Skip to main content
. 2024 May 13;10:e2031. doi: 10.7717/peerj-cs.2031

Table 15. Frenkel-Toledo et al. (2005) dataset best model parameter selections.

Method Learning rate Min child W. Subsample Colsample by tree Max depth Gamma
CNN-XG-MSCHO 0.553152 9.981037 1.000000 0.010000 3.000000 0.397994
CNN-XG-SCHO 0.900000 4.303456 0.694402 1.000000 3.000000 0.454477
CNN-XG-SCA 0.648538 1.000000 1.000000 1.000000 3.000000 0.800000
CNN-XG-GA 0.541834 10.000000 1.000000 0.010000 3.000000 0.037293
CNN-XG-PSO 0.566946 9.337266 1.000000 0.013087 3.000000 0.535184
CNN-XG-FA 0.900000 3.747522 1.000000 1.000000 9.000000 0.800000
CNN-XG-WOA 0.712243 10.000000 1.000000 0.010000 10.000000 0.800000
CNN-XG-BSO 0.530657 6.792584 1.000000 0.045359 3.000000 0.492458
CNN-XG-RSA 0.737744 10.000000 1.000000 0.015460 10.000000 0.691594
CNN-XG-COA 0.574955 10.000000 1.000000 0.040267 3.000000 0.758948
CNN-XG-COLSHADE 0.571372 10.000000 1.000000 0.010000 3.000000 0.709069