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Abstract

Growth hormone (GH) is secreted by somatotropic cells of the anterior pituitary gland. The 

classical effects of GH comprise the stimulation of cell proliferation, tissue and body growth, 

lipolysis, and insulin resistance. The GH receptor (GHR) is expressed in numerous brain regions. 

Notably, a growing body of evidence indicates that GH-induced GHR signaling in specific 

neuronal populations regulates multiple physiological functions, including energy balance, glucose 

homeostasis, stress response, behavior, and several neurological/cognitive aspects. The importance 

of central GHR signaling is particularly evident when the organism is under metabolic stress, 

such as pregnancy, chronic food deprivation, hypoglycemia, and prolonged exercise. These 

particular situations are associated with elevated GH secretion. Thus, central GH action represents 

an internal signal that coordinates metabolic, neurological, neuroendocrine, and behavioral 

adaptations that are evolutionarily advantageous to increase the chances of survival. This review 

summarizes and discusses recent findings indicating that the brain is an important target of GH, 

and GHR signaling in different neuronal populations regulates essential physiological functions.
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1 Introduction

Growth hormone (GH) is produced by somatotropic cells of the anterior pituitary gland. GH 

secretion is regulated by multiple factors, including neuropeptides released by hypothalamic 

neurons, like somatostatin (SST) and GH-releasing hormone (GHRH), the stomach-derived 

hormone ghrelin (from gh-releasing peptide), and metabolites like glucose, free fatty acids 

(FFAs), and amino acids [1, 2]. GH secretion presents a complex pattern characterized 
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by pulses interspersed with periods of low circulating GH levels. GH secretion markedly 

increases during puberty [3] and shows a progressive decline with aging [1, 2]. The 

peak of GH secretion during puberty coincides with the timing of greatest body growth, 

highlighting the critical role of this hormone in somatic growth. Accordingly, defects in GH 

secretion or action during infancy and adolescence lead to reduced body growth, whereas 

GH oversecretion can cause gigantism. In adults, increased GH secretion does not cause 

a significant increase in height due to the closure of the epiphyseal plates of long bones. 

However, GH oversecretion in adults still causes the growth of some bones (e.g., in the head, 

hands, and feet) and fluid retention in several tissues, leading to the physical features of 

acromegaly [4].

GH's effects on body growth involve two mechanisms: a direct action on target tissues via 

activation of GH receptor (GHR) and an indirect mechanism through circulating insulin-like 

growth factor 1 (IGF-1) [5]. GHR signaling in the liver is necessary to induce IGF-1 

production and is responsible for ~80% of circulating IGF-1. GHR ablation in hepatocytes 

causes a marked decrease in plasma IGF-1 [6]. Interestingly, liver-specific GHR knockout 

mice exhibit only a moderate reduction in body weight, demonstrating that a significant part 

of the effects of GH regulating body growth is independent of liver-derived IGF-1 [6].

Not only does GHR signaling plays a crucial role in regulating tissue and body growth, but 

GH action also produces significant metabolic effects. GH stimulates lipolysis in adipocytes, 

increases hepatic gluconeogenesis, and causes insulin resistance in multiple tissues [5, 7, 

8]. In accordance with these effects, GH- or GHR-deficient humans and animals frequently 

present improved insulin sensitivity. So, they are protected from type 2 diabetes mellitus 

despite showing increased body adiposity [8]. On the other hand, patients with acromegaly 

exhibit a higher incidence of diabetes mellitus [4]. Since GHR expression is found in the 

liver, adipose tissue, and skeletal muscle, the diabetogenic effect of GH is thought to be 

mediated by a direct effect on these insulin-sensitive tissues [7]. The increased FFA flux and, 

consequently, the lipotoxicity caused by the lipolytic effect of GH is considered the main 

factor contributing to GH-induced insulin resistance [8].

The central nervous system (CNS) is also a target of GH action because GHR is expressed 

in multiple brain regions [9-12]. GH-responsive neurons are abundantly found in some 

hypothalamic and brainstem nuclei, amygdala, and hippocampus [9-12]. The importance 

of central GH action has only been studied in more detail recently (Figure 1). This 

review summarizes the newest findings on the physiological importance of GHR signaling 

in specific neuronal populations. These results were generated by analyzing genetically 

modified mice carrying GHR inactivation in specific neuronal populations. Thus, numerous 

neural-specific GHR knockout mouse models revealed that GH action in the brain regulates 

energy balance, glucose homeostasis, stress response, behavior, and several neurological/

cognitive aspects. These findings indicate that the brain is an essential target of GH action 

to control a variety of homeostatic processes and present potential clinical implications that 

will be discussed below.
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2 Neuroendocrine and cognitive effects of GH

Pioneer studies revealed that GH administration, either in hypophysectomized or sham-

operated rats, affects hypothalamic gene expression of neuropeptides that control GH 

secretion [13], demonstrating that GH action in the brain controls pituitary GH secretion via 

a negative feedback loop [1, 2]. Thus, the first described function of GH in the brain is the 

regulation of its secretion via negative feedback on hypothalamic neurons. Since circulating 

IGF-1 levels are controlled by GH secretion [1, 2], changes in IGF-1 secretion also represent 

another cue informing the brain about the activity of the somatotropic axis. Accordingly, 

intracerebroventricular IGF-1 administration reduces GH secretion and body growth [14]. 

