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Abstract
Background Glioblastoma (GBM) is a highly aggressive and prevalent brain tumor that poses significant challenges in 
treatment. SRSF9, an RNA-binding protein, is essential for cellular processes and implicated in cancer progression. Yet, its 
function and mechanism in GBM need clarification.
Methods Bioinformatics analysis was performed to explore differential expression of SRSF9 in GBM and its prognostic 
relevance to glioma patients. SRSF9 and CDK1 expression in GBM cell lines and patients’ tissues were quantified by RT-
qPCR, Western blot or immunofluorescence assay. The role of SRSF9 in GBM cell proliferation and migration was assessed 
by MTT, Transwell and colony formation assays. Additionally, transcriptional regulation of CDK1 by SRSF9 was investigated 
using ChIP-PCR and dual-luciferase assays.
Results The elevated SRSF9 expression correlates to GBM stages and poor survival of glioma patients. Through gain-of-
function and loss-of-function strategies, SRSF9 was demonstrated to promote proliferation and migration of GBM cells. 
Bioinformatics analysis showed that SRSF9 has an impact on cell growth pathways including cell cycle checkpoints and 
E2F targets. Mechanistically, SRSF9 appears to bind to the promoter of CDK1 gene and increase its transcription level, thus 
promoting GBM cell proliferation.
Conclusions These findings uncover the cellular function of SRSF9 in GBM and highlight its therapeutic potential for GBM.
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Introduction

Glioblastoma (GBM) is a highly invasive and malignant 
brain tumor, representing approximately 49% of all gliomas 
(Janjua et al. 2021; King and Benhabbour 2021; Schaff and 
Mellinghoff 2023). Despite aggressive treatment strategies 
including surgery, radiotherapy, chemotherapy and targeted 

therapy, the clinical efficacy remains unsatisfactory, with 
a poor overall survival (Tan et al. 2020; Liu et al. 2023a). 
Therefore, there is an urgent need to elucidate molecular 
mechanisms underlying GBM progression and identify 
precise molecular markers for early prognosis and disease 
monitoring.

RNA splicing is a fundamental process to regulate gene 
expression and maintain cellular homeostasis. Serine/argi-
nine-rich splicing factor 9 (SRSF9) is an important compo-
nent of the spliceosome machinery participating in mRNA 
splicing (Barta et al. 2010). Increasing evidence demon-
strates that SRSF9 regulates progression of different cancers. 
For example, Fu et al. showed that SRSF9 promotes Wnt 
signaling-mediated tumorigenesis by increasing β-catenin 
biosynthesis (Fu et al. 2013b); SRSF9 was reported to par-
ticipate in colorectal cancer (CRC) progression through 
stabilizing DSN1 mRNA in an m6A-related manner and 
to regulate GPX4 expression (Wang et al. 2021, 2022b); 
Wang et al. (2021) highlighted the role of SRSF9 as a criti-
cal driver of colorectal cancer progression and resistance to 
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Erastin-induced ferroptosis. Liu et al. (2022a) reported that 
SRSF9 is upregulated in GBM and may be a biomarker for 
GBM, but biological function and molecular mechanism of 
SRSF9 in GBM remains unclear.

This study investigated the role of SRSF9 in GBM pro-
gression and dissected its underlying molecular mechanism. 
Firstly, we observed the upregulation of SRSF9 expression 
in GBM tissues comparing to their adjacent normal con-
trols and found that elevated SRSF9 expression correlates 
with glioma progression and poor patient prognosis. Subse-
quently, we demonstrated that SRSF9 significantly enhanced 
the proliferation and migration of glioma cells through both 
gain-of-function and loss-of-function strategies. Mecha-
nistically, SRSF9 is thought to interact with the promoter 
of CDK1 gene, leading to elevated transcript levels and 
increased GBM cell growth. This evidence positions SRSF9 
as a potential biomarker and therapeutic target for GBM.

Materials and methods

Cell lines and tissues

Human glioblastoma cell lines (U251, LN18, LN229, T98G, 
A172, U87) and HEK293T cells were cultured in Dulbecco’s 
Modified Eagle Medium (DMEM) with 10% fetal bovine 
serum and 1% penicillin/streptomycin, then maintained at 
37 °C in a 5%  CO2 atmosphere. Glioblastoma tumors and 
their adjacent normal tissues were collected from West 
China Hospital, Sichuan University, with ethical approval 
and informed patient consent.

