vide knockouts without later restoration. It is worth to note that
other genomic effects of knockout strains caused by CRISPR need
to be tested because CRISPR can induce DNA changes outside the
target area as well as within it. Meanwhile, a huge amount of work
need to be done, making this approach extremely challenging.

In addition to what had previously described, rapid advances in
gene-editing technology have also made targeted and precise
genetic manipulation of crops a reality [71]. Even though accep-
tance of genetically modified foods can be difficult for consumers
and eventual approval must be gained at different regulatory levels
[72], gene engineering of crops still exhibits great potential for bet-
ter preventing FUMs contamination in the future. 9-LOX-derived
oxylipins in plants are required by some fungi to accelerate conidi-
ation and mycotoxin production, suggesting that host oxylipin
pathways could be useful targets for genetic modification [73].
Gao et al. [73] reported that ZmLOX3 (lipoxygenase) inactivation
resulted in drastically reduced levels of conidia and FUMs produc-
tion by F. verticillioides on kernels at laboratory scale, providing
proof of concept for successful gene engineering approaches in pre-
venting FUMs contamination. FBs-degrading enzymes have also
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been identified and genetically engineered maize varieties that
detoxify FUMs via these enzymes have been developed in the lab-
oratory [74].

Overall, effective control of FUMs contamination in crops can
potentially be achieved by genetic engineering of pathogen or host
crop (Fig. 2). Although biotechnological approaches based on
FUMs-degrading enzymes hold great promises for future manage-
ment of FUMs contamination, few examples of their implementa-
tion are currently available. Additionally, the possible negative
impacts on nutritional quality, texture, or flavor of foods remain
to be critically evaluated. Successful application of these
approaches will largely depend on detoxification ability, localiza-
tion, stability, and activity of FUMs-degrading enzymes, as well
as the toxicity of the FUMs breakdown products generated pre-
and post-harvest [20].

Post-harvest practice

Physical practice
Physical practices receive considerable attention due to their

simplicity and the lack of need for chemical use. Physical methods
are primarily used to control FUMs contamination through detox-
ification (thermal processing, drying, sorting, milling, and binders)
and prevention via irradiation and modified atmosphere packag-
ing. Thermal processing is a traditional method that can be used
to reduce contaminants in food production. Notably, the produc-
tion of most maize-based foods involving one or multiple heat
treatments and hydrothermal treatment promotes the binding of
FB1 with some non-macro-digestible components of foods [75].
In addition, most of the bound FB1 resisted the in vitro digestion
[75]. A recent review summarized the effects of thermal processing
on FUMs contamination in food that primarily include baking,
roasting, frying, high-pressure cooking and extrusion cooking
[76]. The authors suggested that extrusion cooking of maize flour
and high-pressure cooking of maize grits during cornflake produc-
tion could lower FB1 and FB2 levels to comply with the EU ML of
800 lg/kg when the raw materials also were compliant (i.e., not
Fig. 3. Proposed mechanisms of FUMs de
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exceeding the maximum recommended levels for raw-
unprocessed maize: 4,000 lg/kg). Thermal treatments result in
reduced FUMs or promote mycotoxin-matrix interactions to miti-
gate FUMs contamination in food production (Table 2). The reduc-
tion of FUMs contamination by thermal processing is primarily
caused by transformation of FUMs to modified forms such as
NDF-FB1 and NCM-FB1 (Fig. 3) that are undetectable [37]. NDF-
FB1 and NCM-FB1 conjugates are rather stable in the in vitro model
system while NDF -FB1 is less toxic than FB1 [77]. Variable reduc-
tion of FUMs is caused by different processing procedures. For
example, obvious changes in the FB1 levels of maize flour were
not observed during domestic pressure cooking while significant
reductions of FB1 and FB2 levels occurred during laboratory and
industrial pressure cooking of spiked flaking grits [76]. Similarly,
reduced FB1 levels in maize also occur during baking, in conjunc-
tion with NCM-FB1 formation. Concomitantly, FB1 contamination
decreases over time and with higher temperature [76]. Notably,
the formation of modified FUMs by thermal processing cannot be
determined by standard analytical procedures in some cases [78],
suggesting that disappearance of the parent FUMs does not neces-
sarily indicate decontamination. Thus, improved detection and
monitoring, in addition to evaluating the bioavailability and toxi-
cological impacts of modified FUMs in foods and raw materials,
will be a significant focus for future food industry research.

