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Asbestos is a potent carcinogen associated with increased risks of
malignant mesothelioma and lung cancer in humans. Although the
mechanism of carcinogenesis remains elusive, the physicochemical
characteristics of asbestos play a role in the progression of asbes-
tos-induced diseases. Among these characteristics, a high capacity
to adsorb and accommodate biomolecules on its abundant surface
area has been linked to cellular and genetic toxicity. Several previ-
ous studies identified asbestos-interacting proteins. Here, with the
use of matrix-assisted laser desorption ionization-time of flight
mass spectrometry, we systematically identified proteins from var-
ious lysates that adsorbed to the surface of commercially used
asbestos and classified them into the following groups: chroma-
tin ⁄ nucleotide ⁄ RNA-binding proteins, ribosomal proteins, cytopro-
tective proteins, cytoskeleton-associated proteins, histones and
hemoglobin. The surfaces of crocidolite and amosite, two iron-rich
types of asbestos, caused more protein scissions and oxidative
modifications than that of chrysotile by in situ-generated 4-
hydroxy-2-nonenal. In contrast, we confirmed the intense hemo-
lytic activity of chrysotile and found that hemoglobin attached to
chrysotile, but not silica, can work as a catalyst to induce oxidative
DNA damage. This process generates 8-hydroxy-2¢-deoxyguano-
sine and thus corroborates the involvement of iron in the carcino-
genicity of chrysotile. This evidence demonstrates that all three
types of asbestos adsorb DNA and specific proteins, providing a
niche for oxidative modification via catalytic iron. Therefore, con-
sidering the affinity of asbestos for histones ⁄ DNA and the inter-
nalization of asbestos into mesothelial cells, our results suggest
a novel hypothetical mechanism causing genetic alterations
during asbestos-induced carcinogenesis. (Cancer Sci 2011; 102:
2118–2125)

A sbestos is a natural fibrous mineral that was heavily used
in industry during the past century because of its durabil-

ity, heat resistance and low cost. However, it has become clear
that respiratory exposure to asbestos fibers, especially crocido-
lite and amosite, which have high biopersistence and contain
abundant iron, is associated with high risks of developing malig-
nant mesothelioma and lung cancer.(1–3) Many countries antici-
pate increased numbers of mesothelioma patients in the coming
decades because there is an extremely long incubation period
(30–40 years) for this fatal disease following asbestos expo-
sure.(4)

The molecular mechanism of asbestos-induced carcinogenesis
remains elusive,(5) but both mesothelial cell injury and persistent
macrophage activation are thought to be essential, if not suffi-
cient, for mesotheliomagenesis.(6) These two events interact
in vivo, leading to genetic mutations, chromosomal aberrations
and aneuploidy in mesothelial cells. At least four major hypothe-
ses related to the underlying mechanisms have been proposed.(6,7)

First, the free radical theory postulates that DNA is injured by
reactive oxygen species generated through a foreign body
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reaction or catalytic action of the asbestos surface.(8–12) Asbes-
tos fibers of a large size, especially those that are quite long
(>15–20 lm), interrupt macrophage phagocytosis and prohibit
them from clearing fibers.(13) In this situation, activated macro-
phages release cytokines and oxidants, thereby inducing chronic
inflammation.(14) Even in the absence of activated phagocytes,
asbestos can produce free radicals via the Fenton reaction
because some types of amphibole asbestos, for example, crocid-
olite and amosite, include iron as an integral component of their
chemical structure and other types of asbestos contain iron as a
surface impurity.(8,15) Iron is the most abundant heavy metal in
the human body, but excess iron can work as a catalyst for the
generation of free radicals, leading to carcinogenesis.(16,17) In
experiments involving mammalian cells, asbestos fibers pro-
duced 8-hydroxy-2¢-deoxyguanosine (8-OHdG),(18–21) which is
a common oxidative modification of DNA involved in mutagen-
esis, carcinogenesis and aging.(22–24) Asbestos fibers also induce
clastogenic events in a free radical-dependent manner.(25)

Second, the mitotic disturbance theory proposes that asbestos
fibers physically interact with chromosomes directly and ⁄ or via
mitotic spindles, thereby inducing chromosomal aberrations.(26–31)

This is indeed a specific event caused by fibrous particles and
might be involved in the early induction of chromosomal aberra-
tions observed in Syrian hamster cells exposed to asbestos.(31)

