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The field of forensic DNA analysis has experienced signifi-
cant advancements over the years, such as the advent of 
DNA fingerprinting, the introduction of the polymerase 
chain reaction for increased sensitivity, the shift to a prima-
ry genetic marker system based on short tandem repeats, 
and implementation of national DNA databases. Now, the 
forensics field is poised for another revolution with the 
advent of dense single nucleotide polymorphisms (SNPs) 
testing. SNP testing holds the potential to significantly 
enhance source attribution in forensic cases, particularly 
those involving low-quantity or low-quality samples. When 
coupled with genetic genealogy and kinship analysis, it 
can resolve countless active cases as well as cold cases and 
cases of unidentified human remains, which are hindered 
by the limitations of existing forensic capabilities that fail to 
generate viable investigative leads with DNA. The field of 
forensic genetic genealogy combined with genome-wide 
sequencing can associate relatives as distant as the sev-
enth-degree and beyond. By leveraging volunteer-popu-
lated databases to locate near and distant relatives, genetic 
genealogy can effectively narrow the candidates linked to 
crime scene evidence or aid in determining the identity 
of human remains. With decreasing DNA sequencing costs 
and improving sensitivity of detection, forensic genetic ge-
nealogy is expanding its capabilities to generate investiga-
tive leads from a wide range of biological evidence. Received: March 12, 2024
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Human identification using various DNA typing methods 
has become routine in several forensic applications, such 
as parentage testing, identifying missing persons in indi-
vidual cases or mass disasters, and determining the source 
of biological evidence from a wide range of criminal cases 
(1-6). Alec Jeffreys pioneered DNA typing in 1985 by assay-
ing repeat-sequence markers, known as variable number 
of tandem repeats (VNTRs), across the human genome, 
which, when combined, were reported to be individual-
specific (7). Before this breakthrough, forensic cases relied 
on serological-based markers, which were relatively un-
stable, not present in all tissues, and had poor discrimina-
tion power (8). In contrast, DNA is a more stable molecule 
and comprises markers or loci that are sufficiently poly-
morphic to enable much higher resolution and power of 
discrimination.

In VNTR-based forensic testing, specific VNTR loci, known 
as minisatellites (9,10), were assayed with restriction frag-
ment length polymorphism (RFLP) (11-13) or with the poly-
merase chain reaction (PCR)-based methods. VNTR analy-
sis was ground-breaking in the early days of forensic DNA 
testing and was crucial in several high-profile cases, ush-
ering in the discipline of forensic genetics. However, RFLP 
methods required relatively larger quantities of input DNA, 
in the range of 20-100 ng (13). Additionally, VNTR analysis 
was limited because the repeat units were relatively long. 
Thus, template DNA had to be relatively intact.

Although VNTR target enrichment by PCR afforded a sub-
stantial gain in sensitivity of detection (to the sub-nano-
gram range) (14,15), the use of these markers was relatively 
short-lived. The long-repeat targets were susceptible to the 
vagaries of PCR amplification, which resulted in substan-
tial differential amplification of alleles and notable rates of 
allele drop-out. Soon after the implementation of VNTR/
PCR, a better suited approach, which gained overwhelm-
ing acceptance, was to amplify short tandem repeat (STR) 
markers by PCR. STRs (16,17) contain shorter repeat units 
than do VNTRs, which makes them more robust to enrich-
ment by PCR. The implementation of STR/PCR methodolo-
gies revolutionized forensic DNA analysis (18-20), leading 
to higher success rates in obtaining DNA profiles from fo-
rensic samples, especially those that are of low quantity or 
low quality. As a result, STRs replaced VNTRs as the primary 
markers in forensic DNA testing, and became the corner-
stone of the Combined DNA Index System (CODIS) (21). 
CODIS has been an invaluable tool for developing leads 

for potential suspects; and even when a source lead 
cannot be developed because the donor is not in 

the database, CODIS can link crime scenes by using com-
mon DNA profiles derived from evidence.