Physical removal during food processing is also well known to
reduce mycotoxin levels. The physical removal of mycotoxins is
efficient when manual sorting grains, nuts, and dried fruits is con-
ducted by farmers or via automatic sorting [79]. During the pro-
cessing stage, FUMs contamination in raw maize kernels can be
reduced by about 75% after milling [80]. Furthermore, simple sort-
ing of maize grains is also efficient in reducing dietary FB1 for con-
sumers and leads to little or no mycotoxin exposure [81].

Irradiation to inactivate microorganisms is also an effective
physical practice for controlling fungal infection and mycotoxin
production before storage. Aziz et al. [82] applied k-irradiation at
5.0 and 7.0 kGy (kGy) levels to reduce FB1 levels in corn by 87%
and 100%, respectively. Ozone treatment is also a promising
toxification, taking FB1 for example.
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technology to reduce mycotoxin contamination for food preserva-
tion and safety. Indeed, some mycotoxins, such as aflatoxins,
ochratoxin A, and patulin, are degraded by ozone [79]. For FUMs,
results from Ribeiro et al. confirmed the degradation of FUMs by
ozone in naturally contaminated maize, though chemical structure
and toxic effects of degradation products need to be further evalu-
ated [83]. Gaseous O3 can also be used for controlling F. verticil-
lioides growth and subsequent FBs contamination in maize under
intermediate moisture conditions [84]. Hence, ozone is potentially
a critical physical tool for controlling FBs contamination. Interest-
ingly, ozone treatment effectively inhibits fungal infection, delays
decay, and prolongs shelf life, all without impacting citrus quality
[85]. Thus, ozone application is a promising approach for posthar-
vest fruit storage to control mycotoxin contamination. Chlorine gas
treatment is also commonly used to detoxify mycotoxins. Degrada-
tion of FB1 by chlorine dioxide gas has been reported in lab scale
[86]. k-irradiation and O3 treatment are considered as environ-
mentally friendly alternatives compared to conventional decon-
tamination approaches. However, their widespread utilization by
food industries could be restricted due to safety issues, strict
design requirements, special equipment that is needed, and han-
dling costs. For example, the grain treated with ozone is not con-
sidered to be acceptable as human food, which results in a
reduced price for the resulting products. Resolving these limita-
tions will greatly improve management and prevention of FUMs
contamination in the food industry.

Modified atmosphere packaging (MAP) is widely used by imme-
diately exchanging gas compositions (mainly CO2 and O2) within
food packaging. MAP is effective in reducing quality deterioration
and postharvest loss during fruit storage, while also being consis-
tent with appropriate consumer practices [87]. Importantly, MAP
is effective in inhibiting fungal growth and controlling mycotoxin
contamination [88]. Samapundo et al. showed that modified atmo-
spheres (high CO2 and low O2 concentrations) effectively inhibited
fungal growth and FB1 production by F. verticillioides and F. prolif-
eratum on corn during early storage periods [89,90]. Considering
the efficiency, convenience, safety, and side-effects from alcohol
or lactic acid fermentation of these technologies, more investiga-
tions are needed to determine whether MAP controls FUMs-
producing fungi or affects FUMs production. For example, MAP
seems unfriendly for long-term storage, which usually requires
aeration to maintain grain quality. Moreover, the refinement of
optimal conditions for MAP is needed during postharvest fruit
storage.

The addition of mycotoxin binders is another physical strategy
to manage mycotoxin contamination of food products. In general,
these binders can be divided into two major groups, namely, min-
eral or organic adsorbents and biological adsorbents. The binders
primarily operate by adsorbing mycotoxins to their surface. Min-
eral and organic adsorbents tested include aluminosilicate, diato-
mite, talc, activated carbon and polymeric resins [91]. Bentonite
has been authorized as an adsorbent for aflatoxins adsorption in
animal feed [91]. Although combined orange peels (OP) extract
and modified organic–inorganic hybrid bentonite (OP-bentonite)
materials exhibit a capacity for FB1 adsorption, the adsorption
capacity of FB1 is much lower than for aflatoxins [92]. Furthermore,
some organically modified clays exhibit a high adsorptive capacity
for both FB1 and FB2 due to organic cation activities [93].
Cholestyramine has been demonstrated as an effective binder of
FUMs in vitro, which was also confirmed for FUMs in vivo experi-
ments [94]. However, organically modified clays have not been
received regulatory approval for commercialization due to a lack
of in vivo evidence of their efficacy. Confirmation of the safety
and efficacy of mycotoxin binders, followed by regulatory approval
will provide customers with quality guarantee. Clay-based tech-
nologies may provide novel means for the management of FUMs
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contamination. Nevertheless, the costs of these binders and their
impacts on important nutrients in feed commodities should be
considered in future studies [95].