Plasmid construction

To construct the SRSF9 overexpressing plasmid, cDNA was 
reversely transcribed from total RNA of GBM cells and the 
open reading frame (ORF) encoding SRSF9 was amplified by 
Phanta Super-fidelity DNA polymerase (Vazyme, P505-d1), 
then the ORF fragment was recombinantly inserted into the 
linear vector pCDH-CMV-MCS-EF1 digested by EcoRI and 
BamHI. To knock down SRSF9 or CDK1 expression, the 
synthesized oligonucleotides were annealed and inserted 
into the pLKO.1-TRC vector at  AgeI and EcoRI sites. To 
assess CDK1 promoter activity, a fragment of the CDK1 
promoter region (chr10:60,778,042–60,780,047; from − 457 
to + 1570, relative to the transcription start site of CDK1 
gene) was amplified from U251 genomic DNA and inserted 
into the pGL3-basic vector at KpnI and HindIII sites. Primer 
sequences are provided in Table S1.

Cell transfection and lentiviral infection

HEK293T cells were transfected with the target plasmid 
and packaging plasmids psPAX2 and pMD2G in the ratio 
of 4:3:1, and the supernatants were collected as lentivirus 
solution at 48 and 72 h. U251, U87, and LN229 cells were 
infected with the lentivirus in the presence of 8 μg/mL poly-
brene (Solarbio, H8761). Stable cell lines were established 
following selection with 2 μg/mL puromycin (Biofroxx, 
1299MG025).

Quantitative real‑time PCR (RT‑qPCR) 
and semi‑quantitative RT‑PCR

Total RNAs from cells and tissues were extracted by RNAiso 
Plus reagent (TaKaRa, 9108) and reverse-transcribed into 
cDNAs using the PrimeScript RT Reagent Kit (TaKaRa, 
RR047A). RT-qPCR was conducted using specific primers 
on the Applied Biosystems Real-Time PCR System. Semi-
quantitative RT-PCR was performed with a thermal cycler 
(Applied Biosystems, USA), and PCR products were ana-
lyzed by agarose gel electrophoresis. Primer sequences are 
listed in Table S1.

Western blot

Total proteins were isolated from cells using RIPA lysis 
buffer (Beyotime Biotechnology, P0013B) containing pro-
tease and phosphatase inhibitors (Bimake, B15001) and 
measured by BCA Protein Assay Kit (Beyotime Biotech-
nology, P0010). Proteins were separated by sodium dode-
cyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) 
and transferred to polyvinylidene difluoride membrane 
(Millipore). The membrane was blocked with 5% skim milk 
(Biofrox, 1172GR500) for 1 h at room temperature, incu-
bated with primary antibody overnight at 4 °C, washed and 
incubated with HRP-conjugated secondary antibody for 1 h 
at room temperature. Protein detection was performed by 
chemiluminescence on a ChemiDoc imaging system (Bio-
Rad). Antibodies: GAPDH (CST, cat#3683, 1:2000); SRSF9 
(Proteintech, cat#17926-1-AP, 1:1000); CDK1 (Proteintech, 
cat#19532-1-AP, 1:1000).

Cell migration assay

Cells were suspended in 200 µL DMEM with 1% BSA and 
seeded in the upper chamber of a Transwell insert (Milli-
pore, PI8P01250), and 600 µL DMEM with 5% FBS was 
added into the lower chamber. After migrating for 16 h at 
37 °C in 5%  CO2 atmosphere, cells that migrated to the 
bottom of the insert were fixed in 4% paraformaldehyde 
(Biosharp, BL539A) for 20 min and then stained with 0.5% 
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crystal violet (Beyotime Biotechnology, C0121) for 30 min. 
Stained cells were photographed and counted under a light 
microscope.

Methylthialazole tetrazolium (MTT) assay

To assess cell viability, 800 cells were seeded into 96-well 
plate and cultured overnight at 37℃. At indicated time points 
(1, 3, 5, and 7 days), 10 µL of MTT solution was added 
to each well and incubated at 37 °C for 4 h. After remov-
ing supernatants, 150 µL of DMSO was used to dissolve 
the formazan crystals, and the absorbance was measured at 
570 nm using an enzyme marker (BioTek).