Third, the molecule adsorption theory suggests that adsorption
of various molecules on the surface of asbestos fibers causes the
accumulation of intrinsic or extrinsic carcinogenesis-associated
molecules and interferes with intracellular signaling pathways.(7)

Certain carcinogenic molecules, such as benzo(a)pyrene in ciga-
rette smoke, are known to have high affinity for asbestos and
have a cooperative mutagenic effect.(32–34) Various endogenous
molecules, such as vitronectin and tubulin, are also likely to
interact with asbestos, playing important roles in fiber internali-
zation(35,36) and mitotic disturbances,(37) respectively. The depo-
sition of molecules on asbestos has also attracted attention as a
mechanism underlying the formation of asbestos bodies, a pro-
cess that was extensively investigated in previous studies.(38–49)

These studies suggested the involvement of acid mucopolysac-
charides,(40) bilirubin,(50) proteins(38) and iron(39,41,43,47,51,52) in
the development of asbestos bodies. Among these components,
the pathobiological contribution of iron should be carefully con-
sidered. Iron exists in and near asbestos bodies in various forms:
hemosiderin,(52) ferritin(39,51) and colloidal iron.(43) Governa
et al.(42) discussed the reactivity of iron inside asbestos bodies
and concluded that it can catalyze free radical formation in
reductive conditions in vitro. Considering that hemosiderin is
capable of inducing hydroxyl radicals under physiological
conditions,(53,54) iron-rich asbestos bodies might play a role in
oxidative tissue damage.
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Finally, the chronic inflammation theory suggests that persis-
tently activated macrophages contribute to the initiation as well
as the progression of carcinogenesis.(55,56) Particularly in meso-
theliomagenesis, chronic inflammation is associated with asbes-
tos-induced genotoxicity in mesothelial cells. Yang et al.(57)

showed that tumor necrosis factor-a (TNF-a), a cytokine persis-
tently released from macrophages during inflammation, inhibits
asbestos-induced mesothelial cell death and might increase the
likelihood of transformation.

All of the aforementioned theories are clearly associated with
each other. However, currently there is little information avail-
able on asbestos-interacting proteins. Therefore, in the present
study we used matrix-assisted laser desorption ionization-time
of flight mass spectrometry (MALDI-TOF ⁄ MS) to systemati-
cally identify proteins that adsorb to the surface of different
asbestos fibers, investigated the modifications of adsorptive mol-
ecules and evaluated their possible involvement in mesothelial
carcinogenesis.

Materials and Methods

Full materials and methods are provided in Data S1.
Materials. Three types of asbestos (chrysotile, crocidolite and

amosite) were acquired from Union for International Cancer
Control (UICC; Geneva, Switzerland) and suspended in saline.
MeT5A cells were obtained from the American Type Culture
Collection (Manassas, VA, USA). Silica (powder, 0.014 lm)
was purchased from Sigma Aldrich (St. Louis, MO, USA) and a
protease inhibitor cocktail (complete mini) was purchased from
Roche diagnostics (Basel, Switzerland).

Collection and analysis of asbestos-interacting proteins. We
modified a previously reported method(37) to collect proteins
adsorbed to the surface of asbestos fibers. Briefly, lysates(58) of
various rat tissue including lung, liver, kidney, brain and tunica
vaginalis or MeT5A human mesothelial cells (200–400 lg)
were mixed with each fiber (250 lg), and the total volume was
adjusted to 1 mL with radio-immunoprecipitation assay (RIPA)
buffer. After >3 h of incubation at 4 or 37�C, the mixture was
centrifuged (20 000g) at 4�C for 5 min. The supernatant was
discarded and the pellet was washed three times with RIPA buf-
fer. After the final centrifugation, we carefully discarded the
supernatant, directly added SDS-PAGE sample buffer, and
heated the sample at 95�C for 10 min. The samples were centri-
fuged (20 000g) at 4�C for 2 min, and the supernatant was ana-
lyzed using SDS-PAGE. We used a silver staining kit to stain
the SDS-PAGE gels but avoided using glutaraldehyde to mini-
mize unnecessary protein modifications.

