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Global critical soil moisture thresholds of
plant water stress
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During extensive periods without rain, known as dry-downs, decreasing soil
moisture (SM) induces plant water stress at the point when it limits evapo-
transpiration, defining a critical SM threshold (θcrit). Better quantification of
θcrit is needed for improving future projections of climate andwater resources,
food production, and ecosystem vulnerability. Here, we combine systematic
satellite observations of the diurnal amplitude of land surface temperature
(dLST) and SM during dry-downs, corroborated by in-situ data from flux
towers, to generate the observation-based global map of θcrit. We find an
average global θcrit of 0.19m3/m3, varying from 0.12m3/m3 in arid ecosystems
to 0.26m3/m3 in humid ecosystems. θcrit simulated by Earth SystemModels is
overestimated in dry areas and underestimated in wet areas. The global
observed pattern of θcrit reflects plant adaptation to soil available water and
atmospheric demand. Using explainable machine learning, we show that
aridity index, leaf area and soil texture are the most influential drivers. More-
over, we show that the annual fraction of dayswithwater stress, when SM stays
below θcrit, has increased in the past four decades. Our results have important
implications for understanding the inception of water stress in models and
identifying SM tipping points.

The critical soil moisture threshold (θcrit) of plant water stress is
defined as the soil moisture (SM) level at which evapotranspiration
becomes SM limited in that environment1. Below this threshold, a
marginal reduction of SM reduces evapotranspiration and increases
sensible heat emissions and surface temperature2, making the air
above the canopy warmer and drier, which in turn further reduces
evapotranspiration and plant carbon dioxide uptake3–5. The control of
energy partitioning regimes across θcrit determines local climate
through land‐atmosphere coupling and can amplify warming during
droughts6,7. A better knowledge of θcrit is thus important for land-
atmosphere interactions5, for climate studies8–10 and for understanding
the vulnerability of ecosystems and crop yields to drought9.

The relationship between SM and the evaporative fraction (EF),
defined as the ratio of evapotranspiration to net radiation, shows two
distinct regimes2,5,11,12 (see Fig. 1a). When SM is higher than θcrit, the
system is non-water limited (energy limited) and SM does not impact
evapotranspiration5. In contrast, when SM is lower than θcrit, the
capacity of plants to extract soil water by roots and xylem transport
becomes progressively reduced. The system becomes SM limited, and
evapotranspiration decreases with decreasing SM until leaves fully
close their stomata, direct evaporation at the soil surface ceases, or
roots are no longer able to take up soil water (the wilting point)10. The
overall EF–SM relationship (increasing below θcrit and then plateauing)
is conceptually well established, but a spatially explicit understanding
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with accurate global maps of θcrit are lacking, due to a lack of global
high-frequency observations of EF11,13–15. Therefore, the factors that
control the global variations in θcrit are poorly known. Earth system
modelers have adopted simple parametric representations of EF–SM
relationship and θcrit to describe soil water stress and land-atmosphere
feedbacks5, leading tomodel biases which hinder our ability to predict
drought and its ecosystem impacts8,16–18. Some model-based analyses
have used the concept of critical soil water potential1,19, but current
land surface models are using soil moisture rather than soil water
potential, and global observation-based analyses of critical thresholds
are still missing.

Satellite observations of surface SM with frequent revisit and
global coverage based on microwave sensors in the L‐band with
stronger penetration capacity20 can be combined with land surface
temperature (LST) to assess the relationships between SM and the
surface energy partitioning21,22 (Methods). Instead of global satellite
evapotranspiration products based on models with uncertain
parametrizations23,24, we used here the diurnal evolution of LST as a
direct observable signature of shifts in surface energy partitioning
regimes25,26. Specifically, the land-surface temperature diurnal ampli-
tude (dLST) starts to increase below θcrit when ecosystems plunge into

thewater‐limited regime26–29. An increased dLST, for a given amount of
net radiation, is directly linked to a decrease in EF and thus increased
SM stress3. dLST is positively associated with sensible heating but
negatively associated with EF and SM27–29. Evaporative regimes have
been characterized with observed dLST–SM relationships across
Africa, but not yet globally14, leaving a gap in our understanding of θcrit
across the globe.

To quantify the global spatial distribution of θcrit, we selected
extensive periods without rainfall known as SM dry-downs14,30,31 when
the transition from energy to water limitation is likely to happen. The
validity of the dLST–SMapproach to determineθcrit wasdemonstrated
by comparing its results to the classical EF–SMmethod2,5,9,10 at sites of
the global network of flux tower measurements (Methods). Three
global satellite SM datasets (SMAP-IB, SCA-V and SMOS-IC) and two
LST datasets (Copernicus and MODIS) covering the period from April
2015 to December 2020 were then used to produce a global map of
θcrit. Uncertainties were estimated based on an ensemble of 18 mem-
bers from different pairings of SM and LST datasets, including the
uncertainty on θcrit from the dLST–SM relationship (Methods). Addi-
tionally, explainable machine learning models (random forest) were
applied to gain insights on the climatic, biotic and edaphic factors
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Fig. 1 | Quantifying the critical soil moisture (SM) threshold during soil dry-
downs using the evaporative fraction (EF)–SM method and the land surface
temperature diurnal amplitude (dLST)–SM method. An example of estimating
SM thresholds (θcrit) from the EF–SM method (a) and the dLST–SM method (b)
using all dry-downs at Hainich beech forest site (DE-Hai, Supplementary Table 1).

c Comparison between the SM thresholds estimated from the dLST–SM method
and EF–SM method across all sites. The median and the 25th, 75th percentiles are
shown for each biome. The dashed line is the 1:1 line while the red line is fitted line
using least squares regression.
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controlling the spatial variations of θcrit. Based on our global map of
θcrit, we further calculated the fraction of days in a year when SM is
below θcrit using time series of SM from satellite data and the ERA5-
Land reanalysis32, to investigate the long-term trends of plant exposure
to water stress over the last 40 years. Finally, we evaluated how land
surface models of Earth System Models participating in the Coupled
Model Inter-comparison Project Phase 6 (CMIP6) simulate the patterns
of θcrit, and discussed their biases compared to our observation-
based maps.