Colony formation assay

For colony formation assay, cells were inoculated into 6-well 
plates and incubated at 37 °C in 5%  CO2 for 10 days, chang-
ing medium every three days. After incubation, colonies 
were first washed with PBS, then fixed with 4% paraform-
aldehyde for 20 min at room temperature and stained with 
0.5% crystal violet for 30 min. The stained cells were imaged 
using a scanner and the dye was dissolved in ethanol and 
analyzed at 570 nm for quantification.

Cell cycle analysis

Cells were harvested by EDTA-free trypsin, washed three 
times with PBS, and then fixed by 70% ethanol at 4 °C over-
night. After washing and centrifugation, cells were stained 
with 50 μg/mL propidium iodide and 100 μg/mL RNase A in 
PBS. Cell cycle analysis was performed by CytoFLEX flow 
cytometer and  analyzed with ModFit software.

Measurement of mRNA stability

Cells were treated with 2  μg/mL actinomycin D (Sell-
eck, S8964) for indicated times and then total RNAs were 
extracted. The stability of CDK1 mRNA was evaluated 
using RT-qPCR to quantify its half-life.

Immunofluorescence assay

Tumor tissues were fixed in 4% paraformaldehyde, dehy-
drated, paraffin-embedded, and then cut into 6 μm-thick 
sections. Sections were baked at 65 °C for 4 h, dewaxed in 
xylene, and rehydrated through a graded series of alcohol 
solutions. Antigen retrieval was performed by microwav-
ing for 8 min in antigen repair solution (Zsbio, ZLI-9065), 

then cooling, treating with  H2O2, and permeabilizing with 
Triton X-100. Sections were blocked with 5% goat serum 
(Zsbio, ZLI-9056) and then incubated with primary anti-
bodies against SRSF9 (Proteintech, cat#17926-1-AP, 1:100) 
and CDK1 (Proteintech, cat#19532-1-AP, 1:50) overnight 
at 4 °C, followed by treatment with the secondary antibod-
ies for 1 h at room temperature. Cells were counterstained 
with DAPI solution and visualized under a fluorescence 
microscope.

Chromatin immunoprecipitation (ChIP)

ChIP assays were performed using the  SimpleChIP® Plus 
Enzymatic Chromatin IP Kit (CST, 9004), in which 5 × 10^6 
cells per reaction were fixed with 1% formaldehyde to main-
tain protein-DNA interactions. Chromatin was digested into 
150–900 bp by Micrococcal Nuclease digestion. Immuno-
precipitation was performed using ANTI-FLAG® M2 affin-
ity gel (Sigma, cat#A2220) to enrich Flag-tagged SRSF9 
complexes. To assess the efficiency of immunoprecipita-
tion, one-fifth of the samples were analyzed by Western 
blot with anti-Flag antibody (CST, cat#14793). The remain-
ing four-fifths of the samples were subjected to reversal of 
cross-links, DNA purification and semi-quantitative PCR to 
identify the association of SRSF9 protein with  the CDK1 
promoter .

Dual‑luciferase reporter assay

HEK293T cells were transfected with the CDK1 luciferase 
reporter plasmid (pGL3-basic-CDK1), pRL-TK Renilla, and 
SRSF9-expressing plasmid via Lipofectamine 2000 (Invit-
rogen). After 36 to 48 h, luciferase activities were meas-
ured using a Dual-luciferase Reporter Assay Kit (Promega, 
E1910) with a microplate reader (PerkinElmer), and the 
Firefly/Renilla ratio was calculated to assess the effect of 
SRSF9 on CDK1 promoter activity.

Bioinformatics analysis methods

Gene expression analysis

Data from the TCGA database (https:// www. cancer. gov/ ccg/ 
resea rch/ genome- seque ncing/ tcga) were utilized to analyze and 
visualize SRSF9 expression in various cancers. We examined 
SRSF9 and CDK1 mRNA levels in GBM and adjacent normal 
samples using databases such as BEST (https:// rooki eutop ia. 
com/) and GEPIA2 (Tang et al. 2019) (http:// gepia2. cancer- 
pku. cn/), and assessed protein levels through the UALCAN 
database (http:// ualcan. path. uab. edu/). SRSF9 expression in 
different grades of GBM was analyzed using the CGGA data-
base (http:// www. cgga. org. cn/). In addition, we analyzed the 
correlation between SRSF9 and CDK1 expressions in GBM 

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://rookieutopia.com/
https://rookieutopia.com/
http://gepia2.cancer-pku.cn/
http://gepia2.cancer-pku.cn/
http://ualcan.path.uab.edu/
http://www.cgga.org.cn/
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using our own RNA-seq data from 38 paired tumor and adja-
cent normal tissues, collected at West China Hospital, Sichuan 
University.

