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Developmental process to gastric cancer by Helicobacter pylori
infection consists of three steps: (1) H. pylori infection; (2) gastric
atrophy development; and (3) carcinogenesis. In each step, genetic
traits may influence the process, interacting with lifestyle. In the
step of H. pylori infection, two lines of genetic polymorphisms were
assumed: one influencing gastric acid inhibition interacting with
smoking, and the other concerning innate immune response
attenuation. The former includes functional polymorphisms of IL-1B
(C-31T or tightly linked T-511C), and TNF-A (T-1031C and C-857T),
and the latter possibly includes NQO1 C609T. In the step to gastric
atrophy, polymorphisms pertaining to the signal transduction from
cytotoxin-associated gene A (PTPN11 A/G at intron 3) and to T-cell
responses (IL-2 T-330G and IL-13 C-1111T) were hypothesized. There
are a limited number of epidemiological genotype studies on the
final step of literal carcinogenesis, potentially interacting with
smoking, a low vegetable and fruit intake, and salty foods, the well-
documented risk factors. In past case-control studies on the
associations between genotype and gastric cancer risk, the cases
consisted of H. pylori-related and unrelated gastric cancer patients
and the controls consisted of individuals including the uninfected
(H. pylori unexposed and exposed) and the infected with and
without gastric atrophy. Accordingly, it was not clear whether the
observed risk was for H. pylori-related or -unrelated gastric cancer,
nor which step was involved in the observed associations even
when nearly all cases were H. pylori-related. In order to elucidate
the genetic traits of H. pylori-related gastric cancer, stepwise
evaluation will be required. (Cancer Sci 2006; 97: 1129–1138)

Helicobacter pylori is a gram-negative bacterium that colonizes
the human gastric mucosa.(1) It is well known that the

bacterium increases the risk of gastric diseases, including peptic
ulcers and stomach cancer.(2,3) In areas where gastric cancer is
highly prevalent, such as Japan, Korea and China, the great
majority of gastric cancers are H. pylori-related. In Japan, the
cumulative gastric cancer incidence rate of 0–84-year-olds was
estimated to be 21.2% for infected males and 8.0% for infected
females, under the conditions that half of the population are
infected and the infected people have a five-times higher risk of
gastric cancer than uninfected people.(4) As H. pylori-unrelated
gastric cancer may develop in a different set of genetic or environ-
mental factors from H. pylori-related cases, epidemiological and
biological studies to elucidate the process should be conducted
separately.

In H. pylori-related gastric cancer, the process has three steps:
(1) H. pylori infection; (2) gastric atrophy development; and
(3) carcinogenesis. In each step, genetic traits may influence the
process, interacting with lifestyle. Fig. 1 shows the genetic pol-
ymorphisms with possible biological mechanisms and interact-
ing lifestyle factors for the three steps. This paper briefly reviews
the epidemiological findings, the biological background, and
polymorphism studies according to these steps. Additionally, previous

polymorphism studies of gastric cancer that did not consider
these processes are reviewed. Although the pathological process
model includes intestinal metaplasia and dysplasia,(5) epidemio-
logical studies using serum pepsinogens (PG) as markers of
gastric atrophy cannot distinguish the two pathologically defined
stages, so that they are not regarded as different steps in the present
paper. In the present paper, human leukocyte antigen (HLA)
types were not included in polymorphism genotypes.(6)

Epidemiology of H. pylori infection

Helicobacter pylori transmits from person to person, largely
depending on sanitary conditions, especially in childhood.(7–10)

Lifestyle factors such as salty food intake,(11) fruit intake(12) and
smoking(12–16) were also reported to influence the persistence
of H. pylori infection. Meanwhile, a twin study reported that
the concordance of anti-H. pylori antibody status was higher in
monozygotic twin pairs than in dizygotic twin pairs,(17) strongly
underscoring the role of genetics in infection.