Emerging technologies, including high pressure, non-thermal
plasma, ultraviolet light, and pulsed electric fields treatments, have
been used in recent years as physical methods for microbial decon-
tamination of food products during processing [61,96–98]. Among
these nonconventional technologies, plasma, ultrasound, and
pulsed electric field methods offer good potential for mycotoxin
decontamination at the laboratory scale [98]. Furthermore,
plasma-activated water (PAW) also exhibits antifungal activities
against fungal spores both in vitro and in actual food products,
especially in plant foods, such as fruit [97]. One minute of atmo-
spheric plasma treatment resulted in complete degradation of
FUMs [99]. In addition, cold plasma is an effective tool for the
FUMs degradation or inactivation of dangerous fungi that are
capable of producing FUMs in many food commodities, such as
cereals and dairy products [100,101]. When applied in practice,
the plasma faces the biggest problem that it is often quite
ineffective against internal contaminants of food commodities.
The feasibility and potential benefits of emerging techniques for
FUMs decontamination should be further explored. Combining
conventional and emerging technologies also should be consid-
ered. Considerable research efforts in terms of cost effectiveness,
food safety evaluation, and process efficiency are prerequisites
for the practical application of these innovative approaches in
the food industry.

Chemical practice
Consumers have expressed great concern for food safety in

recent years. Thus, new and safe chemical agents for fungal control
and mycotoxin management are a priority for future research. For
example, butylated hydroxyanisole (BHA) is a commonly used
antioxidant in food processing that can effectively reduce FUMs
contamination when F. proliferatum was cultured in Czapek’s broth
(CB) medium [102]. Nixtamalization is another commonly used
chemical process, wherein corn is boiled in a lime solution to pro-
duce masa for tortillas and total FUMs content is reduced by 50%,
with hydrolyzed FUMs containing aminopolyol backbones as the
major product [103]. HFB1 is much less toxic than FB1 based on
feeding trials in pigs and poultry [11]. Thus, corn products after
nixtamalization treatment can be used for animal feed.

Some plant essential oils (EOs) have been approved as food
additives by the USFDA and the roles of plant EOs in preventing
fungal growth and reducing mycotoxin contamination have been
noted [104]. Alizadeh et al. summarized the prospects of various
EOs and pointed that aflatoxin B1, G1, B2, G2, and ochratoxin A
are the most investigated toxins during the application of the most
used EOs [105]. Till now, the utility of EOs for control of FUMs is at
best at the laboratory level.

Ocimum EOs from Kenya effectively inhibited F. verticillioides
growth and FB1 accumulation leading to their suggestion as an
alternative means to control fungal infestation and mycotoxin con-
tamination in stored corn and foodstuffs [104]. Based on the exper-
imental evidence in laboratory, the direct degradation of FB1 by
EOs was also reported by Xing et al. [106]. Recent advances in
the control of FUMs contamination also demonstrated that several
EOs showed FB1 inhibitory effects [3]. However, most of these
promising antifungal agents have only been applied in vitro to con-
trol FUMs contamination due to their instability and organoleptic
side effects [105]. Thus, plant EOs might be best utilized with
antimicrobial packaging surrounding foods after harvest. For
example, Tarazona et al. [107] reported an innovative packaging
system containing ethylene–vinyl alcohol copolymer films incor-
porating plant EOs as a promising strategy to control F. proliferatum
growth and FB1 and FB2 production.
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Due to the possible health risks caused by toxic by-products or
the compounds themselves, chemical treatments (such as with
EOs) against FUMs production are not authorized and in some
cases are banned by the European Union (EU) for food processing.
Hence, further research into the safety and practical use of chem-
ical treatments to control FUMs contamination is still needed for
the food industry.