Pathway enrichment analysis

Biomarker Exploration of Solid Tumors (BEST) provides 
access to 2,277 GBM samples. Through BEST, we con-
ducted a GSEA enrichment analysis on SRSF9, utiliz-
ing two datasets: one based on KEGG, termed GSEA-
KEGG analysis, and another based on the Hallmark 
dataset, named GSEA-Hallmark analysis. Furthermore, 
we analyzed the correlation of SRSF9 expression with 
cell cycle, E2F targets, and G2M checkpoint.

Survival curve analysis

The prognostic relevance of SRSF9 expression in vari-
ous cancers was assessed using the Kaplan–Meier Plotter 
database (http:// kmplot. com/ analy sis/), which includes 
data from GEO, EGA, and TCGA. The correlation 
between SRSF9 mRNA levels and overall survival (OS) 
in the GBM group was calculated by the Kaplan–Meier 
curve and log-rank test, a tool that automatically gener-
ates risk ratios (HR) and 95% confidence intervals, with 
a p value of < 0.05 considered statistically significant. In 
addition, we investigated the prognostic significance of 
SRSF9 or CDK1 expression within BEST to explore their 
potential impact on survival outcomes in GBM patients.

Statistical analysis

Statistical analyses in our study were conducted using Graph-
Pad Prism 8.0. Quantitative data were evaluated using two-
tailed Student’s t-test, one-way or two-way ANOVA. Statis-
tical significance was determined at *p < 0.05, **p < 0.01, 
***p < 0.001, with "ns" indicating non-significant results.

Results

Expression and prognostic significance of SRSF9 
in glioblastoma and other cancers

A comprehensive analysis of SRSF9 mRNA levels in 
TCGA database identified significant upregulation of 
SRSF9 in various cancers, notably in GBM, breast can-
cer, and lung squamous cell carcinoma, with tumor tissues 
exhibiting markedly higher levels than adjacent normal 
tissues (Fig. 1A, B). The elevated SRSF9 expression in 
GBM tumor tissues was also validated at protein level 
using UALCAN datasets (Fig. 1C), and a stage-specific 
increase in SRSF9 expression correlated to advanc-
ing GBM stages according to WHO grading (Fig. 1D). 

RT-qPCR and Western blot analyses further confirmed the 
elevated expression of SRSF9 in GBM samples compared 
to adjacent normal tissues collected by us (Fig. 1E). These 
findings indicate a strong association between increased 
SRSF9 expression and glioma progression.

To evaluate SRSF9’s prognostic potential, we employed 
the data from CGGA (Zhao et al. 2021) and E_TAMB_898 
cohorts to perform Kaplan–Meier analyses. The results 
showed that higher SRSF9 expression was consistently 
correlated to shortened overall survival of glioma patients 
(Fig.  2A–C), which was further validated by 6 GEO 
cohorts for GBM patients (Fig. 2D–I). In addition, such 
correlation was also observed in other cancers, such as 
lung adenocarcinoma and hepatocellular carcinoma (Fig. 
S1).

SRSF9 promotes proliferation and migration of GBM 
cells

To explore the cellular function of SRSF9 in GBM, we 
measured SRSF9 expression among different GBM cell 
lines (Fig. 3A, B), and then examined its effects on cell 
proliferation and migration.

The gain-of-function experiments were conducted in 
U251 and U87 cells with relatively low SRSF9 expression, 
and the stable overexpression of SRSF9 in these cells were 
obtained after successfully infecting cells with SRSF9 
overexpression viruses and confirmed at both mRNA and 
protein levels (Fig. 3C, D). Subsequently, Transwell assays 
showed enhancement of GBM cell migration by SRSF9 
(Fig. 3G), while MTT and colony formation assays indi-
cated its role in promoting cell proliferation (Fig. 3H–J).