The field of forensic genetics, again, is on the cusp of a 
revolution as it shifts from the analysis of small numbers 
of markers to the analysis of large numbers of markers, ie, 
single nucleotide polymorphisms (SNPs), which span the 
entire genome. SNPs, variants at single genomic positions, 
have gained substantial prominence over the last two de-
cades as an important source of genetic markers that may 
be better suited for the analysis of challenged samples. Al-
though there is increased recent interest, SNPs are not nov-
el markers for analysis of forensic samples. In the late 1980s 
through the mid-1990s, SNPs were the primary markers as-
sayed by PCR-based methods. Those methods were HLA-
DQA1 (22,23) and Polymarker (24) detected by allele-spe-
cific oligonucleotide probe hybridization, as well as Sanger 
sequencing used for the analysis of the hypervariable re-
gions of the mitochondrial genome (25-27). Unlike the cur-
rent construct of STR kits, which are limited in panel size due 
to the throughput of capillary electrophoresis (CE)-based 
methods, SNP panels with today’s advanced technologies 
can include hundreds of thousands to millions of markers, 
providing much higher resolution and specificity in genet-
ic profiling. The higher resolution and sensitivity allow for 
greater discrimination power in associating individuals who 
are not closely related as well as for direct comparisons. Ad-
ditionally, advancements in genotyping and sequencing 
technology have made SNP testing more cost-effective. 
These attributes make SNP-based methods increasingly 
attractive for forensic investigations, particularly when STR 
analyses and government-owned national DNA databases 
fail to generate leads. This article describes SNP markers, 
their characteristics, and the technological advancements 
that enable substantially high-throughput analysis facilitat-
ing alternate methods for source attribution.

The evolution of forensic DNA profiles

STR-based DNA profiles

Since the 1990s, STRs have become the primary currency 
of the forensic genetics community (18-20). STRs are char-
acterized by a high mutation rate, estimated to be ap-
proximately 1000 times higher than other genomic sites, 
which in turn contributes to their diversity (28). This inher-
ent genetic variability results in high heterozygosity and 
the presence of multiple alleles at STR loci, contributing to 
their high power of discrimination for individual identifi-
cation capabilities in forensic applications. The number of 
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STR loci employed directly correlates with discrimination 
power. Moreover, the smaller size of STR loci than of their 
predecessors, the minisatellites, made them amenable for 
efficient amplification by PCR, which exploited the exqui-
site sensitivity of detection.

Forensically-relevant STRs exhibit a diverse range of allele 
frequencies in all populations studied, and this variation 
has been extensively documented in the literature and in 
databases such as STRBase, popSTR and STRider (29-31). 
These resources are a wealth of population data for esti-
mating the rarity of a DNA profile within and among spe-
cific populations, thereby providing law enforcement and 
the judicial system with critical insight into the weight of 
DNA evidence. An inclusion across all interpretable loci 
from a comparison between evidence and a person of 
interest necessitates a statistical calculation. One statisti-
cal approach is the random-match probability - the like-
lihood that a randomly chosen individual from the rele-
vant population(s) would share this profile. This probability 
helps evaluate whether the DNA evidence is common or 
rare, and the rarer it is infers a remote chance of coinci-
dence. The lower that probability, the stronger the implica-
tion that the samples share a common source. An alterna-
tive statistical approach is to calculate the likelihood ratio 
(LR), which compares the probability of the DNA evidence 
under two mutually exclusive competing hypotheses. For 
example, a LR could be the probability of the genetic data 
if a human remains sample belongs to a specific pedigree 
as opposed to the remains being unrelated to the specific 
pedigree. The greater the odds, the greater the support for 
a particular hypothesis.