Biological practice
Biological control via microorganisms has become an increas-

ingly promising means for mycotoxin decontamination in food
production [108]. The bacterial consortium SAAS79 was recently
identified with high levels of FB1-degrading activity, providing a
new approach for FUMs management [109]. Lactic acid bacteria
(LAB) strains have also been observed to successfully control FUMs
production. The primary mechanism of LAB activity results from
the adsorption or binding of FUMs by cell wall constituents and
peptidoglycans [110]. Sadiq et al. [111] summarized possible inter-
actions between FB1 and bacterial cell wall components of different
LAB strains, including Lactobacillus paraplantarum, Streptococcus
thermophilus, L. plantarum B7, and Lactobacillus Pentosus X8. Inter-
estingly, heat or acid treatment of LAB bacterial strains can
enhance their binding capacities for FB1 and FB2 [110]. Thermal
treatments are particularly common during processing of agricul-
tural products into foods. Thus, the use of combined LAB and heat
treatment might be more effective and practical for controlling
FUMs decontamination. More importantly, some LAB strains,
including L. plantarum MYS6, L. delbrueckii subsp., lactis DSM
20076 and Pediococcus acidilactici NNRL B-5627, also exhibit pro-
tective effects against cellular toxicity and hepatorenal damage
in broilers caused by FB1 [110,112,113]. Thus, LAB strains can
potentially be used to decontaminate FUMs in the food industry.

In addition to bacteria, some yeast strains have been used to
control mycotoxin contamination. For example, yeast cell wall
extracts combined with clay minerals were effective in adsorption
of FUMs within animal feeds [20]. Kolawole et al. [114] also
reported that modified yeast cell walls can simultaneously adsorb
over 50% of FB1 in animal feeds. Similarly, Armando et al. observed
that S. cerevisiae yeast (strain RC016) exhibits high FB1 binding
properties and their ability of binding the mycotoxin increases
with concentration [115]. Furthermore, Chlebicz et al. [116]
reported that 6 S. cerevisiae strains and 12 Lactobacillus strains
exhibit detoxification of FUMs in in vitro assays. These strains are
all probiotic microorganisms that confer a health benefit on the
host when administered in adequate amounts, as defined by the
FAO/WHO (2002) [117]. Hence, these yeast strains harbour great
potential for use as food additives to detoxify contaminating FUMs.
These microbial-based approaches clearly have many advantages.
Nevertheless, commercial application requires evaluation of their
safety, efficiency, and economic practicality.

In addition to adsorption or binding, some microorganisms can
directly degrade FUMs. The direct use of microbial FUMs-
degrading enzymes is a practical detoxification technique due to
better safety and specificity compared to the application of
microorganisms [118]. Function-based screening of microbial com-
munities to identify potential enzymes involved in mycotoxin
degradation was recently conducted [119].

Enzymatic transformation of mycotoxins into less-toxic
metabolites through targeted modification is an important detoxi-
fication approach. Several catabolism-related enzymes can be used
for enzymatic detoxification of FUMs in food [120–123] (Fig. 3).
The primary mechanisms of FBs detoxification include enzymatic
modification of the free amino group at position C-2 and de-
esterification of ester bonds at the C-14 and C-15 positions. Many
critical enzymes, including carboxylesterases, amino oxidases and
aminotransferases, are suitable for degrading FB1 in food
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production applications [123–125]. FUMzyme� (Biomin, Austria)
contains a FUMs esterase, FumD (EC 3.1.1.87), that was authorized
by the EC in 2014 and deemed safe for human, animal, and envi-
ronmental exposure by the EFSA [120,123]. The enzyme can
hydrolyse the tricarballylic acid groups of FB1, producing the
less-toxic HFB1 compound. The commercial FumD esterase has
been subject to wide application in both commercial maize-
based practices and home-grown maize products [120,121,126].
FUMzyme application can be expanded to enzymes from different
microorganisms including FumDSB from Sphingomonadales
bacterium [127]. Garnham et al. identified another enzyme, termed
AnFAO (A. niger fumonisin amine oxidase), that exhibits robust
deamination activity of FUMs and has promising potential for
remediating FUMs-contaminated foods [122]. The toxic effects of
enzyme products and feeding trials with AnFAO as a feed additive
require further study. Nevertheless, enzymatic degradation of
FUMs in food production could provide commercially viable
opportunities to prevent FUMs contamination.