Results and discussion
Consistency of θcrit derived from the EF–SM and dLST–SM
methods
Using soil dry-downs observed at 44 flux tower sites, we calculated
daily dLST using in-situ daily maximum and minimum outgoing long-
wave radiation (Methods) and compared θcrit defined as the break-
point when dLST increases with decreasing SM, with the value
calculated from the flux data as a tipping point of the EF–SM rela-
tionships, as previously done in refs. 2,5,9,10. An example is shown for
the Hainich beech forest site in Germany (Supplementary Table 1)
where the EF–SM relationship during dry-downs defines a θcrit of
0.192 ± 0.009 m3/m3 (± standard error) and the dLST–SM relationship
gives a very similar estimate of 0.191 ± 0.005m3/m3 (Fig. 1a & b). Across
all the sites spanning a large range of aridity and plant functional types,
the two approaches show consistent results (r =0.87, Fig. 1c), in line
with previous theoretical and observational studies8,14,25.

Global distribution of θcrit
Global high frequency LST and SM observations from multiple satel-
lites during drydowns are then used to quantify the spatial distribution
of θcrit (Methods). To calculate daily dLST, we used the MODIS Terra
and Aqua satellites and the Copernicus dataset based on a constella-
tion of geostationary satellites. Even though MODIS only passes over
the earth four times a day while the geostationary satellites data
(Copernicus) have 24 observations per day, allowing us to definemore
accurately the diurnal amplitude of LST, both observations matchwell
with each other (Supplementary Figs. 1–2). Over Siberia and India
where no geostationary data are available, we used only MODIS. For
quasi-daily SM, we used satellite all-weather data from SMAP-IB, SCA-V
and SMOS-IC, which show a similar pattern of the number of dry-
downs per year over eachpoint of the Earth (Supplementary Figs. 3–4).
Here, the SM drydowns were defined as periods with at least five
(SMAP-IB and SCA-V) or four (SMOS-IC) consecutive overpass
masurements over intervals longer than 10 days during which SM is
persistently decreasing (Methods). The areas with the the largest
number of dry-downs are in central America, Argentina, central Eur-
ope, eastern Europe and eastern Australia (Supplementary Fig. 3). On
the other hand, only few dry-downs could be used to infer θcrit in wet
regions such as the Amazon, central Africa and southern China. Grid
points with no clear dry-downs to calculate θcrit were masked.

The global maps of θcrit obtained with the three SM and the two
dLST satellite datasets show consistent patterns (Fig. 2a–f). Different
maps from paired SM and dLST observations with three θcrit estimates
(mean, and plus orminus one standard error, seeMethods) provide an
ensemble of 18 members. The median and standard error across all
members of the ensemble shown in Fig. 2g represent our best estimate
of the global distribution θcrit and its uncertainty. The relative uncer-
tainty ofθcrit, defined as the ratio of standard error to themedian value
of the 18 ensemblemembers, is less than 10% overmost areas (Fig. 2h).
Moreover, despite a mismatch in spatial scales, the value of θcrit from
satellites at a global resolution of 25 by 25 km, is significantly corre-
lated to the local estimate calculated at point-scale flux tower mea-
surements (Supplementary Fig. 5). The median value of θcrit over the
global vegetated areas is 0.19m3/m3. Even though satellites only probe
surface SM,whereas plantsmay be sensitive to stress from surface and

rootzone moisture deficits, surface SM has been shown to be equally
skillful for identifying evapotranspiration regime changes as deeper
soil layers or rootzone SM measurements33,34. We further use SM data
with different soil layers from ERA5-Land (Methods) and compare the
θcrit values derived from ERA5-Land SM layer 1 (0–7 cm depth), layer 2
(7–28 cm) and layer 3 (28–100 cm).We found that surfaceθcrit is highly
correlated with θcrit derived from deep soil layers (Supplementary
Fig. 6), showing that θcrit obtained from surface SM can provide
information deeper into the subsurface, consistent with the results of
flux tower observations reported bybothDong, Akbar33 and Fu, Ciais35.

The lowest θcrit values were observed in dryland ecosystems over
the western United States, western Argentina, eastern Brazil, South
Africa, northwestern China and Australia (Fig. 2g). In those dryland
regions, plant hydraulic features adapted to conditions when eva-
porative demand often exceed soil water supply, are likely tominimize
θcrit through mechanisms of sustained SM extraction by roots and
transport by xylem, even at low soil water potentials36. Conversely, the
highest θcrit values were found in humid ecosystems such as Indonesia,
south-eastern China, south-eastern United States, and Uruguay
(Fig. 2g). Differences of θcrit between biomes were found to be sig-
nificant, with increasing θcrit from dry shrublands, grasslands, and
savannas towards temperate, boreal and tropical forests (Supple-
mentary Fig 7a). Similar patterns were found across climate types, with
increasing θcrit from hyper-arid, arid, and semi-arid ecosystems
towards humid ecosystems (Supplementary Fig. 8).

We performed a more detailed analysis of the θcrit differences
between cropland types, based on the expectation that θcrit should be
affected by the choice of cultivars and by management practices such
as irrigation. We found that θcrit varied among different crop species
(Supplementary Fig. 7b), with rice (mostly irrigated) having sig-
nificantly higher values (0.28m3/m3) than maize, wheat and potato
(0.20m3/m3, p <0.05). Moreover, θcrit tended to increase with
increasing irrigation (Supplementary Fig. 7c). We also tested the
hypothesis that the areas of recent cropland expansion over drier
marginal lands should be associatedwith a decrease of θcrit (Methods).
Most new cropland expansion occurred over drier areas, such as in
southern Sahel, central Highlands and Zambia over Africa, and the
Cerrado and Chaco plains in South America37. Over the ‘new’ cropland
areas that were cultivated after 2003 according to the high resolution
map of ref. 37, we verified that θcrit was lower on average than on
established cropland areas (Supplementary Fig. 7d). More insights on
regional patterns of θcrit and its impacts for yields could be gained
based on regional management and cultivars information, which is
beyond the scope of this study.