Results

Adsorption of specific proteins by asbestos. To collect pro-
teins adsorbed by asbestos fibers, we used an assay system simi-
lar to immunoprecipitation that we modified from a previously
described method.(37) Both silica and asbestos adsorbed a variety
of specific proteins (Fig. 1a). The total amount of proteins
bound to fibers was highest for chrysotile, followed by crocido-
lite, amosite and silica. We determined that approximately 1 lg
of protein had adsorbed onto 250 lg asbestos by comparison
with the original amount of rat lung lysate (2 lg, Fig. 1a). Cro-
cidolite and amosite fibers yielded similar protein profiles on
SDS-PAGE gels, whereas that of chrysotile was distinct,
although all three were different from the original profiles of the
untreated lysates. Much less protein was adsorbed on silica than
asbestos when a protease inhibitor cocktail, which protects pro-
teins from enzymatic degradation, was used for sample prepara-
tion (data not shown). Thus, proteins are adsorbed on the
surfaces of silica and asbestos via different mechanisms. To test
the specificity of the asbestos–protein interaction, we pre-incu-
Nagai et al.
bated the fibers with actin or albumin prior to the incubation
with tissue lysate. This treatment yielded essentially the same
protein profiles, indicating that neither actin nor albumin could
inhibit protein adsorption on silica or asbestos (data not shown)
and that the protein adsorption was specific. To further confirm
the specificity of asbestos–protein interaction, we incubated
chrysotile with a various amount of rat lung lysate (10, 100 and
400 lg) and found that there is a difference between proteins in
its affinity to asbestos (Fig. 1h). Therefore, there is a specific
preference of proteins to asbestos, even though the specificity
between proteins and asbestos is much weaker than that of
protein–protein interaction because there are many kinds of
proteins adsorptive to asbestos simultaneously.

Identification of asbestos-interacting proteins with MALDI-
TOF ⁄ MS. To identify asbestos-interacting proteins, we performed
in-gel digestion and subjected the samples to MALDI-
TOF ⁄ MS.(60) More than 100 proteins were found to interact with
asbestos (Fig. 1a–g; Table 1; Table S1). We classified these
proteins into the following eight categories on the basis of their
cellular localization and function: chromatin ⁄ nucleotide ⁄ RNA-
binding proteins; ribosomal proteins; cytoprotective proteins;
cytoskeleton-associated proteins; histones; and hemoglobin.

Proteins adsorbed to asbestos are modified by 4-hydroxy-2-
nonenal (HNE). We studied the oxidative modifications of pro-
teins adsorbed to asbestos because asbestos can catalyze the
Fenton reaction.(61) We analyzed the presence of HNE(62) modi-
fications of the proteins using western blotting.(63,64) 4-
Hydroxy-2-nonenal is a major lipid peroxidation end-product
associated with a variety of signaling pathways. We found that
all three types of asbestos induced HNE modification of
adsorbed proteins (Fig. 2a). In particular, crocidolite and amo-
site, which contain high amounts of iron (approximately 30%),
induced higher amounts of HNE modification than chrysotile.
Furthermore, actin incubated with amosite was degraded and
modified by HNE (Fig. 2b). Interestingly, this phenomenon of
actin degradation was only observed when we used amosite, not
chrysotile or crocidolite (data not shown), indicating that asbes-
tos–protein interactions can differ even between crocidolite and
amosite. Thus, asbestos not only adsorbed proteins on its surface
but also modified proteins via the HNE modification and
degraded proteins.

Among the various asbestos-interacting proteins, we focused
on histone H3 and hemoglobin to evaluate differences in adsorp-
tive activity and oxidative modification. We therefore incubated
asbestos with both histone H3 and hemoglobin and analyzed
various parameters (Fig. 2c). Hemoglobin showed a higher
binding specificity for chrysotile than histone H3, but the two
proteins had similar specificity values for crocidolite. Further-
more, histone H3 was modified by HNE, but hemoglobin was
not (Fig. 2c). Hemoglobin specifically bound to asbestos, but
not to silica. Finally, hemoglobin dimers were observed after
incubation with crocidolite or amosite (Fig. 2d).