GH can also regulate the activity of other endocrine axes. GH deficiency or excess causes 

reproductive system alterations and decreases fertility [15, 16]. Recent evidence suggests 

that part of these effects can be mediated by the CNS since GHR ablation in specific 

neuronal populations affects the timing of puberty and hypothalamic expression of genes 

that control the hypothalamic-pituitary-gonadal axis [17, 18]. In addition, restraint stress-

induced prolactin secretion is impaired in mice carrying ablation of GHR in dopaminergic 

neurons [19]. Although this effect was observed only in male mice [19], it suggests an 

interaction between GH and prolactin endocrine axes, especially in stress response.

In addition to its neuroendocrine effect in the hypothalamus, GH modulates synaptic 

function, neural plasticity, and glutamatergic neurotransmission in the hippocampus, 

positively affecting cognition and memory [20-24]. Brain-specific signal transducer and 

activator of transcription 5 (STAT5) knockout mice exhibit impairment in memory and 

learning, suggesting that STAT5 is a downstream effector of GH to modulate cognitive 

aspects [25]. There is also evidence that GH treatment can mitigate age-related cognitive 

impairment in old animals [26]. However, at least part of the neurological action of GH 

is mediated by IGF-1 because IGF-1 administration can mimic the effects observed by 

GH treatment [26, 27]. Furthermore, GH seems to possess neuroprotective effects [28-32]. 

Paradoxically, aged GH- or GHR-deficient mice exhibit better cognitive performance than 

age-matched wild-type mice and are protected against aging-induced neurodegeneration 

[33]. In line with these findings, GH oversecretion reduces cognitive performance in twelve-

month-old mice, whereas transgenic expression of GHR antagonist improves learning in 

middle-aged mice [34]. The increased insulin sensitivity of GHR-deficient mice can partially 

explain the protection against aging-induced decline in cognition since insulin resistance is 

associated with cognitive decline [35, 36].

Another brain structure associated with GH action is the amygdala. Basolateral amygdala 

(BLA) stimulation induces GH secretion in anesthetized male rats [37]. Previous studies 

demonstrated that BLA neurons express GH [38]. Chronic stress or administration of a 

ghrelin receptor agonist increases GH expression in BLA of rats, suggesting a role of 

non-pituitary-derived GH [38]. Inhibition of GHR signaling in the amygdala decreases fear 

memory [38]. In contrast, virus-mediated GH overexpression in the BLA enhances fear 

memory and dendritic spine density in the amygdala of rats [39]. Notably, BLA does not 

contain GH-responsive neurons or express Ghr mRNA, whereas the central nucleus of the 

amygdala (CEA) exhibits a pronounced number of GH-responsive neurons in rodents [9, 10, 

40]. Thus, BLA-derived GH may diffuse locally and act in a paracrine manner in nearby 
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GHR-expressing neurons in the CEA. A recent study found that SST-expressing neurons in 

the CEA are highly responsive to GH [41]. GHR ablation in these neurons decreases fear 

memory in male and female mice [41]. Moreover, SSTΔGHR male mice exhibit increased 

anxiety-like behavior, but female knockouts show no alterations in anxiety [41]. These 

effects were associated with multiple and sex-dependent changes in the expression of 

factors (e.g., γ-aminobutyric acid and glutamate receptors, vesicular glutamate transporter 

1, synaptophysin, and brain-derived neurotrophic factor) involved in synaptic plasticity and 

function in the amygdala [41]. Thus, GHR signaling in SST neurons, probably in the 

extended amygdala, modulates fear memory, and anxiety.