The spatial distribution of θcrit in this study aligns with previous
findings in ecological theory regarding plant stress across various
environments1,14,19,33,38–40. Land surface models often have a lower θcrit
model parameter in arid biomes38,40,41. The map of ecosystem-scale
isohydricity from remotely sensed observations showed that the ani-
sohydric behavior is more common in arid ecosystems39. By quanti-
fying the soil water potential threshold, Bassiouni, Good1 showed that
water uptake strategies in arid locations are generally more drought
resistant. Note that soil water potential is rarely measured in situ, and
land surface models are using soil moisture rather than soil water
potential. Different vegetation water stress in arid and humid ecosys-
tems have also been recognized in many other studies, based on the
ecosystem limitation index38, the LandSurfaceWater Index42,43, andSM
anomalies40. However, these indicators are not direct measures of
water stress. The θcrit values quantified in our study reflect the long-
term adaptation of ecosystems to aridity regimes. θcrit is simple to
define and is a direct measure of water stress, but θcrit remains not
observed and our study allows to compare it across biomes. θcrit can
also be used to quantify the time spent below θcrit and understand how
recent climate trends have affected the exposure of ecosystems to
water stress.
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Drivers of global variation in θcrit
To evaluate the possible mechanisms controlling the spatial variation
of θcrit (Fig. 2g), we excluded croplands and used random forest
models (Methods) with 35 candidate factors, including soil properties,
vegetation structure, plant hydraulic traits and climatic variables
(Supplementary Table 2). Based on a recursive feature elimination
algorithm (Methods), a subset of 11 most influential predictors were
selected in the final ‘best’ model, which explains 74% of the global
spatial variation in θcrit (Fig. 3a). The aridity index, defined as the ratio
of mean annual potential evapotranspiration to precipitation, was
identified as the most important factor; followed by leaf area index
(LAI) and the sand fraction of soil texture (Fig. 3a). This result is con-
sistent with Bassiouni, Good1, who evaluated the relation between
critical soil water potential and aridity index based on a soil water
balance model and an inverse modeling analysis. But our study rather
focused on observation-based θcrit and used a comprehensive set of
environmental variables to identify the main drivers of global θcrit
variations. Partial dependence analysis further showed that θcrit
decreases with a higher aridity index (Fig. 3b) and sand fractions
(Fig. 3d) but becomes higher at higher LAI (Fig. 3c). A lower aridity
index reflects wetter climates where a higher θcrit can be interpreted as
an adaptation trait in view of the low risk of plants to be exposed to a
water limited regime. We noted that below a leaf area index of about
2.5m2/m2, the θcrit decreases; above that, further increases in LAI are
less important (Fig. 3c). This suggests that lowθcrit in arid areas are also

related to an increasing fraction of soil exposure, highlighting the role
of soil evaporation in arid areas. Thus, further evaluation and mea-
surements of soil evaporation are needed in the future to better
quantify the significance of soil evaporation in arid areas. A higher LAI
being positively associated with θcrit (Fig. 3c) further supports the
interpretation that wetter ecosystems can sustainmore leaves without
compromising transpiration, given that SM rarely drops below θcrit
during the year. Recent studies have also shown that ecosystems with
higher leaf area index have a more gradual stomatal closure in
response to a SM decrease, which sustains photosynthesis in periods
of low to moderate water stress35. On the other hand, the negative
response of θcrit to the sand fraction is consistent with the fact that
sandy soils have lower SM wilting points44. Indeed, sand fraction reg-
ulates the dependence of water potential to SM and water potential is
theprimarydriver of plantwater stress41,45. Sandy soils have a lower soil
water content for the same critical soil water potential for plant
stress46,47, which explains the negative dependence of θcrit to sand
fraction. Our results also show that a higher leaf nitrogen content is
associated with a lower θcrit, consistent with the fact that plants with a
higher leaf nitrogen content have a larger resistance to drought48. We
also find that θcrit shows a positive dependence on precipitation fre-
quency but a negative dependence on shortwave radiation (Fig. 3f).
More frequent precipitation events49–51 and lower shortwave radiation
help reduce water stress, and thus appear to favor an adaptation
towards higher θcrit.

Fig. 2 | The global distribution of critical soil moisture threshold (θcrit). The
global distribution of estimated θcrit using Copernicus land surface temperature
diurnal amplitude (dLST) and soil moisture (SM) from SMAP-IB (a), SCA-V (b) or

SMOS-IC (c). The global distribution of estimated θcrit using MODIS dLST and SM
from SMAP-IB (d), SCA-V (e) or SMOS-IC (f). The median θcrit (g) and its relative
uncertainty (h) across 18 ensemble members of θcrit (Methods).
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Global distribution of the fraction of stressed days and its trend
over 1979–2020
The global map of θcrit (Fig. 2g) can also be used to understand how
recent climate trends have affected the exposure of ecosystems to
water stress. We calculated the fraction of stressed days (FSD) each
year, selecting the dayswhen SM is belowθcrit over each location of the
globe (Methods). Combining SMAP-IB, SCA-V and SMOS-IC time series
of SM during 2016–2020, we find that dryland ecosystems have a
yearly FSDhigher than70% (Fig. 4a). The same analysis performedwith
daily surface SM and θcrit from the ERA5-Land reanalysis during
2016–2020 confirms the high yearly FSD in dryland ecosystems and
gives a similar spatial pattern, but a lower mean FSD (Fig. 4b). This is
because the θcrit estimated from ERA5-Land data is larger than that the
satellite observations (Supplementary Fig. 9).

After removing the pixels with large land cover changes (>10%) to
limit the impacts of land changes on trend analysis (Methods), using
daily ERA5-Land SM since 1979, we found that the FSD has been
increasing significantly over the last 40 years (Fig. 4c, d), implying that
terrestrial ecosystems became exposed to more extensive periods of
water stress. Over the past four decades, FSD increased globally, on
average, by about one day per year (Fig. 4d). In addition to increased
evaporative demand and atmospheric drivers52, this increasing trend
of FSD may also be attributed to increased frequency of drought and
heatwaves, resulting into an overall decline of SM53,54. This result is in
line with recent findings from Jiao, Wang55 and Denissen, Teuling38

based on independent data, suggesting a regime shift from energy to
water limitation in relation to an overall decline of SM.