Hemoglobin adsorption to asbestos results in high catalytic
activity.(59) Asbestos is known to cause hemolysis.(65) We con-
firmed this property using UICC asbestos and silica (Fig. 3a,b).
Silica exhibited the most potent hemolytic activity, followed by
chrysotile. Crocidolite and amosite were also hemolytic but with
a much lower activity (approximately 200-fold less). Silica,
chrysotile and crocidolite were then evaluated for catalytic
activity related to free radical generation in the presence of
bleomycin sulfate and DNA. Both asbestos fibers showed signif-
icantly higher catalytic activity(59) after incubation with hemo-
globin, whereas silica did not (Fig. 3c), consistent with the
result shown in Figure 2(d). These results suggest that asbestos
induces hemolysis, collects iron-containing proteins, namely
hemoglobin, on its surface and catalyzes free radical generation,
whereas silica causes hemolysis but lacks subsequent catalytic
activity.
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Fig. 1. Adsorption of specific proteins by asbestos fibers. Lysates from rat tissues or MeT5A mesothelial cells were incubated with each
inorganic material and silver staining was performed after SDS-PAGE. Asbestos exhibited higher adsorption than silica (Sil), and chrysotile (Chr)
was the most adsorptive. (a–h) The panels show the original gels subjected to matrix-assisted laser desorption ionization-time of flight mass
spectrometry (MALDI-TOF ⁄ MS) analysis. The amount of rat lung lysate (Lys) loaded in panel (a) was 2 lg. Numbers correspond to the identified
proteins listed in Table S1. The gels shown in each panel are different in the concentration of polyacrylamide and the combination of inorganic
material and cell ⁄ tissue lysate. The origin of the rat lysate (e.g. lung, kidney, liver, etc.) used for the incubation is shown at the top and the
species of the inorganic material is shown next to the top. (h) Chrysotile was incubated with 10, 100 or 400 lg of rat lung lysate and the
proteins adsorbed onto chrysotile were analyzed by the coupling of SDS-PAGE and silver staining. The square in a continuous line shows an
increase in the amount of asbestos-binding proteins as the total amount of proteins incubated increases. In contrast, the square in a dotted line
shows the opposite. Cro, crocidolite; Amo, amosite; Tunica v., tunica vaginalis; MeT5A-Memb., membrane fraction of MeT5A cells.
Asbestos adsorbs DNA and generates 8-OHdG on its
surface. In addition to proteins, we also studied DNA adsorp-
tion to the asbestos surface. We quantified the amount of DNA
adsorbed on asbestos fibers (250 or 500 lg). Chrysotile most
effectively adsorbed DNA, followed by silica, crocidolite and
amosite (Fig. 4a). We then found that the DNA adsorbed by cro-
cidolite was oxidized to generate 8-OHdG(66) after incubation at
37�C for 3 h (Fig. 4b). Furthermore, we found that adding
hemoglobin to the reaction with chrysotile enhanced the oxida-
tion of DNA in the presence of hydrogen peroxide (Fig. 4c).
Collectively, every commercial type of asbestos, regardless of
its iron content, can utilize iron in various forms to induce
oxidative DNA damage.

Asbestos interacts with red blood cells after instil-
lation. Finally, we investigated how asbestos fibers interact
with red blood cells in vivo. We instilled chrysotile or crocido-
2120
lite suspension through the airways of mice or rats and 3 h later
their lungs were then collected and histopathological specimens
were prepared. We found that both types of asbestos fibers were
surrounded by inflammatory cells and red blood cells (Fig. 5,
top panels; hematoxylin and eosin-stained sections). Immuno-
histochemistry using an antibody against hemoglobin revealed
that chrysotile was directly interacting with red blood cells and
that hemoglobin was colocalized with crocidolite, suggesting
that the surface of asbestos fibers can accommodate erythrocytes
as well as hemoglobin in vivo.

Discussion

We identified asbestos-interacting proteins using a method simi-
lar to immunoprecipitation. This method allowed us to measure
the selective adsorption of proteins on the asbestos surface using
doi: 10.1111/j.1349-7006.2011.02087.x
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Table 1. A summarized list of asbestos-binding proteins