The bacterium is classified into two main species, in terms of
the cytotoxin-associated gene A (CagA) protein, a toxin injected
through a type IV infection system into gastric epithelium: CagA
negative and CagA positive. The CagA-positive species are more
virulent than the CagA-negative species, and have stronger
associations with gastric atrophy and gastric cancer.(18–20)

Biology of H. pylori infection

Gram-negative bacteria, including H. pylori, have a cell wall
containing lipopolysaccharide (LPS). The innate immune response,
a preprogrammed non-specific first line of defense responsible
for eliminating pathogens at the site of entrance into the host,
recognizes LPS with a pattern recognition receptor, CD14, on
the cell surface. CD14 is a glycosylphospatidylinositol-anchored
receptor lacking an intracellular domain, which binds LPS with
high affinity. The LPS–CD14 complex then activates Toll-like
receptor 4 (TLR4) with an intracellular domain for signal
transduction. TLR4 is stabilized in the form of a homodimer by
MD-2. The signal from LPS is transduced through myeloid
differentiation factor 88 (MyD88), interleukin (IL)-1 receptor-
associated kinase (IRAK), tumor necrosis factor (TNF) receptor-
associated factor 6 (TRAF6) and inhibitory κB kinase (IKK) to
nuclear factor (NF)-κB (Fig. 2).(21)

A recent study delineated that the main signal transduction to NF-
κB is through the peptidoglycan-derived peptide α-d-glutamyl-
meso-diaminopimelic acid (iE-DAP), which is injected through
a type IV secretion system. iE-DAP is a ligand of nucleotide-
binding oligomerization domain protein 1 (NOD1), which is
encoded by the caspase-recruitment domain 4 gene (CARD4)
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and expressed in epithelial cells.(22) It is hypothesized that the
signal is transduced through several molecules to NF-κB.(23)

NF-κB is a group of proteins (NF-κB/REL proteins) that bind a
common sequence motif known as the κB site.(24) They transcript
inflammation-related genes such as IL-1A, IL-1B, IL-2, IL-6,
IL-8, TNF-A, TNF-B and GM-CSF.(25) Other pathways of LPS
signaling may also exist for IL-1B,(26) and for TNF-A through
extracellular signal-regulated kinase (ERK).(27) LPS-induced IL-
1β and TNF-α induce other cytokines and enzymes for inflam-
mation as well as IL-1β and TNF-α themselves through the
NF-κB pathway.(28) The IL-1 receptor antagonist coded by IL-1RN

disturbs IL-1β binding to IL-1 receptor I (IL-1RI), resulting in
the inhibition of IL-1β function.

Interleukin-1β and TNF-α inhibit gastric acid secretion.(29) The
inhibited acid secretion causes H. pylori distribution to the corpus,
resulting in gastric atrophy.(30) Accordingly, the level of cytokines
could influence the persistence of H. pylori infection.(31) IL-8 is a
CXC chemokine that mediates the activation and migration of
neutrophils into tissue from peripheral blood. As is the case with
IL-1β and TNF-α, IL-8 induced in gastric epithelial cells,(1) and in
neutrophils,(32) by H. pylori serves to trigger the inflammation. It
binds CXCR-1 (previously called IL-8RA) and CXCR-2 (IL-8RB)
with similar affinity. IL-10, a cytokine produced by type 2 T-helper
cells (Th2 cells), inhibits the production of IL-1β and IL-8.(33,34)

In mice, cytokine expression by Helicobacter felis is modified by
concurrent infection of the enteric helminth Heligmosomoides
polygyrus, which drives the immune response through Th2 cells.
Co-infection increases the mRNA of IL-10 in comparison with
Helicobacter felis infection alone, resulting in reduced Helicobacter-
associated gastric atrophy and high Helicobacter colonization.(35)

These findings suggest that a high level of IL-10 and a lower
level of IL-8 create favorable conditions for prolonging H. pylori
infection in human gastric mucosa. Myeloperoxidase (MPO)
is a lysosomal enzyme in polymorphonuclear leukocytes and
monocytes. Hypochlorous acid produced by MPO shows micro-
bicidal activity against a wide range of organisms,(36) producing
tissue inflammation. It was reported that H. pylori water extract
activates neutrophils(37) and enhances the secretion of MPO.(32)

Another line of innate immune response relating to persistent
H. pylori infection is polyamine synthesis. H. pylori induces arginase
II generating ornithine, as well as ornithine decarboxylase (ODC)
generating polyamines (Fig. 3). Polyamines, especially spermine,
restrain the immune response by inhibiting inducible nitric oxide
synthase (iNOS) translation and nitric oxide (NO) production,(38)

which are upregulated by H. pylori. The ODC level is regulated
with antizyme, a polyamine-induced protein. NAD(P)H : quinone
oxidoreductase 1 (NQO1) binds and stabilizes ODC. The regulation
of ODC stability by NQO1 is prominent under oxidative stress.(39)

The mechanisms of H. pylori binding to gastric epithelium may
be related to genetic traits of susceptibility to persistent H. pylori
infection. H. pylori with the babA2 gene is attached to gastric
mucosa with blood group antigen-binding adhesion (BabA).(40,41)

BabA binds both Lewis b and H type I blood group carbohydrate
structures on the foveolar epithelium of human gastric mucosa.
Type I precursor is converted to H type I antigen by fucosyl-
transferase 2 (FUT2, secretor enzyme), then to Lewis b antigen
by fucosyltransferase 3 (FUT3, Lewis enzyme). FUT3 also converts
type I precursor to Lewis a antigen.