We acknowledge that θcrit may change over time. Based onmodel
outputs analysis, Hsu and Dirmeyer56 found significant temporal var-
iations in θcrit across many locations spanning 100 years. Conversely,
another study analyzed the temporal dynamics ofθcrit atfiveflux tower
sites with at least 15 years of measurements and found no significant
trend over time35. This underscores the need for future research to
gain a better understanding of the temporal dynamics of θcrit through
longer observations. We considered here that the temporal dynamics
of θcrit should not hamper our trend analysis, given that even if θcrit
changes, its magnitude over 40 years is minimal.

Comparison with Earth System models
Finally we diagnosed θcrit by using daily EF and surface SM simulations
from Earth System Models (Supplementary Table 3, Methods). We
found that themodels showed less spatial variability of θcrit than in the
observation-basedmap(Fig. 5a, SupplementaryFigs. 11–12, Fig. 2g) and
significantly underestimated θcrit in wet regions (Fig. 5b, Supplemen-
tary Fig. 11), suggesting that they may underestimate the soil moisture
point of inception of plant water stress in wet regions. Such a biasmay
lead to overly optimistic projections of the future increase of plant CO2

uptake. Conversely, models significantly overestimated θcrit in dry
regions and failed to capture the observed very low θcrit values in arid
areas (Fig. 5b, Supplementary Fig. 11), which could partly explain why
ESMs underestimate both gross and net CO2 fluxes in dryland
ecosystems57,58. Plants growing in arid areas have evolved many
adaptation strategies to survive drought, for example by reducing leaf
area index, reducing plant hydraulic and stomatal conductance, and
using water stored in vegetation for transpiration59–61. These mechan-
isms have not been properly parameterized or fully integrated in
models. Thus, our results canhelp to guide the researchdirections that
can improve the simulation of SM stress.

We noted that the biases in θcrit should not be directly equated
with model accuracy in simulating water stress because the ability of
models to simulate water stress not only depend on the value of θcrit
but also on their simulation of water uptake and transport when SM is
lower than θcrit. For example, models reduce gas exchange at different
rates when ecosystem becomes water-limited62,63. This leads to dif-
ferences in their water and carbon simulations64 and better θcrit esti-
mates will not resolve these differences that drive much of the water
stress impacts on gross primary productivity and evapotranspiration.
However, quantifying the inception of water stress – the θcrit, as done
here, is a prerequisite for understanding the response rates of gas
exchanges to SM stress. In addition, observation based models of
evapotranspiration and gross primary productivity (e.g., light use
efficiency models) typically assume fixed plant functional type
values65,66 to define SM stress thresholds, that are used across regions
and climate. This study provides spatially explicit parameterizations of
plant water stress as a function of envirometal drivers that could be

Fig. 3 | The factors influencing global variation of critical soil moisture
threshold (θcrit). a The importance of climatic, biotic and edaphic variables in
controlling θcrit. Aridity index is defined as the ratio of mean annual potential
evapotranspiration to precipitation. b–g Partial dependence plots of the top six

predictors. The Y-axis is SHAP value for corresponding predictor (X-axis). The
partial dependence plots indicate the effects of individual variables on the
response, without the influence of the other variables (Methods).
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incorporated in futuremodel iterations to improve the representation
of plant water stress and its spatial variations.

Vegetation regulates the terrestrial water and carbon cycles, as it
controls and adapts to changing SM availability, with θcrit being a key
variable characterizing the coupling between soil-plant continuumand
the atmosphere. Yet our ability to characterize θcrit at the global scale
has been limited to date. Based on the dLST–SM relationship from
multiple satellite observations, this study provides the geographical

distribution and assessment of the variations of θcrit across the globe.
We also showed the usefulness of hourly LST data from geostationary
satellites to understand ecosystem water stress67,68. By uncovering the
relationships between θcrit and environmental factors, including cli-
matic, biotic and edaphic variables, we further added mechanistic
understanding of the environmental factors driving the global varia-
tion in θcrit. It sheds light on potential tipping points of water stress
impairing ecosystem functioning, and future research will aim to use

Fig. 4 | The global distribution and trend in the fraction of time when soil
moisture is below the critical soil moisture threshold (θcrit). a, b The global
distribution of the fraction of time when soil moisture (SM) is below θcrit using
satellite observed SM (median values from SMAP-IB, SCA-V and SMOS-IC) and
ERA5-Land reanalysis SMduring 2016–2020. cAnnual time series of the fractions of
time when SM is below θcrit in regions with different fraction bins over 1979–2020.
The trend (Sen’s slope) and its 95% confidence interval are detected using the

nonparametric trend test technique (Mann–Kendall test; p <0.05). The solid line
shows the median value while the shading bounds the interval of the 25th to 75th
percentiles.d Spatial patterns of the temporal trend in the fraction of timewhen SM
is below θcrit with white indicating those areas with no significant changes
(Mann–Kendall test; p >0.05) or >10% land cover changes during 1982–2016100, and
colored pixels indicating areas with significant trends (p <0.05).

Fig. 5 | The global distributionof critical soilmoisture threshold (θcrit) fromEarth SystemModels. aThemulti-modelmeanθcrit using ten Earth SystemModels.b The
differences (multi-model mean θcrit minus observation-based θcrit) between multi-model mean θcrit and observation-based θcrit.
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the understanding built based on the map of θcrit and its environ-
mental drivers to improve land-surface model representation of SM
constraints on water and carbon cycles. In addition, we showed that
the terrestrial ecosystems experienced more frequent water-stress
regimes through the past four decades, with important implications on
the current land carbon sink capacity. Although the relative patterns of
θcrit in somemodels are similar to those observed, the ten state-of-the-
art ESMs that we tested failed to accurately reproduce the magnitude
and spatial variability of θcrit, suggesting the uncertain projection of
current and future response of carbon uptake and evapotranspiration
to droughts. These ESMs need to improve the simulation of SM and
related processes, conforming to measurements, to provide more
reliable projections of the response of terrestrial ecosystems to cli-
mate change and feedbacks between land and atmosphere. Together,
these results demonstrated the global distribution of θcrit and its dri-
vers, applications and models’ performance, with important implica-
tions for understanding the inception of water stress in models and
identifying tipping points of water stress that could result in wide-
spread impairment of ecosystem functioning and loss of ecosystem
services with continued climate warming.