Early on, STRs were characterized by size-based separation 
using slab gel electrophoresis techniques (14). However, 
this method was cumbersome and consumed a lot of time 
and resources. A substantial improvement to STR analysis 
was higher-throughput CE (32,33). CE allowed multiplex-
ing of STR loci (34,35), reduced sample consumption, and 
increased resolution in a semi-automated fashion. Mas-
sively parallel sequencing (MPS) provides much greater 
throughput than the CE such that thousands to millions 
of loci can be analyzed simultaneously (36-40). This capa-
bility increases the detectable diversity of the STRs within 
repeat motifs as well as in their flanking regions (41-43). 
The comprehensive sequence variation detected by MPS 
improves the power of discrimination, especially with par-
tial STR profiles, enhances mixture deconvolution, and can 
assist in kinship identification but still only as far as first-de-
gree (parent-child [PC] or full-sibling [FS]) relatives. Conse-

quently, commercially available MPS forensic STR kits have 
been validated and are beginning to be implemented by 
forensic laboratories (44-47).

Limitations of STR-based DNA profiles

While STR-based methods have been quite successful and 
will remain essential for forensic DNA testing for the fore-
seeable future, their reliance on developing investigative 
leads within government-maintained national forensic 
DNA databases also has significant limitations. Numerous 
forensic cases remain unsolved due to the reliance on da-
tabase searches with STR profiles, which leaves investiga-
tions at a standstill. If the donor of crime scene evidence 
is not in the database, then the current database search 
system cannot generate a hit and there is no investigative 
lead. Additionally, this issue is particularly pronounced in 
cases involving unidentified human remains (UHRs), where 
the antemortem reference samples and family reference 
samples may be scant. Additionally, forensic STR profiling 
is not useful for identifying unknown suspects whose pro-
files are not yet included in the databases. When database 
searches yield no leads, cases can turn cold quickly, which 
allows perpetrators to evade justice and potentially con-
tinue their criminal activities.

STR loci also come with technical constraints that are more 
pronounced with forensic DNA, which tends to be degrad-
ed, chemically damaged, or present in extremely low quan-
tities (48-51). In cases of degraded DNA, the amplification 
of STR loci may be challenging, leading to incomplete or no 
profiles. Additionally, forensic samples often contain mix-
tures of DNA from multiple individuals, further complicat-
ing the interpretation of STR profiles. Stutter artifacts gen-
erated during PCR can present challenges during mixture 
interpretation (52). Additionally, the high mutation rate for 
forensically relevant STRs can confound first-degree (PC/FS) 
kinship analysis (53). Other methods have been explored 
to exploit STRs, such as familial searching and Y-chromo-
some STRs/surname associations (54-57). However, famil-
ial searching using STRs generally extends to PC and FS re-
lationships. Moreover, very few countries have included Y 
STRs in their national DNA databases and thus cannot make 
use of lineage associations to help identify the source of 
crime scene evidence via a database search.

SNP-based DNA profiles

The molecular characteristics of SNPs render them 
particularly advantageous for forensic applications 
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compared with STRs. SNPs exhibit a significantly lower mu-
tation rate, estimated at approximately 1 in 100 million per 
replication (58), in contrast to STRs, which have a mutation 
rate of about 1 in 1000 (28). This lower mutation rate of 
SNPs reduces complications often encountered with STR 
analysis in kinship cases. Moreover, the analysis of distant 
familial relationships becomes uninformative when pa-
rental DNA samples are absent (59), which is a less pro-
nounced limitation with SNP-based analyses due to their 
greater stability over generations compared with STRs.

One of the foremost benefits of SNPs is their presence in 
smaller DNA fragments compared with STRs, making them 
particularly advantageous for analyzing highly degraded 
DNA samples, which are common in forensic evidence. 
SNPs can be detected in fragments shorter than 100 bp, 
which enables genotyping from samples where STR analy-
sis may fail or yield incomplete profiles. For example, Kieser 
et al (60) describe a SNP panel comprised of ~ 50 bp ampli-
cons. Furthermore, SNP analysis is not affected by stutter 
artifacts, a common issue with STR alleles, thereby simplify-
ing, in part, the analysis and interpretation process associ-
ated with mixtures.