Fig. 1. Steps in Helicobacter pylori-related gastric cancer. IL, interleukin;
NQO1, NAD(P)H : quinone oxidoreductase 1; TNF, tumor necrosis factor.

Fig. 2. Signal pathway from Helicobacter pylori to cytokine gene expres-
sion. iE-DAP, α-D-glutamyl-meso-diaminopimelic acid; IKK, inhibitory κB
kinase; IL, interleukin; IRAK, interleukin-1 receptor-associated kinase;
LPS, lipopolysaccharide; MyD88, myeloid differentiation factor 88; NF-κB,
nuclear factor κB; NOD1, nucleotide-binding oligomerization domain
protein; TLR, Toll-like receptor; TRAF6, TNF receptor-associated factor 6.

Fig. 3. Arginase–ornithine carboxylase (ODC) pathway to attenuate innate
immune response by nitric oxide. iNOS, inducible nitric oxide synthase;
NQO1, NAD(P)H : quinone oxidoreductase 1.
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Genotype and H. pylori seropositivity

Molecules in related pathways seem to have the potential to
enhance susceptibility to H. pylori infection at childhood, causing
lifetime persistent infection. Table 1 shows the gene polymorphisms
of such molecules reported for association with H. pylori

infection.(42–62) In these polymorphisms, relatively consistent
associations were found with IL-1B and TNF-A. The possible
biological mechanism may be related to inhibition of gastric
acid secretion. NQO1 C609T also seems to have the potential
to be a genetic trait for persistent H. pylori infection through
stabilization of ODC.

Table 1. Polymorphisms reported in association with Helicobacter pylori infection and odds ratio (OR) or seropositive percentage (HP%)

Polymorphism Subjects OR or HP%

CD14 C-159T 1374 Japanese(42) TT, TC:0.94, CC:1.16
CXCR2 C785T 241 Japanese(42) CC(65%), CT(63%), TT(56%)
FUT2 Se/se 241 Japanese(43) SeSe, Sese:0.79, sese:0.35*

679 Japanese(44) SeSe, Sese:1.51*, sese:1.50
465 Japanese(44) SeSe, Sese:1.57, sese:1.29

FUT3 Le/le 241 Japanese(43) LeLe, Lele:1.95*, lele:2.80
679 Japanese(44) LeLe, Lele:0.98, lele:1.31
465 Japanese(44) LeLe, Lele:1.06, lele:1.40

IL-1 A C-889T 241 Japanese(45) CC(62%), CT/TT(68%)
IL-1B C-31T 241 Japanese(45) CC, CT:2.32*, TT:2.46*

55 smokers CC, CT:6.18*, TT:22.9*
465 Japanese(46) CC, CT:0.97, TT:1.73*
80 ever smokers CC, CT:1.68, TT:5.29*
547 Japanese(47) CC, CT:1.32, TT:1.35
127 smokers CC, CT:1.12, TT:1.01
963 Japanese Brazilians(48) CC, CT:1.30, TT:1.45*
124 smokers CC, CT:2.45, TT:3.49*

IL-1B C-511T 499 Japanese(49) CC(53%), CT(54%), TT(52%)
474 Koreans(50) CC(88%), CT(86%), TT(86%)

IL-1RI C-116T 241 Japanese(42) CC(65%), CT(58%), TT(72%)
IL-1RN VNTR 241 Japanese(45) 4rpt/4rpt(62%), others(67%)

474 Koreans(50) non-2rpt(87%), 2rpt(80%)
IL-2 T-330G 454 Japanese(51) GG, TG:1.10, TT:1.15
IL-4 C-33T 454 Japanese(51) CC, CT:1.43, TT:1.25
IL-8 T-251A 454 Japanese(52) TT, TA:0.86, AA:0.70
IL-10 T-819C 454 Japanese(52) TT, TC:0.67, CC:0.82
IL-8 & IL-10 454 Japanese(52) TT & TT, others:0.62*