Methods
Eddy covariance measurements
Weusedhalf-hourly SM, latentheatflux, sensible heatflux, andoutgoing
longwave radiation from the recently released ICOS (Integrated Carbon
Observation System)69, AmeriFlux70,71 and FLUXNET2015 datasets of
energy, water, and carbon fluxes and meteorological data, all of which
have undergone a standardized set of quality control and gap filling72,73.
Data were processed following a consistent and uniform processing
pipeline72. There were 279 flux tower sites in total by combining ICOS,
AmeriFlux and FLUXNET2015 datasets. We first removed 130 sites
without SM or outgoing longwave radiation measurements; then
dropped all wetland sites because they have a perched water table and
infrequently show SM limitations. Since for some sites, there is no dry-
downdetectedduring thepeakgrowing seasonacross all available years;
these sites were also excluded (81 sites remaining). The evaporative
fraction (EF)–SM and land surface temperature diurnal amplitude
(dLST)–SM relationships in these 81 sites were evaluated site-by-site,
respectively, to detect the θcrit for each site (see below). There were
44 sites with the θcrit estimates for both EF–SM and dLST–SMmethods.
Weonly used the surface SMobservations because surface SM (0-10 cm,
varying across sites) was measured at all sites.

Derivation of dLST from eddy covariance measurements
At each flux tower site, we derived daily dLST using measured daily
maximum and minimum outgoing longwave radiation. The outgoing
longwave radiation (LW) is emitted by the surface and depends on
radiometric surface temperature (LST), the Stefan–Boltzmann con-
stant (σ) and emissivity (ε) according to the Stefan–Boltzmann law74

(Eq. 1). Therefore, the dLST can be calculated as Eq. 2, where LWmax

and LWmin are the daily maximum and minimum outgoing longwave
radiation, respectively; ε is considered as constant at the same site and
same day because we are deriving dLST (not LST).

LW = ε× σ × LST4 ð1Þ

dLST = ððLWmax=σÞ1=4 � ðLWmin=σÞ1=4Þ=ε1=4 ð2Þ

SM and dLST from satellite observations
We used three L-band passive daily surface SM (to a depth of 5 cm)
products: Soil Moisture Active Passive (SMAP)-INRAE-BORDEAUX
(SMAP-IB)20, single channel vertical polarization (SCA-V,
SMAP_L3_SM_P)75 and Soil Moisture and Ocean Salinity in version IC

(SMOS-IC)76. Both SMAP-IB (version 1) and SCA-V (version 7, L3 pro-
ducts) have 36 km resolution and one to three-day revisit from 1 April
2015 to 31December 2020. The SMAP-IB algorithm is basedon the two-
parameter inversion of the L-MEB model, as defined in Wigneron,
Jackson77, applied to the SMAP mono-angular dual-polarized bright-
ness temperature18. SCA-V is not independent from SMAP-IB, but their
retrieval algorithms, vegetation correction and surface roughness
correction are different. SCA-V is adopted as the operational baseline
algorithm to estimate SM from SMAP brightness temperature78. In the
SCA-V, vegetation is accounted for by the τ–ω model as in L-MEB.
However, optical depth at nadir (τNAD) is not retrieved as for SMOS-IC
and SMAP-IB. Instead it is estimated from the linear relation τNAD=b×
VWC between τNAD and vegetation water content (VWC)79. Thereby,
values of the b-parameter are assumed polarization independent and
will be provided from a land cover look up table, and the VWC is
estimated from values of the NDVI Index. SMOS-IC is derived from the
two-parameter L-MEB inversion applied to the SMOS multi-angular
and dual-polarized brightness temperatures. SMOS-IC has 25 km
resolution and two to four-day revisit from 1 January 2011 to 31
December 202076. Based on the recent study from Li, Wigneron20, the
biases of these three SM datasets were corrected using ISMN in-situ
measurements, an international cooperation to construct and main-
tain a global in-situ SM database80,81. Across all ISMN in-situ measure-
ments, Li, Wigneron20 found that the biases of SMAP-IB, SCA-V and
SMOS-IC are 0.002, 0.008 and −0.054m3/m3, respectively. We thus
corrected the biases of these three SM datasets by subtracting the
corresponding bias.

Two land surface temperature datasets from the Copernicus
Global Land Operations and Moderate Resolution Imaging Spectro-
radiometer (MODIS) were used. The Copernicus LST (version 2)
datasets are obtained from a constellation of geostationary satellite
missions: Meteosat Second Generation (MSG) and Indian Ocean Data
Coverage (IODC) missions, Geostationary Operational Environmental
Satellite (GOES) and Himawari (and its predecessor Multi-Function
Transport Satellite - MTSAT)82,83. The Copernicus LST provides hourly
data at a spatial resolution of 5 km covering most of the globe’s land
surface, but there is no geostationary coverage in parts of northern
and eastern Europe, Central Asia, and the Indian subcontinent as well
as parts of eastern Siberia and northern North America (Supplemen-
tary Fig. 1). The second LST datasets are from the Terra (MOD11C1) and
Aqua (MYD11C1) MODIS Version 6.1 Land Surface Temperature, pro-
viding four observed LST per day (10:30 AM/PM, 1:30 AM/PM) at a
0.05-degree resolution. We calculated the daily dLST as the difference
between daily maximum and minimum LST using hourly LST from
Copernicus or four observed LST every day from MODIS Terra and
Aqua. The bilinear interpolation algorithm was applied to resample all
data into the grid resolution of 0.25 degree.