2.1 Potential clinical implications of cognitive and neurological effects of GH

The GH/IGF-1 axis is possibly involved in the cognitive alterations associated with aging 

and the development of neurodegenerative diseases like Alzheimer’s. On the one hand, 

normal GH/IGF-1 axis activity is favorable for fully developing cognitive functions such 

as memory [20-24, 26, 27]. For example, a recent study suggests that IGF-1 deficiency 

is behind Down syndrome's neurodegeneration [42]. Furthermore, since GH presents 

neuroprotective effects [28-32], this may help explain why young individuals, who naturally 

secrete more GH, have a greater neuroregeneration capacity than old individuals. However, 

GH also induces insulin resistance [7, 8]. Decreased insulin sensitivity is associated with 

cognitive decline and neurodegenerative diseases [35]. Importantly, brain insulin resistance 

in Alzheimer's patients is associated with IGF-1 resistance [34], probably contributing to 

the cognitive decline of this disease. Thus, the physiological decrease in GH secretion with 

aging may be beneficial in decreasing GH-induced insulin resistance and preventing the 

associated decline in cognitive function. The potential pros and cons of GH replacement 

therapy on cognitive aspects must be considered in this context. Additionally, there seems to 

be a Goldilocks effect both in young and older individuals, that is, too little or too much GH 

action at a particular age may lead to physiological problems.

Our recent findings revealed that GHR signaling is anxiolytic. However, it favors the 

development of fear memory, a key feature of post-traumatic stress disorder [41]. These 

results are in accordance with previous studies demonstrating a direct action of GH in the 

amygdala [38, 39]. These findings provide a mechanistic explanation of why GH-deficient 

individuals have a higher prevalence of anxiety and depression disorders [43]. Future studies 

need to investigate whether changes in the prevalence of mood disorders in the elderly 

are also associated with the GH/IGF-1 axis. Furthermore, some eating disorders, like 

anorexia and bulimia nervosa, are associated with a high prevalence of anxiety disorders 

[44]. Importantly, individuals with anorexia nervosa present a nutritionally acquired GH 

resistance [45]. Thus, it is currently unclear if there is an association between the loss 

of somatotroph axis activity and the development of anxiety in eating disorders. Finally, 

several physiological conditions associated with elevated GH secretion, including puberty 

[3], pregnancy [46, 47], and prolonged exercise [48], are known to cause alterations in mood 

and affect the prevalence of neuropsychiatric diseases. Therefore, the knowledge of how 

GH-responsive neurons regulate depression, anxiety, and other behavioral aspects will help 

explain how situations that alter GH secretion or local (brain) GH production can affect 

mood disorders.
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3 GH regulates metabolism via hypothalamic neurons

3.1 Arcuate nucleus neurons mediate the metabolic effects of GH

3.1.1 GH-responsive neurons in the hypothalamus—The development of the in-

situ hybridization technique allowed the identification of specific neuronal populations that 

express Ghr mRNA. Burton et al. [49] showed that Ghr mRNA is highly expressed in 

the periventricular nucleus (PV) and arcuate nucleus of the hypothalamus (ARH). This 

expression matches the GH-binding sites previously detected using in vitro autoradiographic 

analysis [50]. The PV contains the hypophysiotropic SST-expressing neurons that inhibit 

GH secretion, whereas GHRH neurons are found in the ARH, especially in its ventrolateral 

part [51]. Interestingly, while Ghr mRNA is expressed in approximately 70% of PVSST 

neurons [49], less than 10% of ARHGHRH express Ghr mRNA [52]. This result indicates 

that PVSST neurons are the major hypophysiotropic neuronal population that can sense 

variations in GH levels to control the activity of the somatotropic axis via negative feedback. 

Nonetheless, early-in-life GHR ablation in SST neurons causes only minor effects on GH 

secretion and body growth [53], suggesting the existence of additional cell populations 

involved in the control of GH secretion via negative feedback loops [54].

The presence of Ghr mRNA in non-GHRH neurons suggests that GH action on ARH 

neurons regulates different physiological functions besides somatotropic axis activity. ARH 

neurons regulate food intake, energy expenditure, substrate mobilization, and glucose 

homeostasis [55]. ARH neurons are specialized in receiving information on several 

hormones that control metabolism, including leptin, insulin, ghrelin, and glucagon-like 

peptide-1. The high sensitivity of ARH neurons to hormones is possible because of its 

proximity to the median eminence (ME). ME makes the interface between the hypothalamus 

and pituitary gland and contains fenestrated capillaries that allow the diffusion of molecules 

with the size of GH (22 kDa) [56]. Thus, blood GH can enter the brain through ME vessels 

and bind the GHR present in ARH neurons without the typical limitations imposed by the 

blood-brain barrier (BBB).

Two independent studies identified the neurons that produce the neuropeptide Y (NPY) 

as the major neuronal population in the ARH that expresses the Ghr mRNA [57, 58]. 

ARHNPY neurons are potent inducers of hunger [59], are activated by food deprivation 

[60] or ghrelin [61], and are inhibited by anorexigenic hormones like leptin [62]. Of note, 

ARHNPY neurons express other neurotransmitters, especially the inhibitory γ-aminobutyric 

acid and the agouti-related protein (AgRP) [63, 64].