65 smokers TT & TT, others:0.13*
241 Japanese(42) TT & TT, others:1.04
55 smokers TT & TT, others:0.45
679 Japanese(42) TT & TT, others:1.49*
158 smokers TT & TT, others:0.89

IL-13 C-1111T 454 Japanese(51) CC, CT:0.73, TT:1.09
MPO G-463A 241 Japanese(53) GG, GA/AA:0.69

55 smokers GG, GA/AA:0.21*
454 Japanese(54) GG, GA/AA:0.84
64 smokers GG, GA/AA:0.83

NF-KB2–10G I/D 1374 Japanese(42) II, ID:1.03, DD:1.15
NQO1 C609T 241 Japanese(55) TT, TC:1.13, CC:2.42*

454 Japanese(55) TT, TC:1.57, CC:1.70
PPAP Pro12Ala(C/G) 104 Chinese(56) CC(62%), CG/GG(33%)
PTPN11 G/A at intron 3 454 Japanese(57) GG(58%), GA(49%), AA(47%)
TCRBV6S1 A/B 383 Germans(58) Significant association*
TNF-A T-1031C 1374 Japanese(59) TT, TC:0.62, CC:0.43*

963 Japanese Brazilians(60) CC, TC:0.96, TT:1.18
TNF-A C-857T 1374 Japanese(59) CC, CT:1.06, TT:1.69

963 Japanese Brazilians(60) CC, CT:1.17, TT:1.21
TNF-A −1031 & −857 1374 Japanese(59) CC & CC, TT & CC:2.37*, TC & CT:2.84*, TT & TT:3.63*

963 Japanese Brazilians(60) CC & CC, TT & CC:1.08, TC & CT:1.03, TT & TT:1.27
253 ever smokers CC & CC, TT & CC:2.01, TC & CT:1.76, TT & TT:2.30

TNF-A G-308A 393 Germans(61) GG(52%), GA(56%), AA(56%)
792 Italians(62) GG(54%), GA(61%*), AA(–)
474 Koreans(50) GG(86%), GA/AA(89%)

TNF-B A252G 1374 Japanese(59) AA, AG:1.05, GG:1.05

*Statistically significant (P < 0.05).
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IL-1ββββ.... IL-1β is encoded by IL-1B on chromosome 2q14, whose
three polymorphisms (C-511T, C-31T and C3954T) have been
studied in many diseases. Among Caucasians, the polymorphisms
tend to be associated with gastric cancer risk, but not among
Orientals.(49,63–67) In any ethnic group, 511T and −511C are tightly
linked with −31C and −31T, respectively.(45,63) Although −31T,
which makes a TATA box in the promoter region, seems to be a
high-expression allele, there is controversy in its function. An
electrophoretic mobility-shift assay demonstrated that transcription
factors combine with −31T, not −31C,(63) and that the IL-1β level
of antrum gastric mucosa was higher in −511CC (that is, −31TT )
carriers than in −511TT carriers among H. pylori-infected Japanese.(68)

A similar association was found among gastric cancer patients
infected with H. pylori in Korea.(65) However, other studies have
reported opposite findings among H. pylori-infected Japanese,(69) and
among H. pylori-infected people in Thailand.(70) Among those with
IL-1A −889TT in Finland, serum IL-1β levels were reported to be
higher in IL-1B −511T allele carriers than in non-carriers.(71) A
report on IL-1β mRNA showed no difference among IL-1B C-
511T genotypes.(72) Concerning the function of C3954T, few
biological studies have been reported, although its association
with disease risk has been reported.

The effects of IL-1β can be modulated by the IL-1 receptor
antagonist encoded by IL-1RN, IL-1 receptor I encoded by IL-
1R1, and IL-1 receptor II encoded by IL-1R2,(73) so that poly-
morphisms of these molecules could affect persistent H. pylori
infection. However, reports on the associations with H. pylori
infection are limited.