Soil moisture dry-down identification
Dry-downs following rainfall are episodes with no rain for several
consecutive days during which SM shows a short term ‘pulse’ rise after
rain and then decays until the next rain event. At each flux tower site, a
dry-down is retained for our analysiswhen SMdecreases consecutively
for at least 10 days after rainfall following previous studies30,31,84–86. The
results were similar after requiring the soil dry-down to be at least 9 or
11 days. To ensure the reliability of latent heatfluxmeasurements (high
signal-to-noise ratio), we focused on the soil dry-downs during the
peakgrowing season for all available site-years, defined as three-month
periods with the maximum mean gross primary productivity across
the available years. For satellite observations, soil drydowns were
defined as at least 5 (for SMAP-IB and SCA-V, one to three-day revisit)
or 4 (for SMOS-IC, two to four-day revisit) consecutive overpasses
(over ≥ 10 days) of decreasing SM. The full year data of satellite
observationswere used and results were found to be similarwhen only
growing season data were used.
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Soil dry-down periods provided the unique and consistent
opportunity for us to detect the θcrit because the transition from
energy limitation to soil water limitation is likely to happen during the
dry-down period. However, less dry-downs are available in wet regions
than in dry regions. As a results, some wet regions including a small
number of dry-downs weremasked as it was not possible to detect the
θcrit in such situations. Note that, if somewet regions have experienced
more frequent droughts recently, they will thus have more dry-downs
and have been included in our analysis. This approach partly reduces
the spatial coverage of our globalmap of θcrit, but highlights that some
wet regions should be further investigated in the future with longer
satellite observations.

θcrit estimation using EF–SM and dLST–SM methods
While other factors limit evapotranspiration besides SM and the linear
dependency is a simple approximation, many previous studies have
showed that the EF–SManddLST–SM frameworkprovides a goodfirst-
order representation of regimes of land–atmosphere coupling, both in
models and observations (e.g., Seneviratne, Corti5, Seneviratne,
Lüthi87, Koster, Dirmeyer88, Koster, Suarez89, Teuling, Seneviratne90,
Feldman, Short Gianotti14). Here we provided a global analysis based
on this first-order theoretical and empirically verified framework. We
calculated the daily EF as the ratio of observed latent heat flux to the
sum of latent and sensible heat fluxes. Then, we characterized the
EF–SM and dLST–SM relationship at each site, respectively, using all
available soil dry-downs, from a regression between these two vari-
ables with a linear-plus-plateau model:

EF or dLST =
a +b SM � θcrit

� �
if SM < θcrit

a if SM ≥θcrit

(

ð3Þ

where a is the maximum (or minimum) value of EF (or dLST) in the
absence of SM stress (energy‐limited stage), b represents the slope of
the linear phase (water‐limited stage) between EF (or dLST) and SM, and
θcrit is the critical SM threshold. θcrit represents the breakpoint until
which EF (or dLST) increases (or decreases) linearly as a function of SM.
The θcrit and its standard error were simultaneously estimated by least
squares fit with the R software package ‘segmented’91 for each site. An
example to estimate the θcrit using EF–SM and dLST–SM methods is
shown in Fig. 1a, b. Following Feldman, Short Gianotti14, we considered
three models: SM varying only within a water‐limited regime (linear
model) or energy‐limited regime (linearmodel), andSMvaryingwithin a
transitional regime (linear-plus-plateaumodel). According to the lowest
Akaike Information Criterion92, we selected the “best” model pixel by
pixel, and the θcrit is detected when the linear-plus-plateau model is
selected. Some pixels or sites did not have a defined θcrit value if there
were either no dry-downs or if SM varied only within a water- or energy‐
limited regime, thus rendering the breakpoint analysis of dLST–SM or
EF–SM impossible. Based on the EF–SM and dLST–SM relationships,
there were 44 sites (Supplementary Table 1) with the θcrit estimates for
both EF–SM and dLST–SM methods. The Pearson correlation and its
associated statistical test were used to compare the θcrit values from the
dLST–SM method with that of EF–SM method. Increasing dLST is a
direct observable signature of shifts in the surface energy partitioning
regimes25,26. An increased diurnal temperature range, for a given
amount of net radiation, is directly linked to a decrease in EF and thus
increased soil moisture stress3. dLST is positively associated with
sensible heating but negatively associated with EF and SM27–29.
Evaporative regimes and θcrit estimating have been characterized
previously with observed dLST–SM relationships across some regions,
such as Africa14 and site level28, showing that the dLST–SM relationship
is an effective method to estimate θcrit. Here we applied this method to
the global scale using multiple satellite observations.

For global satellite observations, we quantified θcrit for each pixel
based on dLST–SMmethod using all dry-downs from 1 April 2015 to 31