3.1.2 GH activates ARHNPY/AgRP neurons and stimulates hunger—Since 95% 

of ARHNPY/AgRP neurons express the Ghr mRNA [57, 58], the activity of these cells is 

likely regulated by GH. Accordingly, 65% of ARHNPY neurons express the gene c-Fos, 

a marker of neuronal activation, after acute GH administration [65]. Using whole-cell 

patch clamp, another study demonstrated that approximately one-third of ARHNPY/AgRP 

neurons are directly depolarized by GH [60]. Thus, GH activates a neuronal population 

that induces hunger. These findings are in accordance with early reports showing that GH 

treatment in GH-deficient children stimulates appetite [66, 67]. GH overexpression in the 

CNS results in hyperphagia-induced obesity [68]. Increased food intake was also observed 
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in fish overexpressing GH [69, 70]. In mice, an acute intracerebroventricular GH injection 

increases 24-hour food intake [60]. Together, the data show that central GHR signaling 

stimulates hunger.

Noteworthy, GH-deficient mice do not exhibit ghrelin-induced feeding response [71]. Mice 

carrying a deficiency of ghrelin receptors in somatotropic cells exhibit a blunted ghrelin 

effect on both GH secretion and feeding [72]. GHR ablation in the brain also prevents 

the ability of ghrelin to increase food intake [73]. Thus, central GHR signaling seems 

necessary for the ghrelin-induced orexigenic response. However, more studies are required 

to determine the mechanisms behind the interaction between GH and ghrelin to control food 

intake.

The specific neuronal population responsible for mediating the orexigenic action of GH has 

not yet been identified. However, ARHNPY/AgRP neurons are major candidates because GH 

oversecretion in fish and mice leads to hyperphagia and increased hypothalamic Agrp or 

Npy mRNA expression [68, 70]. Even acute GH administration can significantly increase 

Agrp and Npy mRNA expression in the mouse hypothalamus [60]. In humans, plasma 

AgRP level is higher in patients with active acromegaly than in healthy subjects [74]. 

Surgical or pharmacological acromegaly treatment leads to decreased plasma AgRP levels 

[74]. Additionally, plasma AgRP concentration positively correlates with circulating GH and 

IGF-1 levels [74]. Thus, GH seems to regulate the activity of AgRP neurons in different 

mammalian and non-mammalian species.

3.1.3 GHR signaling in ARHNPY/AgRP neurons is necessary for the metabolic 
adaptations to food deprivation or cold exposure—Numerous brain areas exhibit 

NPY-expressing neurons, but AgRP expression is exclusively found in the ARH [63]. Thus, 

the selectivity of AgRP expression has been used to produce cell-specific manipulations in 

ARHNPY/AgRP neurons [64]. To investigate the physiological importance of GHR signaling 

in ARHNPY/AgRP neurons, a mouse model carrying inactivation of Ghr gene, specifically 

in AgRP-expressing cells was generated. Ad libitum-fed AgRPΔGHR mice exhibit normal 

body weight, somatic growth, GH secretion, circulating IGF-1 levels, body adiposity, food 

intake, and energy expenditure [60, 75]. Prolonged food deprivation increases ghrelin and 

GH secretion [76]. Starved mice exhibit a change in the pattern of GH secretion, from 

pulses with large amplitude and small interpulse GH secretion to a predominantly tonic 

secretion [75]. GHR signaling in ARHNPY/AgRP neurons is unnecessary for this change 

[75]. However, AgRPΔGHR mice show reduced activation of ARHNPY/AgRP neurons during 

fasting or prolonged food restriction [60]. In addition, starvation-induced suppression of the 

thyroid axis, reproduction, and markers of thermogenesis in brown adipose tissue (BAT) 

was prevented in AgRPΔGHR mice [60]. Consequently, the progressive reduction in energy 

expenditure exhibited by food-deprived mice is partially prevented in AgRPΔGHR mice, 

leading to higher weight and fat loss [60]. Furthermore, ablation of the STAT5 genes 

in AgRP neurons partially reproduces the phenotype of AgRPΔGHR mice during food 

restriction, suggesting that GHR signaling activates STAT5 transcription factors to produce 

its metabolic effects [77]. Thus, GH secretion during prolonged food deprivation triggers 

neuroendocrine adaptations that ultimately suppress energy expenditure via activation of 

ARHNPY/AgRP neurons.
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Treatment with a GHR antagonist (pegvisomant) can induce partial prevention in energy-

saving adaptations during food restriction [60]. Noteworthy, the effects of pegvisomant in 

sustaining energy expenditure during food restriction are similar to those produced by leptin 

[60]. It is worth mentioning that pegvisomant is not detected in the cerebrospinal fluid, 

indicating that this drug does not cross the BBB [78]. However, since most ARHNPY/AgRP 

neurons are near the ME and outside the BBB [79], pegvisomant may block GH action in 

these cells, explaining its metabolic effects during food restriction [60].