In addition to overexpression, knockdown experi-
ments were conducted to confirm the SRSF9 function in 
GBM, for which two shRNAs targeting SRSF9, named 
sh1 and sh2, and a control shRNA (shCtrl) were designed 
to prepare lentiviruses. After infecting the high SRSF9-
expressing cell line LN229 with these shRNA viruses, a 
notable reduction in SRSF9 expression was observed at 
both mRNA and protein levels (Fig. 3E, F). The knock-
down of SRSF9 expression led to a decreased cell migra-
tion (Fig. 3K) and a reduced cell proliferation (Fig. 3L–N). 
Taken together, SRSF9 promotes proliferation and migra-
tion of GBM cells.

Impact of SRSF9 on cell cycle and DNA replication 
pathways in GBM

To elucidate the mechanism by which SRSF9 promotes 
GBM progression, we performed bioinformatics analyses 
to predict potential pathways affected by SRSF9 using the 
data from Biomarker Exploration of Solid Tumors (BEST) 

http://kmplot.com/analysis/
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(Liu et al. 2023b). Gene Set Enrichment Analysis(GSEA)—
Kyoto Encyclopedia of Genes and Genomes (KEGG) analy-
sis suggested that SRSF9 is related to critical pathways in 
cell cycle, spliceosome, and DNA replication (Fig. 4A). 

Furthermore, GSEA-Hallmark analysis showed SRSF9’s 
association with E2F targets, G2/M checkpoint, and mitotic 
spindle elements (Fig. 4B). Notably, the pathways governing 
cell growth, including cell cycle, G2M checkpoints and E2F 

Fig. 1  SRSF9 expression is abnormally high in GBM. A SRSF9 
expression across different tumor types. B SRSF9 expression ana-
lyzed in six independent GEO cohorts. C Box plot of SRSF9 protein 
expression in GBM (99 samples) compared to normal tissues (10 
samples) in UALCAN data (Li et  al. 2023). D Analysis of SRSF9 

expression across various grades of GBM using Chinese Glioma 
Genome Atlas (CGGA) database. E Western Blot and RT-qPCR 
assessments of SRSF9 protein and mRNA expression in GBM patient 
tissues



 Journal of Cancer Research and Clinical Oncology (2024) 150:292292 Page 6 of 14

targets, were particularly abundant in GBM with elevated 
SRSF9 expression, indicating its strong influence on prolif-
eration and tumorigenesis (Fig. 4C–E).

Positive correlation of SRSF9 upregulation 
with CDK1 in GBM

To further understand the molecular mechanism by which 
SRSF9 exerts its tumor-promoting role in GBM, we 
employed various strategies and screened out key SRSF9-
regulated genes that influence cell cycle. Our screening 
strategy commenced with the analysis of 3643 differen-
tially expressed genes between GBM and adjacent tissues 
(Table S2, |log2 FC|> 1, p value < 0.05), refined through 
Spearman correlation to identify 139 strongly SRSF9-
correlated genes (Table S3, ρ > 0.8). Further focusing on 
cell cycle gene set (Subramanian et  al. 2005; Liberzon 

et al. 2011, 2015) (from MSigDB, Table S4) and CLIP-seq 
data (Li et al. 2014) (from StarBase, Table S5), we nar-
rowed our findings to 14 key genes potentially interacting 
with SRSF9, notably including CDK1, as illustrated in our 
differential expression volcano plots (Fig. 5A). Cyclin-
Dependent Kinase 1 (CDK1) is a key regulator of cell cycle 
progression and its elevated expression participates in tumor 
development (Ding et al. 2020; Ghafouri-Fard et al. 2022). 
We found that CDK1 expression is upregulated in GBM at 
both mRNA and protein levels (Fig. S2), so we wonder if 
SRSF9 regulates CDK1 expression. To address this issue, 
we ectopically expressed or knocked down SRSF9 expres-
sion. The results showed that overexpression and knockdown 
of SRSF9 were accompanied by increase and decrease in 
CDK1 expression, respectively (Fig. 5B–D). Moreover, the 
significant positive correlation between SRSF9 and CDK1 
expression in GBM tissues was observed via analyzing RNA 

Fig. 2  Higher SRSF9 expression exhibited significantly poorer over-
all survival in GBM across various datasets: A CGGA_325 (n = 137), 
B CGGA_693 (n = 237), C E_TABM_898 (n = 48), D GSE7696 

(n = 80), E GSE13041 (n = 267), F GSE33331 (n = 21), G GSE42669 
(n = 55), H GSE83300 (n = 50), and I GSE108474 (n = 195)



