Table 3. Clustering performance.
Data set | Algorithm | Accuracy | NMI | RI | ARI |
---|---|---|---|---|---|
NDS | (Perp = 80) | 0.747 (0.210) | 0.628 (0.309) | 0.817 (0.324) | 0.598 (0.145) |
m-SNE (Perp = 50) | 0.650 (0.014) | 0.748 (0.069) | 0.766 (0.022 | 0.629 (0.020) | |
multi-SNE* (Perp = 80) | 0.989 (0.006) | 0.951 (0.029) | 0.969 (0.019) | 0.987 (0.009) | |
(NN = 5) | 0.606 (0.276) | 0.477 (0.357) | 0.684 (0.359) | 0.446 (0.218) | |
m-LLE (NN = 20) | 0.685 (0.115) | 0.555 (0.134) | 0.768 (0.151) | 0.528 (0.072)) | |
multi-LLE (NN = 20) | 0.937 (0.044) | 0.768 (0.042) | 0.922 (0.028) | 0.823 (0.047) | |
(NN = 100) | 0.649 (0.212) | 0.528 (0.265) | 0.750 (0.286) | 0.475 (0.133) | |
m-ISOMAP (NN = 5) | 0.610 (0.234) | 0.453 (0.221) | 0.760 (0.280) | 0.386 (0.138) | |
multi-ISOMAP (NN = 300) | 0.778 (0.112) | 0.788 (0.234) | 0.867 (0.194) | 0.730 (0.094) | |
MCS | (Perp = 200) | 0.421 (0.200) | 0.215 (0.185) | 0.711 (0.219) | 0.173 (0.089) |
m-SNE (Perp = 2) | 0.641 (0.069) | 0.670 (0.034) | 0.854 (0.080) | 0.575 (0.055) | |
multi-SNE* (Perp = 50) | 0.919 (0.046) | 0.862 (0.037) | 0.942 (0.052) | 0.819 (0.018) | |
(NN = 50) | 0.569 (0.117) | 0.533 (0.117) | 0.796 (0.123) | 0.432 (0.051) | |
m-LLE (NN = 20) | 0.540 (0.079) | 0.627 (0.051) | 0.819 (0.077) | 0.487 (0.026) | |
multi-LLE (NN = 20) | 0.798 (0.059) | 0.647 (0.048) | 0.872 (0.064) | 0.607 (0.022) | |
(NN = 150) | 0.628 (0.149) | 0.636 (0.139) | 0.834 (0.167) | 0.526 (0.071) | |
m-ISOMAP (NN = 5) | 0.686 (0.113) | 0.660 (0.106) | 0.841 (0.119) | 0.565 (0.051) | |
multi-ISOMAP (NN = 300) | 0.717 (0.094) | 0.630 (0.101) | 0.852 (0.118) | 0.570 (0.044) |