Another study demonstrated that AgRPΔGHR mice cannot adapt to variations in temperature, 

maintaining a lower core temperature when held at 10°C, 22°C, or 30°C compared to control 

mice [80]. AgRPΔGHR mice also exhibit defects in the activation of hypothalamic neurons 

and the expression of genes associated with thermogenesis in the BAT [80]. Furthermore, 

GHR signaling in ARHNPY/AgRP neurons is necessary for inducing alterations in the BAT 

gene expression when mice are exposed to thermoneutrality [80]. These findings reinforce 

the importance of GH action on ARHNPY/AgRP neurons to control aspects related to energy 

expenditure and thermogenesis.

3.1.4 Central GH action regulates glucoprivation- or pregnancy-induced 
hyperphagia—GH-induced activation of ARHNPY/AgRP neurons possibly stimulates 

hunger during food restriction, although additional studies are necessary to test this 

possibility. Glucoprivation causes a fast and transitory hyperphagia [81]. GHR ablation in 

AgRP or GABAergic neurons reduces glucoprivic hyperphagia [60, 82]. GHR ablation in 

pro-opiomelanocortin-expressing neurons, another ARH neuronal population that controls 

food intake [55], also reduces glucoprivation-induced hyperphagia [83]. Increased food 

intake is frequently observed in pregnancy [84]. Brain-specific GHR ablation, which 

primarily targets neurons, reduces food intake and body adiposity in pregnant mice [85]. 

In contrast, AgRPΔGHR mice exhibit normal food intake during pregnancy [85]. Thus, these 

studies indicate that different neuronal populations are likely involved in the effects of GH 

regulating food intake.

3.1.5 Neurotropic and neuroinflammatory effects of GH on the hypothalamus
—Early-in-life metabolic insults can disturb the development of hypothalamic neurons that 

regulate metabolism [86]. Leptin or leptin receptor (LepR)-deficient mice exhibit a blunted 

development of the axonal projections of ARH neurons to important post-synaptic targets, 

like the paraventricular nucleus of the hypothalamus [87, 88]. Defects in the development 

of the neurocircuits that regulate metabolism may predispose individuals to obesity [86]. 

GH and IGF-1 can be considered neurotropic factors. Interestingly, GH but not IGF-1 

deficiency reduces the density of the axonal projections from ARH neurons to different 

hypothalamic nuclei [89]. These effects depend on the GHR expression in ARHNPY/AgRP 

neurons since AgRPΔGHR mice have reduced density of AgRP axonal projections but normal 

pro-opiomelanocortin innervation [90].

GH-deficient mice exhibit reduced expression of inflammatory markers in the hypothalamus 

[89]. In contrast, GH oversecretion increases hypothalamic neuroinflammation [91]. 

These effects are mediated by GHR signaling since GHR ablation in neurons reduces 

the expression of pro-inflammatory markers in the hypothalamus [91]. In addition, 
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the inactivation of GHR in hepatocytes increases GH secretion but drastically reduces 

circulating IGF-1 levels [91]. These mice show increased neuroinflammation in the 

hypothalamus, demonstrating the pro-inflammatory action of GH independently of 

IGF-1 secretion [91]. Importantly, hypothalamic neuroinflammation is tightly linked with 

metabolic diseases, such as obesity and diabetes mellitus [92]. Thus, GH secretion possibly 

affects the predisposition to metabolic diseases via its pro-inflammatory action on the 

hypothalamus.

3.2 Potential clinical implications of GH action regulating the activity of ARH neurons

The discovery that GH stimulates the activity of ARHNPY/AgRP neurons in rodents [60] 

and possibly humans [74] highlights the potential of this hormone to regulate hunger, 

energy expenditure, thermogenesis, and other metabolic aspects. These findings may explain 

variations in appetite under different physiological conditions. For example, increased 

appetite is observed in situations associated with high GH secretion, such as adolescence 

and pregnancy [3, 46, 47]. On the other hand, aging causes a decline in GH secretion 

and appetite [93]. These aspects must be considered when discussing possible hormone 

replacement therapy to treat GH-deficient individuals or prevent adverse effects of aging. 

Furthermore, the effects of GH-suppressing drugs, like pegvisomant or somatostatin receptor 

ligands, on feeding behavior and energy expenditure should be explored in future studies.