Journal of Cancer Research and Clinical Oncology (2024) 150:292 Page 7 of 14 292

Fig. 3  SRSF9 promotes proliferation and migration of GBM cells. A 
SRSF9 mRNA levels in GBM cells were measured using RT-qPCR. 
B Western blot assay was used to detect SRSF9 protein levels in six 
GBM cell types. C, D Overexpression of SRSF9 in U251 and U87 
stable cell lines was confirmed by RT-qPCR and Western blot anal-

yses. E, F Knockdown of SRSF9 expression  in LN229 was verified 
by RT-qPCR and Western blot analyses. G, K Transwell assays to 
show the effect of SRSF9 on cell migration. H, L, M Colony forma-
tion assays to assess the effect of SRSF9 on cell growth. I, J, N MTT 
assays to demonstrate the effect of SRSF9 on cell proliferation
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Fig. 4  Potential SRSF9-driven signaling pathway in GBM. A, B 
SRSF9 signaling pathway engagement in GBM as shown by GSEA-
KEGG and GSEA-Hallmark. The x-axis represents the enrich score 
of pathways in the data, while color gradients denote statistical sig-

nificance through adjusted p-values. C–E The relationship between 
SRSF9 expression and multiple pathways, as indicated by GSEA 
enrichment scores, highlighting its significance in GBM pathogenesis
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Fig. 5  SRSF9 upregulation and positive correlation with CDK1 in 
GBM. A Identification of functionally important targets within the 
SRSF9 axis through screening strategies (top), and the illustration of 
their differential expression in GBM tumors versus peritumor tissues 
using volcano plots (bottom). B, C RT-qPCR assay quantified CDK1 
mRNA levels in GBM cells with altered SRSF9 expression. D West-
ern blot analysis revealed CDK1 protein levels after SRSF9 overex-
pression or knockdown. E A positive correlation between SRSF9 

and CDK1 expression in GBM was analyzed using data described 
in the method Sect. 2.14.1 (n = 76). F, G RT-qPCR analyzed SRSF9 
and CDK1 in 8 paired GBM and adjacent normal tissues. H Corre-
lation analysis confirmed a significant association between SRSF9 
and CDK1 in GBM tissues (n = 8). I–K Immunofluorescence assays 
quantified the levels of SRSF9 and CDK1 in normal and GBM tis-
sues, capturing fluorescence intensities in images for correlation anal-
ysis (n = 3)
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sequencing data (n = 76) from our study (Wang et al. 2022a) 
(R = 0.83, p < 0.002; Fig. 5E), which was further validated 
in eight collected GBM clinical samples at mRNA levels 
(Fig. 5F–H) and protein levels (Fig. 5I–K, Fig. S3). Besides, 
immunofluorescence staining data also revealed the spatial 
localization of these proteins: CDK1 was primarily located 
in the cytoplasm, whereas SRSF9 was mainly found in the 
nucleus (Fig. 5I–K), suggesting that SRSF9 may regulate 
CDK1 expression in the nucleus.

SRSF9 promotes proliferation and migration of GBM 
cells through enhancing CDK1 expression

Given the facts that SRSF9 promote proliferation and migra-
tion of GBM cells (Fig. 3) and CDK1 expression is regulated 
by SRSF9 (Fig. 5), we wondered if CDK1 mediates the cel-
lular functions of SRSF9. To this end, a shRNA targeting 
CDK1 was designed to construct the stable cell lines and the 
knockdown of CDK1 expression was confirmed by West-
ern blot analyses (Fig. 6A). Then we evaluated the migra-
tion and proliferation capabilities of these cells. The results 
showed that shRNA-mediated CDK1 interference signifi-
cantly diminished the enhanced proliferation and migration 
in SRSF9-overexpressing cells (Fig. 6B–F). Additionally, 
flow cytometry analyses demonstrated that SRSF9 over-
expression accelerated the transition from S-phase to G2 
in U251 cells, but this process was inhibited when CDK1 
was knocked down, resulting in S-phase arrest (Fig. 6G). 
Furthermore, bioinformatics analyses of different public 
datasets revealed that GBM patients with increased CDK1 
expression had reduced survival time (Fig. 6H, I), confirm-
ing the importance of CDK1 in regulating GBM progres-
sion. Together, SRSF9 can enhance CDK1 expression to 
promote cell proliferation and migration, thereby contribut-
ing to GBM development.