Chromatin-binding proteins

ATP-dependent DNA helicase 2 subunit 2

Coiled-coil domain-containing protein 124

DNA replication licensing factor MCM6

DNA replication licensing factor MCM7

DNA-(apurinic or apyrimidinic site) lyase

Flap endonuclease 1

Interleukin enhancer-binding factor 2

Transcription initiation factor IIE subunit b

RNA-binding proteins

Cleavage and polyadenylation specificity factor subunit 5

Eukaryotic translation initiation factor 2 subunit 1

FUS glycine-rich protein

Heterogeneous nuclear ribonucleoprotein A0

Heterogeneous nuclear ribonucleoprotein A1

Heterogeneous nuclear ribonucleoprotein U

KH domain-containing RNA-binding signal

transduction-associated protein 1

Probable ATP-dependent RNA helicase DDX5

Putative pre-mRNA-splicing factor-ATP-dependent RNA

helicase DHX15

RNA-binding protein EWS

rRNA 2¢-O-methyltransferase fibrillarin

Splicing factor, proline and glutamine rich

THO complex subunit 4

Nucleotide-binding proteins

ATP synthase subunit a
ATP synthase subunit O

Carbamoyl-phosphate synthase

Developmentally regulated GTP-binding protein 1

Elongation factor 1- a 1

Elongation factor 1- a 2

Elongation factor Tu

Glutamate dehydrogenase 1

Succinyl-CoA ligase

Cytoprotective proteins

78 kDa glucose-regulated protein

DnaJ homolog subfamily B member 13

Glutathione peroxidase 1

Heat shock 70 kDa protein 1 ⁄ 2
Heat shock cognate 71 kDa protein

Peroxiredoxin 1

Peroxiredoxin 2

Superoxide dismutase (Mn)

Cytoskeleton-associated proteins

Actin

a-Actinin 1

a-Actinin 4

Annexin A2

Cytoskeleton-associated protein 4

Ezrin

Filamin-A

Keratin type I cytoskeletal 18

Keratin type II cytoskeletal 8

Moesin

Myosin 9

Myosin 10

Myosin 11

Myosin binding protein C

Myosin light polypeptide 6

Predicted: similar to Myosin 11

Predicted: similar to septin-11

Predicted: similar to tubulin

polymerization-promoting protein

Radixin

Septin-2

Septin-7

Spectrin a-chain

Tubulin b-5 chain

Histones

Histone H2A type 3

Histone H2B type 1

Histone H3.3

Histone H4

Hemoglobins

Hemoglobin subunit a 1 ⁄ 2
Hemoglobin subunit b 1

Hemoglobin subunit b 2

Ribosomal proteins

39S ribosomal protein L28

39S ribosomal protein L40

39S ribosomal protein L48

40S ribosomal protein S2

40S ribosomal protein S3a

40S ribosomal protein S4, X isoform

40S ribosomal protein S7

40S ribosomal protein S9

40S ribosomal protein S16

60S ribosomal protein L7a

60S ribosomal protein L8

60S ribosomal protein L9

60S ribosomal protein L10

60S ribosomal protein L13

60S ribosomal protein L17

60S ribosomal protein L18

60S ribosomal protein L18a

60S ribosomal protein L22

60S ribosomal protein L23a

60S ribosomal protein L31

Refer to Table S1 for details.
cell or tissue lysates. All of the proteins identified in the present
study are listed in Table S1. We classified 99 out of 128
asbestos-interacting proteins into the following eight categories:
nine chromatin-binding proteins; 10 nucleotide-binding proteins;
14 RNA-binding proteins; 24 ribosomal proteins; nine cytopro-
tective proteins; 26 cytoskeleton-associated proteins; four
histones; and three hemoglobin subunits (Table S1). These
results indicate that not only DNA (Fig. 4a) but also many types
of DNA-interacting proteins have an affinity for asbestos.
Indeed, physical interactions between the mitotic spindle and
asbestos might cause mitotic disturbances and chromosomal
aberrations.(7,37) Moreover, our identification of RNA-binding
and ribosomal proteins as asbestos-interacting proteins indicates
that asbestos might interfere with chromosomal replication, tran-
scription and translation.

The different affinities of each asbestos type for DNA can be
partially explained by their surface charges. The surface of chrys-
otile is positively charged, whereas crocidolite and amosite are
negatively charged.(3) Thus, chrysotile provides more suitable
surface area for a negatively charged biomolecule such as DNA.

Among the cytoskeleton-associated proteins, tubulin, actin,
vimentin and cytoskeleton-associated protein 4 were previously
reported to interact with asbestos.(7,37) In addition, we identified
many other cytoskeleton-associated proteins, including a actinin
1 and 4, filamin-A, keratin 8 and 18, myosin 9, 10 and 11, septin
2 and 7, spectrin, ezrin, radixin and moesin. Adsorption of these
proteins onto the surface of asbestos might affect cytoskeletal
regulation.
Nagai et al.
We identified several cytoprotective proteins that metabolize
reactive oxygen species (ROS), including manganese superoxide
dismutase, glutathione peroxidase 1, and peroxiredoxin 1 and
2,(67) suggesting that asbestos might disturb the redox state of
cells not only by generating ROS but also by adsorbing proteins
that metabolize and reduce ROS.