Dysfunctions in ARHNPY/AgRP neurons are a critical aspect observed in overnutrition, 

and it is part of the physiopathology of obesity, favoring the development of central 

leptin resistance [79, 94]. The potential role of GHR signaling in the development of 

obesity via alterations in the function of ARHNPY/AgRP neurons is unknown. However, GH 

induces neuroinflammation in the hypothalamus [89, 91], and hypothalamic inflammation 

predisposes animals to obesity [92, 94].

Weight loss decreases energy expenditure in humans [95] and rodents [96, 97], reducing 

the efficacy of obesity treatments and favoring weight regain. GHR signaling in ARHNPY/

AgRP neurons exerts a robust modulation of adaptive responses that conserve energy during 

weight loss [60]. These effects are partially mediated by the STAT5 signaling pathway [77]. 

These findings reveal potential cellular pathways that can be manipulated to prevent the 

weight loss-induced reduction in energy expenditure and consequently increase the chances 

of long-term success in obesity treatment.

GH or GHR deficiency impairs the development of critical neuronal populations in the 

ARH that control metabolism independently of circulating IGF-1 levels [73, 89, 90]. Thus, 

alterations in GH secretion or action in crucial developmental periods may lead to long-

term consequences on the neurocircuits that regulate food intake, energy expenditure, and 

body weight. The importance of adipokines, such as leptin and adiponectin, throughout 

development to affect the predisposition to metabolic diseases later in life is well-established 

[86]. Whether early-in-life dysfunctions in GHR signaling, especially in the CNS, can lead 

to metabolic programming is still unknown.
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3.3 GH action in the brain prevents hypoglycemia and regulates insulin sensitivity

3.3.1 GHR signaling in hypothalamic neurons is necessary to induce a 
normal counter-regulatory response to hypoglycemia—Hypoglycemia induces a 

robust increase in GH secretion [98]. Spontaneous episodes of hypoglycemia in children 

are associated with paradoxically low serum GH levels [99]. Laron syndrome patients, 

characterized by GHR deficiency, frequently have juvenile hypoglycemia [100]. Juvenile 

hypoglycemia is also observed in GHR-deficient mice and pigs [100]. Thus, a blunted 

secretion/action of GH may reduce the ability of the organism to restore blood glucose 

to normal levels, especially in young individuals. GH increases blood glucose levels like 

counter-regulatory hormones like glucocorticoids, noradrenaline, and glucagon [101]. GH 

raises glycemia by stimulating hepatic glucose production and reducing glucose uptake 

[102]. It is currently thought that these effects are mediated by a direct action of GH on the 

liver, muscle, and adipose tissue and indirectly by inducing insulin resistance [8, 102].

The brain also plays an essential role in preventing hypoglycemia [101]. Glucose-sensing 

neurons distributed in different brain areas coordinate the counter-regulatory response 

(CRR) to avoid hypoglycemia and restore blood glucose to normal levels [101]. A 

significant number of GH-responsive neurons are found in the ventromedial nucleus of 

the hypothalamus (VMH) [9, 10], an area known to contain glucose-sensing neurons, and 

it is involved in the CRR [101, 103]. The physiological importance of GH action on VMH 

neurons was investigated in mice carrying ablation of GHR in steroidogenic factor 1 (SF1)-

expressing neurons since SF1 expression in the brain is exclusively found in the VMH [104]. 

SF1ΔGHR mice exhibit no alterations in blood glucose levels, glucose tolerance, and insulin 

sensitivity. However, these mice present lower glycemia after insulin injection, suggesting 

defects in their ability to recover from insulin-induced hypoglycemia [104]. Furthermore, 

the CRR induced by 2-Deoxy-D-glucose (2DG) injection, which causes glucoprivation, 

is significantly attenuated in SF1ΔGHR mice, demonstrating defects in recovering from 

hypoglycemia [104]. The 2DG-induced secretion of counter-regulatory hormones is normal 

in SF1ΔGHR mice. In addition, pharmacological blockade of the sympathetic nervous system 

does not prevent the differences between the groups in the 2DG-induced CRR [104]. 

However, pharmacological inhibition of the parasympathetic nervous system restores the 

CRR induced by 2DG in SF1ΔGHR mice to levels found in control animals [104]. Finally, 

2DG administration leads to an abnormally high activation of cholinergic neurons located 

at the dorsal motor nucleus of the vagus nerve (DMX), indicating that the absence of 