December 2020. There were 18 maps of θcrit in total by considering all
possible combinations of three SM datasets (SMAP-IB, SCA-V and
SMOS-IC) and two dLST datasets (Copernicus and MODIS) and the
uncertainty of θcrit estimates (θcrit and θcrit ± standard error, from the
linear-plus-plateau model), resulting from different data sources and
estimating variants. The median θcrit and its relative uncertainty at
each pixel were calculated across 18 ensemble members. The relative
uncertainty was defined as the ratio of standard error to the median
value of these ensemble members. The θcrit estimated from satellite
ensembles was compared with θcrit estimated from flux tower sites
using the dLST–SM method or the EF–SM method, respectively. For
each site, we extracted and calculated the median θcrit values within a
3 × 3 pixel window around the site from satellites-derived θcrit map.
The Pearson correlation and its associated statistical test were used to
compare θcrit based on satellite observations and flux towers across
26 sites. For the remaining 18 sites, the satellite data could not be used
to derive θcrit because there were either no dry-downs, or SM varied
only within a water- or energy‐limited regime, or the number of sam-
ples were too low, thus rendering the breakpoint analysis of dLST–SM
unreliable. Note that both the measurement time periods and fre-
quency of flux tower sites differ from those of satellites. The results
show that satellite-derived θcrit is significantly correlated to that esti-
mated independently from eddy covariance measurements (Supple-
mentary Fig. 5). The correlations between satellite-derived θcrit and
tower-derived θcrit using both the dLST–SM method and the EF–SM
method are strongly significant (p < 0.01), but their correlation coef-
ficients arenot very high (r =0.57 for thedLST–SMmethodand r =0.55
for the EF–SMmethod), whichmay be due to several factors. First, the
footprint size ranges froma fewmeters todozens ofmeters for theflux
tower measurements but reaches 25 kilometers for satellite observa-
tions (0.25 degree). This mismatch is expected to lead to difference of
θcrit values estimated from flux towers and satellites. Second, the soil
depths of measured SM from flux towers and the quality of SM mea-
surements varied among different sites, and the depths from flux
towers are also different from those of satellite observations. This
could also contribute to the differences found between θcrit values.
Third, daily data from both flux towers and satellites were used, and
high variability and measurement errors affect the data at this short
time scale. Moreover, there are 48 measurements per day for flux
towers but only a few revisits per week for satellite SM. These factors
could introduce biases when comparing their θcrit values. We noted
that the θcrit estimated from satellites is a bit higher than that of flux
towers in the low θcrit range (Supplementary Fig. 5), which may be
attributed to higher SM values from satellite data compared to mea-
surements from flux towers in arid regions because of different sam-
pling depths between flux tower measurements and satellite
observations.

While satellite-based θcrit used surface SM, both Dong, Akbar33

and Fu, Ciais35 revealed that these thresholds also provide information
deeper into the subsurface, and proved that surface and rootzone SM
are often similarly skillful for identifying evapotranspiration regime
changes based on in-situ observations. Feldman, Short Gianotti34

recently also reported that remotely sensed surface SM can capture
deep water dynamics relevant to plant water uptake so that L-band
satellite SM data used here are relevant to vegetation rootzones. To
further test whether the θcrit obtained from surface SM also provide
information deeper into the subsurface at global scale, we used dLST
and SM data with different soil layers from ERA5-Land and compared
the θcrit values derived fromERA5-Land SM layer 1 (0–7 cmdepth) with
the layers 2 (7–28 cm) or 3 (28–100 cm).

θcrit among different biomes and the impacts of farm manage-
ment on θcrit in croplands
To compare θcrit values among different biomes, the International
Geosphere–Biosphere Program (IGBP) classification from MCD12C1
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and Köppen climate classification map were used (Supplementary
Fig. 7). We also used the aridity classification by the United Nations
Environment Program93 (Supplementary Table 2), and the global
landmass is classified into five categories, namely, (i) hyperarid, (ii)
arid, (iii) semi-arid, (iv) dry sub-humid, and (v) humid (Supplementary
Fig. 8). We performed a more detailed analysis of the θcrit differences
between cropland types, based on the expectation that θcrit should be
affected by the choice of cultivars and by management practices such
as irrigation. The geographic distribution of main staple crops was
from Monfreda, Ramankutty94. The Global Map of Irrigation Areas
(Version 5) was downloaded from the website of The Food and Agri-
cultureOrganization95. Thismap showed the amount of area equipped
for irrigation in percentage of the total area on a raster. We also tested
the hypothesis that the areas of recent cropland expansion over drier
marginal lands should be associated with a decrease of θcrit, as more
crop species adapted to dry environments would be selected. For
cropland expansion, we used the map of percent of cropland net gain
per pixel during 2003–2019 from Potapov, Turubanova37. Differences
in θcrit between groups (different biomes or climate types or farm
managements in croplands) were analyzed using the Kruskal–Wallis
test, a nonparametric test of difference96. A p <0.05 was used to
identify significant differences between groups.

Drivers of global variation in θcrit
A random forest analysiswasused to identify the factors (soil property,
vegetation structure, plant hydraulic traits and climate – 35 factors in
total) that contribute the most to the geographic variation in θcrit.
These variables were chosen due to their relevance to soil and vegea-
tion dynamics based on field studies, sites observations and their
availability at the global scale. θcrit is a composite attribute, reflecting
soil and vegetation attributes. We investigated the importance of 35
factors (Supplementary Table 2) that reflect the dual role of soils and
vegetation in determining θcrit

9. Predictor variableswith lowpredictive
power were removed from the random forest models to avoid over-
fitting. Following Green, Ballantyne97, we first ran a random forest
modelwith all predictor variables included, and the predictor variables
were ranked according to their permutation importance. The model
was then rerun with the least important variable removed from the
model, a process called recursive feature elimination (RFE)98. Impor-
tance values were then recalculated and stored, and this process was
repeated until the three most important predictor variables remained.
From here, the R-squared value was tabulated based on the out-of-bag
observations (~one-third of the observations), and then, themodel was
rerun with the next most important variable added back in (based on
the importance rankings stored during RFE). The R-squared value of
thismodel based on the out-of-bag observations was then retabulated,
and should the R-squared value increase by at least 0.005, the pre-
dictor variable remained in themodel (otherwise, it was removed) and
the next most important variable was then added back into the model
and was rerun with a new R-squared value tabulated. This process was
repeated until all predictor variables had been added back into the
model, and the variable combination with the highest out-of-bag R-
squared value was selected for the final model. Additionally, for each
model, the number of variables used at each node split (between 2 and
the number of predictor variables, with a final selection of 4) and the
number of trees used in the model (between 50 and 5000, with a final
selection of 1500) were optimized to maximize out-of-bag R-square
value. In this way, the best quality model could be developed by only
including the most informative inputs. The final set of predictors
included the following 11 predictor variables: sand fraction and volu-
metric fraction of coarse fragments to describe soil properties; leaf
area index, leaf nitrogen concentration, woody density and specific
leaf area to describe vegetation structures; plant hydraulic resistance
to describe plant hydraulic traits; aridity index (defined as the ratio of

mean annual potential evapotranspiration to precipitation99), mean
annual precipitation frequency, shortwave radiation and vapor pres-
sure deficit to describe climatic factors.