SRSF9 regulates CDK1 transcription 
through binding to the promoter

Given the observed influence of SRSF9 on CDK1 expres-
sion, we hypothesized that SRSF9 may exert its effect on 
CDK1 mRNA stability, splicing efficiency, or transcrip-
tion levels. To test these hypotheses, we first measured the 
half-lives of CDK1 mRNA in GBM cell lines with upregu-
lated or downregulated SRSF9 expression, and found that 
SRSF9 has no significant impact on CDK1 mRNA stability 
(Fig. 7A, B). Then we measured pre-mRNA levels of CDK1 
by semi-quantitative RT-PCR analyses in cells with or with-
out SRSF9 overexpression, and found an increased CDK1 
pre-mRNA level with SRSF9 overexpression, suggesting 
SRSF9 may regulate CDK1 expression at the transcrip-
tional level (Fig. 7C, Table S1). Using ChIPBase (Huang 
et al. 2023) and UCSC’s H3K27Ac data, we identified the 

CDK1 gene promoter region and designed specific prim-
ers (Fig. 7D, Table S1) to verify protein-DNA interactions. 
The ChIP-PCR results demonstrated that SRSF9 was signifi-
cantly enriched at the CDK1 promoter regions P1, P2 and 
P4 (Fig. 7E). Subsequently, the CDK1 gene promoter was 
cloned to the pGL3-basic vector for dual-luciferase assay. 
The results showed that SRSF9 overexpression significantly 
increased the luciferase activity, suggesting the transcrip-
tional regulation of CDK1 expression by SRSF9 (Fig. 7F, 
G). Together, SRSF9 may regulates CDK1 expression at 
transcriptional level.

Discussion

The SRSF protein family is shown to regulate gene tran-
scription, RNA splicing, RNA export, RNA stability and 
protein translation (Zhong et al. 2009; Wagner and Frye 
2021; Jin 2022), and their upregulation is associated with 
cancer development (Stanley and Abdel-Wahab 2022; An 
et al. 2024). In this study, we found an increased SRSF9 
expression among different tumors, notably in GBM (Fig. 1), 
and the elevated SRSF9 expression closely correlates to 
poor survival of GBM patients (Fig. 2). Therefore, SRSF9 
is pivotal in glioma development and could be a prognostic 
marker to predict patients’ survival.

Through gain- and loss-of-function approach, we demon-
strated that SRSF9 accelerates GBM cell growth and migra-
tion (Fig. 3). These findings are consistent with what has 
been observed in hepatocellular carcinoma (HCC), where 
inhibition of SRSF9 resulted in reduced proliferation and 
migration (Liu et al. 2022b). SRSF9 has also been found 
to function as an m6A-binding protein in colorectal cancer 
(CRC), enhancing the stability of specific mRNAs involved 
in CRC malignant progression (Wang et al. 2022b). Thus, 
SRSF9 plays oncogenic roles in a wide spectrum of cancers.

SRSF9 co-expressed gene enrichment analysis through 
GSEA indicates its involvement in cell cycle regulation 
(Fig. 4). Through a correlation analysis of GBM tumor 
samples, along with cellular assays of SRSF9 knockdown 
and overexpression, we revealed that SRSF9 positively regu-
lates the expression of CDK1 (Fig. 5), a cell cycle control-
ler. Moreover, flow cytometry analyses showed that regula-
tion of SRSF9 and CDK1 affected the S phase transition in 
U251 cells, suggesting that they have a regulatory role in 
cell cycle progression (Fig. 6G). Notably, CDK1 depletion 
disrupts S-phase arrest and ATR/ATM target phosphoryla-
tion after DNA damage (Satyanarayana et al. 2008; Johnson 
et al. 2009), which indirectly supports our conclusion. Since 
numerous studies have documented aberrant expression of 
CDK1 in various tumors, linking it to poor patient prognosis 
(Piao et al. 2019; Li et al. 2020; Du et al. 2023; Han et al. 
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Fig. 6  CDK1 participates in SRSF9-promoted cell proliferation and 
migration. A Western blotting assessed CDK1 protein levels in U251 
cells with SRSF9 overexpression and CDK1 shRNA interference. B, 
C Transwell assay evaluated the effects of CDK1 shRNA on migra-
tion in SRSF9-overexpressing U251 cells. MTT assay D and colony 
formation assay E, F measured the effects of CDK1 shRNA on prolif-

eration in U251 cells induced by SRSF9 overexpression. G Cell cycle 
analysis illustrated the impact of CDK1 shRNA on SRSF9-overex-
pressing U251 cells, detailing the proportion at each cell cycle stage. 
H, I Survival analysis, correlating CDK1 expression with overall sur-
vival in GBM patients, was based on CGGA (CGGA_693, n = 237), 
GEO (GSE4271, n = 152)
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2023), analyzing the impact of SRSF9 on S phase transition 
via CDK1 in GBM cells will deepen our molecular insights.