GH action in the VMH leads to a hyperactivation of the parasympathetic nervous system 

during the CRR. DMX neurons are also directly responsive to GH [105]. It is worth 

mentioning that the DMX is the primary source of vagal motor output to several abdominal 

organs, including the pancreas and liver. The parasympathetic nervous system inhibits 

endogenous glucose production. Thus, the hyperactivity of the parasympathetic nervous 

system shown by SF1ΔGHR mice during a CRR episode reduces hepatic glucose production 

when it is necessary to increase blood glucose levels to avoid hypoglycemia. These findings 

demonstrate that hypoglycemia-induced GH secretion modulates neurocircuits involved in 

the CRR, helping to recover blood glucose to normal levels.
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3.3.2 Central GH action regulates systemic insulin sensitivity—Evidence shows 

that GHR signaling in specific neuronal populations can modulate insulin sensitivity in 

different tissues. For example, GHR signaling in LepR-expressing cells, which includes 

essential neuronal populations that control metabolism, regulates hepatic insulin sensitivity 

and peripheral lipid metabolism [106]. Another study showed that activation of GHR-

expressing neurons in the ARH causes increases in glucose oxidation and, glucose uptake 

and insulin sensitivity in the muscle [12].

The diabetogenic effects of GH possibly explain the insulin resistance that naturally emerges 

in certain physiological situations associated with increased GH secretion, like puberty [107, 

108] and late pregnancy [109]. While no study has demonstrated that GH is responsible 

for increasing insulin resistance in puberty, there is direct evidence that GH contributes to 

pregnancy-induced insulin resistance [85]. GHR ablation in LepR-expressing neurons or the 

entire brain causes a robust improvement in insulin tolerance and a reduction in circulating 

insulin levels in pregnant mice [85].

3.4 Potential clinical implications of GH action in the brain regulating glucose 
homeostasis

The brain controls glucose homeostasis by regulating systemic insulin sensitivity, defining 

the set point of circulating glucose levels, and modulating the secretion of hormones such 

as insulin, glucagon, and glucocorticoids. Most of these effects are mediated by changes in 

the sympathetic and parasympathetic nervous system activity [101]. Juvenile hypoglycemia 

is frequently associated with dysfunctions in the GH axis [99, 100]. The findings that 

GH-responsive neurons are involved in the CRR and the absence of GHR signaling in some 

of these neuronal populations blunts the CRR indicate a novel mechanism of action of GH to 

prevent hypoglycemia [100, 104].

It is undeniable that GH has a diabetogenic action [7, 8, 102, 110, 111]. The fact that 

central GH action regulates systemic insulin action [85] challenges the current paradigm 

postulating that GH-induced insulin resistance is exclusively mediated by an increase in FFA 

flux caused by the lipolytic effect of GH [7, 8, 102]. Future studies are necessary to identify 

the specific neural circuits involved in the central effects of GH regulating systemic insulin 

sensitivity. Importantly, this central mechanism does not discard the well-established insulin 

resistance caused by GH-induced lipotoxicity, but it adds a new mechanism to the already 

described ability of GH to regulate glucose homeostasis.

Gestational diabetes emerges when the increased insulin secretory capacity cannot 

compensate for the decrease in insulin sensitivity observed in pregnant individuals [109]. 

Previous studies indicate a 60% decrease in insulin sensitivity with normal pregnancy [109]. 

The usual management of gestational diabetes involves lifestyle modifications and insulin 

administration, if necessary. So, there is no specific drug to treat gestational diabetes. The 

finding that central GH action plays a significant role in inducing insulin resistance during 

pregnancy opens the possibility of partially blocking the action of GH, whose placental 

variant is highly secreted during pregnancy [47, 109], to treat severe cases of gestational 

diabetes. However, studies are needed to test the efficacy and safety of this possible 

treatment.
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4 Miscellaneous effects of brain GH actions

4.1 Central GHR signaling regulates the adaptation capacity to aerobic exercise

Prolonged exercise induces GH secretion [48]. GH action during exercise provides important 

substrates to generate energy, either by stimulating hepatic glucose production or increasing 

FFAs [5, 7, 8]. Accordingly, GH-deficient patients frequently report decreased exercise 

capacity [112, 113]. To investigate the possible participation of central GHR signaling 

in regulating exercise tolerance, we generated mice carrying GHR ablation in VMH or 

LepR-expressing neurons [114]. VMHΔGHR and LepRΔGHR mice showed no alterations 

in their basal exercise performance tested on a treadmill or in voluntary wheel running 

[114]. However, after eight weeks of treadmill training, while LepRΔGHR mice exhibited an 

increased aerobic capacity compared to control animals, VMHΔGHR mice could not improve 

their exercise performance above baseline values [114]. The capacity to improve exercise 

performance in these mouse models was associated with different glycemic changes during 

exercise [114]. These findings suggest that central GHR signaling affects the adaptation 

capacity to aerobic exercise.