The selected random forest model was used to calculate Shapley
values (SHAP), and thus analyze the sensitivity of the output to the
input variables, and improve upon feature importance. Shapley values,
based on game theory, assess every combination of predictors to
determine each predictor’s impact. For example, focusing on the
aridity index feature, the approach tests the accuracy of every com-
bination of features not including aridity index and then tests how
adding aridity index improves the accuracy on each combination.
Thus, the results from the partial SHAP dependency analysis can be
used to determine the effects of individual variables on the response,
without the influence of other variables97.

Calculating the fraction of stressed days and its trend
To explore how many days in a year that ecosystem are water-limited,
we calculated the fractionof stresseddays (FSD), defined as the ratioof
the number of days with SM < θcrit to the total observed daily SM in a
year for each pixel. The fraction of time when SM is below θcrit was
computed for each year during 2016–2020 using SMAP-IB, SCA-V and
SMOS-IC, respectively. Then the median value across these three SM
datasets was calculated. The same analysis was also performed for the
daily ERA5-Land reanalysis SMdataset because it has longer time series
(1979–2020). Following satellite datasets analysis, the θcrit for ERA5-
Land was estimated using ERA5-Land SM and dLST.We first compared
the FSD from ERA5-Land reanalysis SM during 2016–2020 with that of
satellite observations. Then we calculated the FSD from ERA5-Land
reanalysis SM for each year from 1979 to 2020. The overall trends
(Sen’s slope) of the FSD in regions with mean fractions of times spent
below θcrit within 10% to 30%, 30% to 50%, 50% to 70% and 70% to 90%,
were detected, respectively, using the nonparametric trend test tech-
nique (Mann–Kendall test). To avoid the impacts of extremevalues, we
did not include the regions with mean fractions below 10% or above
90%. Additionally, we also used the Mann–Kendall test to evaluate
trend (Sen’s slope) in the fraction of timewhen SM is belowθcrit at each
pixel and map its trend globally. A p <0.05 was used to identify sta-
tistically significant trends. We noted that there are some data gaps in
θcrit derived fromERA5-Land datasets (Supplementary Fig. 9a) because
of the failure to fit a breakpoint model, suggesting that there are some
inconsistencies in SM or dLST data between ERA5-Land and satellites.
The large spread of the scatters between ERA5-Land derived and
satellite-derived θcrit (Supplementary Fig. 9b) partly indicates such a
discrepancy.We thus compared the daily ERA5-Land SManddLSTwith
those from satellites for a day in 2020, and found that the primary
biases between ERA5-Land and satellites lie in SM data, rather than
dLST data (Supplementary Fig. 10).

To remove the impacts of land cover changes on the trend
analysis, we masked the pixels with >10% land cover changes during
1982–2016 according to the global land changes data from Song,
Hansen100 based on daily satellite observations acquired by the
Advanced Very High Resolution Radiometer. Song, Hansen100 quan-
tified the global land changes during the period 1982–2016 and
developed an annual vegetation continuous fields (VCF, representing
the land surface as a fractional combination of vegetation functional
types) product consisting of tree canopy cover, short vegetation
cover and bare ground cover and characterized land change over the
past 35 years (0.05-degree resolution). The bilinear interpolation
algorithm was applied to resample this data into the grid resolution
of 0.25 degree. We also considered that the temporal dynamics of
θcrit should not hamper the trend analysis because Fu, Ciais35 have
analyzed the temporal dynamics of θcrit at five flux tower sites with at
least 15 years of measurements, and found no significant trend with
time in θcrit.
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CMIP6 ESM simulations
Ten ESMs (ACCESS-ESM1-5, BCC-ESM1, Can-ESM5, CMCC-CM2, INM-
CM5, IPSL-CM6A, MIROC6, MPI-ESM1-2-HR, MRI-ESM2 and NorESM2-
MM) in CMIP6 provided daily surface SM, latent and sensible heat fluxes
outputs (Supplementary Table 3). Daily SM and calculated EF (from
latent and sensible heat fluxes) from historical runs (2009–2014) were
used for each model. Following the observational analysis, the same
analysis was carried out for the ten CMIP6 models. For each model, we
first selected all soil dry-downs from the full-year dataset of model
outputs, defined as at least 10 consecutive days of decreasing SM, then
quantified θcrit pixel-by-pixel bymeans of the EF–SM relationship. Multi-
model mean θcrit was calculated for each pixel by averaging the θcrit
across these ten models. To evaluate the θcrit performance in ESMs, we
also calculated the difference between multi-model mean θcrit and
observation-based θcrit. We noted that different models led to different
simulated SM values101, and this inherent divergence of simulated SM
distribution could also contribute to the differences between
observation-based θcrit andmodels-based θcrit values. But we found that
all models consistently showed less spatial variability of θcrit than in the
observation-based map, suggesting that our result did not depend on
the inherent divergence of simulated SM distribution.

Data availability
The global critical soil moisture thresholds of plant water stress are
available at https://zenodo.org/records/11183719. The eddy covariance
measurements aredownloaded fromthe ICOS (https://doi.org/10.18160/
2G60-ZHAK), AmeriFlux (https://ameriflux.lbl.gov/) and FLUXNET2015
datasets (https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). SMAP-
IB and SMOS-IC SMareobtained fromhttps://ib.remote-sensing.inrae.fr/
. SCA-Vare availableonNational Snowand IceDataCenter (https://smap.
jpl.nasa.gov/data/). Copernicus LST are downloaded from https://land.
copernicus.eu.MODIS LST are fromhttps://lpdaac.usgs.gov/. TheGlobal
Map of Irrigation Areas (Version 5) was downloaded from the website of
The Food and Agriculture Organization (https://www.fao.org/aquastat/
en/geospatial-information/global-maps-irrigated-areas/latest-version).
ERA5-Land reanalysis data are from https://cds.climate.copernicus.eu/.
The CMIP6 data are downloaded from https://esgf-data.dkrz.de/search/
cmip6-dkrz/.

Code availability
The primary code used to generate the results is publicly available at
https://zenodo.org/records/11183719.
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