While SNPs are less informative per marker compared with 
STRs, their widespread occurrence across the human ge-
nome - approximately 1 in every 1000 base pairs - provides 
substantial genetic variation. These vast numbers of SNPs 
can be analyzed simultaneously using high-throughput 
genotyping or sequencing. This technological leap, which 
gained momentum in the 2000s, has revolutionized fo-
rensic casework, where degraded, low-quantity template 
DNA is often encountered.

SNPs should not be lumped into a general category as a sin-
gle marker type. It is better to classify SNPs based on their 
practical forensic applications, such as biogeographical 
ancestry analysis, determination of physical traits, identity 
testing, and kinship analysis (61-64). SNPs that determine 
the ancestry of an individual, originally termed ancestry in-
formative markers (AIMs), differ notably in allele frequen-
cies between population groups (61-63) and initially were 
proposed to indirectly infer phenotypic traits of a person 
of interest. Generally, population affinity, based on major 
population groups, could indicate in a limited fashion skin 
pigmentation, hair color, and eye color. Since the initial in-
troduction of AIMs, panels have been developed that can 
resolve population affinity in greater resolution (65-67). 

Subsets of these biogeographical SNPs have been in-
cluded in current MPS-based kits (68-71) and are be-

ing used to estimate population affinity in some forensic 
laboratories.

Instead of using surrogate AIMs to infer phenotype at a 
gross level, a direct method with phenotypic SNPs allows 
more precise trait prediction. Identification of phenotypic 
SNPs began more than 20 years ago focusing on eye color 
and skin pigmentation (72-75). The first forensic foray into 
estimating a visible phenotypic trait, red hair color, was de-
veloped by Grimes et al (76), who screened 12 melanocor-
tin 1 receptor variants to provide investigative leads about 
the possible appearance of the donor of an evidence sam-
ple. However, the first major impact of phenotypic SNPs in 
the forensic arena was the development of a six-SNP panel 
by Walsh et al (77), called the IrisPlex, to predict blue and 
brown eye color. Since then, the capability of phenotypic 
SNPs to identify markers directly related to traits has pro-
gressed in their utility to predict visible traits, such as facial 
shape, skin pigmentation, eye color, hair color, baldness, 
and freckles, to name a few (78-81). This approach has for-
mally been defined as a subdiscipline called forensic DNA 
phenotyping (82).

Early SNP typing techniques, such as the SNPforID 52-plex 
assay for identification and the 32-plex assay for ancestry 
determination, were designed to integrate with CE instru-
mentation already in use (for STR testing) within forensic 
laboratories (83,84). However, these CE-based approaches 
did not generate quantitative data, which limited their util-
ity with mixed samples. They were also labor-intensive and 
had limited throughput, all of which hindered the full po-
tential of SNPs for human identification.

Over the past two decades, significant technological ad-
vancements have mitigated many of these limitations. Mi-
croarray-based SNP genotyping and MPS, along with com-
putational tools for large data set analysis, substantial cost 
reductions in sequencing, and the rise of genetic geneal-
ogy through direct-to-consumer companies and hobby-
ists have collectively enabled the exploitation of SNPs for 
human identification.

One argument raised against embracing SNPs is that, on a 
per-marker basis, they are inherently less informative than 
STRs, a fact attributed to the biallelic nature of most SNPs. 
This limitation has already been overcome as there are vast 
numbers of SNPs across the human genome (about 1 in 
every 1000 base pairs), and they can be simultaneously an-
alyzed cost-effectively by MPS. Only around 50 indepen-
dent SNPs, each with minor allele frequencies between 
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0.20 to 0.50, are necessary to match the discrimination 
power of 10-15 multi-allelic STRs typically used in analyses 
(85). Yet with MPS, hundreds of thousands to millions of 
SNPs can be analyzed in a single assay. Thus, the power of 
discrimination is orders of magnitude higher than that of 
any STR kit on the market today.