SRSF9, an RNA-binding protein, is reported to partici-
pate in mRNA splicing (Ha et al. 2021), protein export 
from the nucleus (Raffetseder et al. 2003), protein transla-
tion (Fu et al. 2013a; Matsumoto et al. 2021), and A-to-I 
editing (Shanmugam et al. 2018). Our findings through 
ChIP-PCR and dual-luciferase assays indicate that SRSF9 
specifically targets the CDK1 gene promoter to enhance 
transcription, resulting in elevated CDK1 protein levels 
(Fig. 7). This finding highlights a novel involvement of 

SRSF9 in transcriptional regulation at the DNA level and 
suggests that its regulation of CDK1 may be associated 
with chromatin remodeling. Although chromatin remod-
eling is known to broadly affect cancer (Weissman and 
Knudsen 2009; Kadoch and Crabtree 2015), the specific 
role of SRSF9 in this process has not been clarified. Like 
transcription factors (TFs), RNA-binding proteins (RBPs) 
often target genomic hotspots, particularly gene promoters, 
where their binding significantly influences transcriptional 
activity (Xiao et al. 2019). Study reported DDX43, an 
RNA-binding protein, as pivotal in germ cell development 

Fig. 7  SRSF9 regulates CDK1 transcription through binding to the 
promoter. A, B Analysis of CDK1 mRNA stability: RT-qPCR was 
employed to assess the half-life of CDK1 mRNA (normalized to 0 h) 
in the context of SRSF9 overexpression and knockdown, following 
treatment with actinomycin D. C Semi-quantitative RT-PCR analy-
sis measured the transcription rate of CDK1 mRNA and its precursor 
RNA following SRSF9 overexpression. D Schematic representation 
includes the CDK1 promoter region from −457 to + 1570 relative to 
the TSS, highlighting PCR fragments P1-P5: P1 outside the promoter, 
P2-P4 inside the promoter, and P5 near the 3' UTR. Primers for 

these fragments were designed to explore interactions with SRSF9. 
E The FLAG antibody detected FLAG-SRSF9 enrichment efficiency 
in ChIP assay (top). ChIP-PCR on U251 cells infected with SRSF9-
overexpressing or control (Ctrl) viruses analyzed SRSF9's binding to 
the CDK1 promoter (bottom). F Quality control confirmed SRSF9 
overexpression in HEK293T cells transfected with a dual-luciferase 
reporter gene. G CDK1 promoter activity assay: the CDK1 promoter 
was cloned into a dual-luciferase reporter plasmid to assess its activ-
ity in HEK293T cells with overexpressed SRSF9. Renilla luciferase 
was used as an internal control
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through its role in chromatin remodeling (Tan et al. 2023), 
underscoring the importance of open chromatin for tran-
scription factor access and gene regulation. Given that 
altered chromatin dynamics lead to an accelerated cell 
cycle, which in turn increases cancer risk (Ferraro 2016), 
it becomes crucial to further investigate how SRSF9 
affects CDK1 and other genes. This research should delve 
into changes in chromatin accessibility and recruitment of 
transcription factors, using advanced techniques such as 
mass spectrometry and Assay for Transposase Accessible-
Chromatin with high-throughput sequencing (ATAC-seq) 
for validation.

In summary, this study identifies significant upregulation 
of SRSF9 in GBM and demonstrates that its high expres-
sion correlates with poor survival of GBM patients. Utiliz-
ing gain-of-function and loss-of-function approaches, it was 
shown that SRSF9 plays a role in promoting proliferation 
and migration of GBM cells. Mechanistic analysis showed 
that SRSF9 binds to the promoter region of the CDK1 gene, 
leading to an increase in transcription levels and ultimately 
promoting GBM cell proliferation. These findings shed light 
on the cellular functions of SRSF9 in GBM and highlight its 
potential as a therapeutic target for GBM.
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