Hemoglobin was identified as an asbestos-interacting protein.
This interaction was specific to asbestos at body temperature
(37�C) in vitro and did not occur on silica. Hemoglobin is a
major oxygen-transporting protein and is released from red
blood cells during hemolysis. Adsorption of hemoglobin on the
asbestos surface has been mentioned previously,(65) but the pres-
ent study is the first to demonstrate that this event augments
asbestos-induced free radical generation (Figs 3c,4c). We also
investigated the direct interaction of red blood cells ⁄ hemoglobin
and asbestos fibers by immunohistochemistry (Fig. 5), although
to what extent this direct interaction contributes to oxidative
damage in surrounding tissue still remains elusive.

In addition to enhancement of oxidative damage, this direct
interaction might be the first step in the formation of asbestos
bodies. Governa et al.(50) suggested that bilirubin was present in
the innermost layer of the asbestos body. Because bilirubin is a
metabolite of heme, our results support this idea. Thus, we pro-
pose a model in which asbestos utilizes heme iron from erythro-
cytes to enhance free radical generation, thereby inducing DNA
damage in vivo, at least temporarily. Hemoglobin metabolism is
mediated by heme oxygenase-1, which is upregulated when ani-
mals or cells are treated with asbestos.(68,69) Therefore, this
Cancer Sci | December 2011 | vol. 102 | no. 12 | 2121
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enzyme might play a role in the conversion of hemoglobin into
bilirubin on asbestos.

We also provided evidence suggesting that asbestos can mod-
ify proteins with HNE. In particular, incubation with asbestos
promoted the accumulation of HNE modifications on both his-
tone H3 and actin, leading to subsequent degradation of the lat-
ter. We believe that membrane lipids in the lysate and
contaminant lipids in commercial proteins are the source of
HNE in this setting. Here, we propose that asbestos not only
adsorbs proteins but also provides a niche for oxidative reac-
2122
tions. This situation is also true in the case of DNA. DNA is
adsorbed on the surface of asbestos (Fig. 4a) and oxidatively
modified to 8-OHdG (Fig. 4b,c). This reaction might occur in
the nuclei of dividing cells, leading to prominent genomic alter-
ations.

In conclusion, we have identified and classified a variety of
asbestos-interacting proteins. Among these proteins, we believe
that hemoglobin and chromatin constituents such as DNA and
histones are especially important; hemoglobin is an iron source
and histones lie in close proximity to genomic DNA. DNA also
showed a high affinity for asbestos, especially chrysotile. Taken
together, we propose that asbestos provides a niche for
doi: 10.1111/j.1349-7006.2011.02087.x
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most potent DNA adsorbent, followed by silica, crocidolite and
amosite. *P < 0.05. **P < 0.01. (b) Crocidolite was incubated with
genomic DNA at 4 or 37�C for 3 h. Fluorescent immunohistochemistry
was performed after incubation to show the generation of 8-OHdG
on the asbestos surface (arrows). (c) Formation of 8-OHdG on the
surface of hemoglobin-treated chrysotile after incubation with DNA in
the presence of H2O2 (arrows). Scale bar, 50 lm.
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Fig. 5. Direct interaction of red blood cells ⁄ hemoglobin with
asbestos fibers in vivo. Three hours after instillation of asbestos fiber
suspension to the airways of mice or rats, asbestos fibers were
surrounded by inflammatory cells as well as red blood cells (in
hematoxylin and eosin [HE]-stained sections). Immunohistochemistry
to detect hemoglobin revealed that chrysotile fibers directly
interacted with erythrocytes and that hemoglobin was colocalized
with crocidolite with serial sections. Arrowheads indicate asbestos
fibers. Hoechst, hoechst 33342; scale bar, 50 lm.
oxidative reactions by specifically adsorbing various important
proteins and DNA and subsequently generating local iron over-
load (Fig. 6). Among the three types of asbestos, chrysotile
induced mesothelioma most rapidly when injected intraperitone-
ally to rats (Li Jiang, Hirotaka Nagai and Shinya Toyokuni, un-
published data, 2011). With these results, further studies are
necessary to re-evaluate the risk posed by chrysotile exposure in
the development of lung cancer and mesothelioma.
Nagai et al.
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