SNP-based DNA profiles and forensic genetic 
genealogy

Forensic genetic genealogy (FGG) has emerged as a pow-
erful tool in forensic investigations, particularly in cases 
involving UHRs or unsolved criminal cases. By combining 
SNP profiles with genealogical data from public databases 
or commercial genetic genealogy services, investigators 
can establish familial relationships and generate investiga-
tive leads in cases where traditional methods have been 
unsuccessful.

The emergence of FGG in 2017 and 2018 was not inciden-
tal (Figure 1). In the last decade, two key developments 
have played a significant role. First, the cost of sequencing 
has decreased dramatically, which has made it more acces-
sible for routine use in forensics and other fields (86). Sec-
ond, there has been rapid growth in the number of peo-
ple who have undergone consumer DNA testing (87,88). 
For example, in 2013 less than a million people worldwide 
were genotyped using consumer DNA tests. By 2019, the 
same figure was more than 30 million. While FGG investi-
gations are limited to consumers who consent to use of 
their SNP profiles for developing investigative leads, this 
fraction of the total consumer profiles available is grow-
ing as well.

An early example of success with FGG is the identification 
of the Golden State Killer in 2018, where investigators used 
a SNP profile from crime scene DNA to identify distant rela-
tives of the donor of the biological evidence through ge-
netic genealogy databases (89). By building family trees 
and tracing common ancestors, investigators were able 
to narrow down their search to a suspect, Joseph James 
DeAngelo, who was subsequently arrested and charged 
with multiple crimes.

Another notable example is the Carla Walker murder case. 
Carla Walker was a 17-year-old girl who was abducted in 
February 1974 in Fort Worth, Texas. Her body was found 
three days later in a culvert. The case remained unsolved 
for decades until a breakthrough in which FGG led to the 
identification and arrest of a suspect, Glen Samuel McCur-

ley, in September 2020. McCurley was charged with capital 
murder in connection with Carla Walker’s death and con-
victed in 2021.

The Carla Walker case was significant for its outcome and 
for its legal implications. It was one of the first cases where 
FGG was presented in a courtroom setting. The use of FGG 
was subjected to a Daubert hearing, which is a legal pro-
cess in the United States to determine the admissibility of 
scientific evidence, where several criteria are used by the 
judge, the gate keeper, to assess whether the method-
ology is sound and reliable. After being admitted by the 
judge, the trial proceeded, and FGG was presented by the 
scientific experts during the jury trial, where they were 
subjected to cross-examination. The case was appealed by 
McCurley, and an appellate court upheld the conviction. 
The successful use of FGG in the Carla Walker case set a 
precedent for this technology, highlighting its potential as 
a powerful tool in solving cold cases and bringing perpe-
trators to justice.

SNP profiles have also been instrumental in identifying 
UHRs. The National Missing and Unidentified Persons Sys-
tem (NamUs; https://namus.nij.ojp.gov) is now making use 
of FGG in UHR casework. NamUs is a national centralized 
repository and resource center for missing persons and 
unidentified decedent records. It also provides technolo-
gy, forensic services, and investigative support to resolve 
missing persons and unidentified decedent cases. FGG has 

Figure 1. The reduction in cost (in US dollars) per gigabase for 
DNA sequencing and the concomitant increase in the number 
of individuals who were genotyped from 2013 to 2019.

https://namus.nij.ojp.gov
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been instrumental in solving many NamUs cases, leading 
to the identification of previously unknown individuals.

In a recent and ongoing study (90), Dowdeswell found that 
as of December 2023, FGG has been publicly attributed to 
318 criminal cases and 461 UHR cases. These numbers are 
an underestimate of the total number of forensic cases that 
have benefited from FGG. Many cases are not announced 
immediately, particularly if they are yet to be adjudicated, 
and some cases are resolved without public disclosure. 
Thus, the true impact of FGG in forensic investigations is 
likely far greater than what has been reported.