Metagenomic analysis as alternative approaches to conven-
tional screening of microbial communities allows more efficient
comprehensive screening of microbial genomes to identify new
FUMs-degrading enzymes. Further, newly identified FUMs-
reducing/degrading enzymes can be introduced into microorgan-
isms for subsequent large-scale fermentation using food-grade
recombinant enzymes to degrade FUMs. Additionally, recently
developed metabolic engineering technologies have enabled the
improvement of more efficient and useful microbial strains. Thus,
the identification and implementation of different genes encoding
FUMs-degrading enzymes into expression vectors and transform-
ing them into microbe strains through metabolic engineering could
help the utilization of combinatory enzymatic degradation of FUMs
in the food industry. In addition, P. pentosaceus strain L006 has
been shown to produce antifungal and ‘‘antimycotoxin” metabo-
lites that reduce FUMs contamination in foods [128]. Metabolic
engineering exhibits unique advantages for the yield of non-
native desired products in plants [129], while providing new
potential to produce ‘‘antimycotoxin” metabolites (e.g., inhibitors
of FUMs biosynthesis) to counteract FUMs contamination in food
system. Although the impacts of metabolic engineering on FUMs
decontamination have not been reported, this emerging technol-
ogy alongside genetic engineering will enhance the potential for
the biocontrol of FUMs contamination in the food industry.
Conclusions and future prospects

Control of FUMs contamination in food supply chains is a signif-
icant area of focus due to the potential threat to human and animal
health. Advances in reducing FUMs effects by prevention and
decontamination measures have grown rapidly recently. Preven-
tion strategies are theoretically the first line of defence toward
FUMs contamination, while decontamination approaches are the
last lines of defence to protect human and animals from the FUMs
contamination of food supply chains. Culturally acceptable meth-
ods for FUMs management are recommended herein under differ-
ent conditions based on practicality. In addition, biologically based
practices and appropriate chemical and physical treatments can be
applied to further reduce FUMs contamination. Integrated strate-
gies, including pre-harvest, post-harvest and marketing are
encouraged in developed countries to prevent FUMs contamina-
tion and guarantee food safety in supply chains. In contrast, the
lack of sophisticated technologies in developing countries leads
to the recommendation of decontamination approaches because
they are simple and low cost management measures. For example,
hand sorting/cleaning and dehulling are culturally acceptable and
practical methods to implement in farm communities, and
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especially where consumer staple diets contaminated with high
levels of FUMs.

The growth of Bt maize is another recommendation to control
FUMs contamination in both developed and developing countries.
Legislation is needed to implement FUMs mitigation protocols in
developing countries. Increasing food safety concerns in both
developed and developing countries requires communication
about FUMs contamination networks along food supply chains
[130]. Expanding production of horticultural crops may increase
FUMs contamination in fresh fruits and their processed products.
MAP methods are recommended to control FUMs contamination
for fruit or fruit-based products because the packaging is widely
used during storage or transport.

Application of gene-editing technologies to crop varieties to
reduce fungal infestation and mycotoxin contamination is a promi-
nent area to begin. New enzymes for FUMs degradation should be
identified through metagenomics analysis of microbial communi-
ties. The enzymatic degradation products of FUMs require careful
evaluation to ensure safety in long-term consumption. Since some
modified/degraded FUMs cannot be identified by analytical proce-
dures, collecting toxicological information for these modified prod-
ucts remains a challenge, which must be determined before safety
evaluations can be made. If modified FUMs exhibiting similar tox-
icity, or even greater toxicity than the original FUMs [11], then
applications of enzymatic degradations should be limited. For
example, ammonization, thermal treatments and chemical treat-
ment methods for FUMs decontamination all face considerable
obstacles due to incomplete understanding of the toxicity of the
modified FUMs. Hence, risk assessments and the establishment
of tolerable limits for these modified FUMs are urgently needed
for the eventual purpose of food safety and reduction of health
risks. Clearly, the development of efficient management methods
to mitigate FUMs still requires extensive research.
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