4.2 Central GH action regulates ventilatory response to hypoxia

Several brain areas that control breathing behaviors, including tyrosine hydroxylase-

expressing cells in the rostroventrolateral medulla (C1 region) and locus coeruleus, contain 

GH-responsive neurons [54, 115]. Interestingly, acromegaly can lead to respiratory problems 

[4]. GH treatment improves respiratory parameters and decreases central apnea in Prader-

Willi syndrome patients [116, 117]. The potential importance of central GHR signaling 

in modulating the respiratory activity of conscious unrestrained mice was investigated in 

brain-specific GHR knockout mice [115]. Control and brain-specific knockout GHR mice 

exhibit no differences in basal breathing and the hypercapnic ventilatory response [115]. 

However, tachypneic response to hypoxia is significantly attenuated in knockout mice [115]. 

These findings suggest a modest but significant effect of central GHR signaling modulating 

ventilatory response in stress situations, such as hypoxia.

5 Concluding remarks

The present review summarized and discussed the recent findings indicating that GH can act 

in several neuronal populations to control distinct physiological aspects such as metabolism, 

neuroplasticity, stress response, behavior, mood, and cognition. As a major growth factor, 

GH presents developmental functions in the CNS, regulating synaptic function, axonal 

growth, and the formation of neural circuits. However, the most remarkable effects of 

central GH action are not associated with growth/development but involve physiological 

adjustments to restore homeostasis in situations of metabolic stress, such as puberty, 

pregnancy, chronic food deprivation, hypoglycemia, and prolonged exercise (Figure 2). 

Interestingly, all these conditions are characterized by elevated GH secretion. So, in 

these situations, the “growth function is left aside”, and GH may represent an internal 

signal that coordinates multiple metabolic, neurological, neuroendocrine, and behavioral 

adaptations that are evolutionarily advantageous and, therefore, increase the chances of 

survival [118]. For example, the GH-induced activation of ARHNPY/AgRP neurons likely 
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stimulates hunger. Consequently, it increases energy availability in high metabolic demand 

situations (e.g., puberty, pregnancy, and exercise) or during insufficient supply of nutrients 

(e.g., hypoglycemia and food restriction). GH can act in different neuronal populations 

to prevent hypoglycemia and induce energy-saving adaptations, prolonging the time 

available to find food before dying of starvation. GH-induced insulin resistance is likely 

advantageous in metabolic stress situations because it saves glucose for processes that 

really depend on this nutrient (e.g., glucose-dependent cells or a growing fetus), increases 

hepatic gluconeogenesis, prevents hypoglycemia, and blocks the anti-lipolytic effect of 

insulin. It is essential to highlight that GH's central and peripheral metabolic actions are 

coordinated. Thus, GH action on adipose tissue increases the availability of substrates 

for gluconeogenesis (e.g., glycerol) and oxidation (e.g., FFAs). Increased levels of FFAs 

reduce glucose dependence and favor insulin resistance positively feeding back this cycle. 

Finally, the anxiolytic effect of GH seems evolutionarily advantageous when animals are 

under metabolic stress because it favors behavioral reactions that allow them to leave 

these potentially dangerous situations. However, GH action in the amygdala may be behind 

maladaptation to chronic stress, leading to excessive fear memory and the development of 

post-traumatic stress disorders. Taken together, the brain is an important target of GH, and 

GHR signaling in different brain areas regulates essential physiological functions.
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2DG 2-Deoxy-D-glucose

AgRP agouti-related protein

ARH arcuate nucleus of the hypothalamus

BLA basolateral amygdala

BAT brown adipose tissue

BBB blood-brain barrier

CNS central nervous system

CEA central nucleus of the amygdala

CRR counter-regulatory response

DMX dorsal motor nucleus of the vagus nerve

FFAs free fatty acids
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GH growth hormone

GHR growth hormone receptor

GHRH growth hormone-resealing hormone

IGF-1 insulin-like growth factor 1

LepR leptin receptor

ME median eminence

NPY neuropeptide Y

PV periventricular nucleus

STAT5 signal transducer and activator of transcription 5

SST somatostatin

SF1 steroidogenic factor 1

VMH ventromedial nucleus of the hypothalamus
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Figure 1. 
Summary of the known effects caused by GH-induced GHR signaling in different tissues, 

particularly in the central nervous system. The brain actions of GH were grouped 

according to the region involved: hypothalamus, hippocampus, and amygdala. Created with 

BioRender.com (Agreement number: MP260AQD8T).
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Figure 2. 
Scheme illustrating GH's role in metabolic stress situations, like prolonged exercise, 

chronic food restriction, hypoglycemia, and pregnancy. In all these conditions, GH 

is highly secreted. Central and peripheral GH action coordinates several physiological 

responses that help to restore homeostasis and are evolutionarily advantageous. Created 

with BioRender.com (Agreement number: DV260AQLCU).
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