Technologies for building DNA profiles for FGG

The emergence of FGG has revolutionized the field of fo-
rensic DNA analysis. The principal objective of FGG testing 
is to construct a detailed SNP profile that can be used for 
genetic genealogy and that allows for the identification of 
distant relatives. To achieve this power of kinship analysis, 
a sufficient number of SNP markers is required so that the 
profile is robust enough for inclusion in a genetic geneal-
ogy database and to enable the detection of genetic rela-
tives. Close and distant genetic relatives are important for 
genetic genealogy. Distant associations are crucial for vali-
dating family trees, excluding irrelevant branches, and as-
sisting in the selection of reference testing candidates. It 
is the combination of close and distant associations that 
allows for efficient construction and triangulation of fam-
ily trees, ultimately aiding in the determination of an indi-
vidual’s identity.

Prior to genetic genealogy being used in forensics, genet-
ic genealogy in the consumer DNA market predominant-
ly relied on microarray-based genotyping. Microarrays are 
valued for their speed, simplicity, and relatively low cost. 
However, microarrays are less effective for forensic appli-
cations, as they require relatively large quantities of high-
quality DNA to produce data that can be used for effective 
genealogical searches. For example, Illumina recommends 
200 ng of input DNA for their Infinium Global Screening 
Array-24 v3.0 BeadChip, per their Infinium® HD Assay Ultra 
protocol. Microarray-based genotyping is also sensitive to 
DNA quality, and performance is reduced with degraded 
DNA inputs, which leads to diminished success in kinship 
inference (91,92).

Acknowledging these limitations, the FGG community 
has largely shifted toward MPS, which not only offers 

greater sensitivity, but also the capacity to analyze 

more complex and degraded samples (93,94). MPS can op-
erate with substantially lower DNA quantities, depending 
on the assay and the library preparation kit protocol used, 
as different kits are optimized for specific sample types and 
sequencing applications.

While microarrays use a probe-based hybridization tech-
nique on a chip, MPS determines the entire sequence of 
millions to billions of DNA fragments simultaneously and 
rapidly. In the last decade, the dominant MPS method has 
been Illumina sequencing, which uses a method called se-
quencing by synthesis. In this technique, DNA fragments 
are attached to a flow cell surface and amplified to cre-
ate clusters that contain identical sequences. Fluorescent-
ly labeled nucleotides are then sequentially added to the 
growing DNA strands, with each nucleotide type carrying 
a distinct fluorescent marker. The incorporation of these 
nucleotides is detected through imaging, which allows the 
sequence of the DNA fragments to be determined based 
on the observed color pattern. Notably, the Illumina chem-
istry can sequence read lengths shorter than 50 bp, which 
makes the system robust to DNA degradation and facili-
tates detection of SNP markers.

Early efforts to measure additional information with SNPs 
in forensic samples focused on using desktop sequencers, 
typically assaying up to 100 or so SNPs or by increasing the 
diversity of STRs to a degree (41,95). Larger targeted pan-
els, ranging from 5000 up to 95 000 SNPs, have been devel-
oped to measure kinship up to fourth-degree relationships 
(for example, first cousin once removed) and sometimes 
fifth-degree associations (similar to that of a second cous-
in) (96-98). Whole-genome shotgun (WGS) sequencing 
stands out by enabling the analysis of over a million SNPs 
per good-quality sample (99), thereby extending the po-
tential for kinship associations to the seventh degree (simi-
lar to that of a third cousin) and beyond.

Simulation studies have explored the relationship between 
the size of SNP marker panels and the sensitivity and recall 
rate for distant genetic relationships (100). In one recent 
study based on simulations but also experimental results, 
a target panel of 10 000 SNPs enabled kinship inference to 
fourth-degree relationships, with a sensitivity to fourth-de-
gree relationships of about 95% (96).

In forensic applications, the choice between targeted se-
quencing and WGS sequencing has traditionally been in-
fluenced by cost considerations and the specific needs of 
the investigation. Targeted sequencing focuses on specific 
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SNPs, providing data for these genomic areas at an appar-
ently lower cost. This approach is useful for analyzing spe-
cific genetic markers relevant to forensic cases, such as 
those used in DNA profiling or identifying familial relation-
ships. However, as sequencing technologies advance and 
costs decrease, the gap between the expense of targeted 
sequencing and WGS sequencing is narrowing (Figure 2). 
Figure 2 illustrates that platforms and respective chemistries 
continue to improve in throughput with concomitant re-
ductions in cost. In a cost-neutral scenario, WGS sequencing 
becomes increasingly attractive for forensic applications be-
cause it offers a more comprehensive view of the genome 
and supports kinship associations, especially more distant 
ones. Not only does WGS provide a larger number of SNPs, 
but it also reveals other types of genetic variations, such as 
insertions, deletions, and structural variants, which can be 
valuable in forensic investigations. These additional varia-
tions can offer more information for identifying individuals 
and understanding complex relationships. Other benefits 
include the potential for mixture deconvolution that likely 
will meet that of STRs. Currently, the majority of laboratories 
apply STR mixture deconvolution by probabilistic genotyp-
ing up to four-person mixtures (101). Since WGS compre-
hensively scans the genome and is quantitative, one can 
make use of a reasonably large number of tri-allelic SNPs 
and microhaplotypes to achieve similar mixture deconvo-
lutions as with STRs (102-104). These markers exhibit high-
er discrimination power than a high heterozygosity bial-
lelic SNP (ie, >0.50). Moreover, there are other data in WGS 
analyses beyond SNPs that have yet to be exploited, such 
as structural variants and the microbiome that could assist 
in investigations. For example, Toppinen et al (105) have 
shown that persistent viruses in femoral bone may provide 
information on the geographic origin of human remains.

Concluding remarks

The forensic DNA field is at another critical junction to en-
hance analysis of a wide range of biological evidence, ie, 
embracing the revolution of SNPs, targeted sequencing, 
and preferably WGS sequencing, and the use of alternate 
databases. These technical advancements generate sub-
stantial whole genomic data to permit kinship associations 
as distant as the seventh degree and beyond. FGG makes 
use of these associations to facilitate genetic genealogy to 
effectively narrow down the candidates who can be the 
source of crime scene evidence or assist in the determi-
nation of the identity of UHRs. The large number of (cold) 
cases and UHRs lying dormant, as well as active cases, now 
have an opportunity to be resolved rapidly. While STRs and 

national databases will continue to be important tools for 
developing investigative leads, investigators no longer 
need to rely solely on developing DNA-based leads where 
the reference sample must be in the database. Notable 
successes, such as the identification of the Golden State 
Killer and the resolution of the Carla Walker case, highlight 
the impact of these advances on public safety and justice. 
FGG’s success could increase if the genetic genealogy da-
tabases expand and become more representative of the 
populations of various regions around the world that make 
use of this powerful tool.

As with any genetic technology, especially those employed 
in FGG, the benefits and limitations must be weighed, and 
proper governance is required. There is no doubt that FGG 
is a powerful tool for providing critical leads and helping 
solve previously intractable cases. It is essential to consider 
individual privacy to ensure the adoption of this invaluable 
tool (106-109). In most cases, with comprehensive genome 
scanning, genetic data can be associated with at least some 
clinical and subclinical traits. The best way to address priva-
cy concerns with genomic data are through proper gover-
nance, security, accountability, and integrity (110).

The benefits of public safety and security, bringing resolu-
tion to victims, families, and communities, and developing 
leads in a cost-effective and rapid manner likely will drive 
the adoption of FGG. The overall value highlights the im-
portance of careful investment and governance in leverag-
ing these technologies for societal benefit.

Figure 2. The tradeoffs in gigabase throughput and costs (in 
US dollars) of selected DNA sequencing platforms.
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