TNF-αααα.... TNF-A encoding TNF-α is located between HLA-B and
HLA-DR on chromosome 6p21.3. In the promoter area, G-238A,
G-244A, G-308A, C-857T, C-863A and T-1031C were reported.(74,75)

The alleles −238A, −244A and –308A were rare (2.0%,(74) 0.0%(75)

and 1.7%,(74) respectively, among Japanese people), and C-863A
was tightly linked with T-1031C.(76) The function of these alleles
is still controversial, but −308A is regarded as a high-expression
allele.(77) As shown in Table 1, H. pylori infection tended to be
more frequent among those with the −308A allele than among
those without the allele. Our study of 1374 participants from three
datasets showed that those with TNF-A −857TT and −1031TT
had the highest risk of being H. pylori seropositive, and those
with TNF-A −857CC and −1031CC the lowest,(59) although the
association was not clear among Japanese Brazilians.(60)

NQO1. NQO1 is an obligate two-electron reductase whose gene
is located in chromosome 16q22.(78) The gene has a functional
polymorphism C609T (Pro187Ser); the T allele has null enzyme
activity.(79) Our study found that the CC genotype favors persistent
H. pylori infection.(55) As the molecules in connection with the
innate immune response through the ODC–iNOS pathway were
not fully examined in terms of their polymorphisms, further
screening may detect the other polymorphisms associated with
persistent H. pylori infection in this pathway.

Gene–environment interactions with smoking for H. pylori 
seropositivity

It is well known that the H. pylori eradication rate is lower among
smokers.(80) One possible explanation is that it elevates gastric acid
secretion. We have examined the interactions between genotypes
and smoking for seropositivity. The published interactions concern
IL-1B, IL-8 and IL-10, MPO and TNF-A (Table 1). Concerning
IL-1B C-31T,(45–48) the odds ratios (OR) of the −31TT genotype
tended to be higher among smokers, with one exception.(47) The first
dataset showed a marked elevation of H. pylori seropositivity
for the combination of IL-8 −251TT and IL-10 −819TT among
current smokers.(52) Subsequent datasets similarly produced an
elevated OR, though insignificant.(42) A marginal interaction was
observed for MPO (GG vs GA/AA) and smoking (current vs non-
current) (OR = 4.57 and P = 0.08).(53) No difference in OR was

observed between current smokers and never smokers in another
dataset.(54) In a study on Japanese Brazilians, smokers with TNF-
A −857TT and −1031TT tended to have an insignificantly higher
OR (2.30) of infection than the whole subjects including both
smokers and non-smokers (OR = 1.27).(60)

Epidemiology of gastric atrophy

There is no doubt that gastric atrophy is a result of inflammation
induced by H. pylori infection.(81–87) In epidemiological studies,
PG have been used as a marker of gastric atrophy(88) because of
its less invasive method. To date, several risk factors including
salty food intake,(89) low vegetable intake(81,87) and low vitamin C(82)

have been reported for gastric atrophy among those with and
without H. pylori infection. A recent study reported that rice,
miso soup, cod roe and cuttlefish were high-risk foods among
1071 infected Japanese, indicating that traditional Japanese foods
are a high-risk diet for gastric atrophy.(90) Another study showed that
frequent rice intake significantly increased the risk of atrophic
gastritis among 291 infected Japanese Brazilians.(91) A double-blind
randomized controlled intervention study in Japan demonstrated
that 5-year 500 mg of vitamin C supplementation slightly
prevented the decrease in average PGI/II ratio relative to 50 mg
of supplementation, with no difference in reduction of H. pylori
seropositivity percentage between the two groups.(92)

Biology of gastric atrophy following H. pylori infection

CagA injected through a type IV secretion system from H. pylori
into the gastric epithelial cells seems to play a pivotal role in gastric
atrophy development (Fig. 4). The injected CagA is phosphorylated
by Src family kinase, which binds SHP-2 (Src homology 2 domain-
containing protein tyrosine phosphatase) at the phosphorylated site,
then transduces its signal to other molecules.(93) Phosporylated
CagA activates C-terminal Src kinase (Csk), which inhibits Src
family kinase. This negative feedback regulates the signal from
CagA.(94) Among the CagA, the East Asian type and Western
type were recognized. The former is more virulent than the
latter, and almost all H. pylori in Japan were reported to be East
Asian CagA positive.(95)

IL-1β and TNF-α induced by H. pylori lead to chronic
inflammation, resulting in gastric atrophy. Although the process
to gastric atrophy has not been fully elucidated, immunological
responses are involved through lifelong H. pylori infection.
Extracellular bacterial infections typically induce a Th2 immune
response, whereas H. pylori induces proinflammatory cytokines,
indicating a Th1 immune response.(96–98) IL-2 is a multifunction
cytokine with an autocrine activity to proliferate helper T cells.
IL-4 causes Th0 cells to differentiate into Th2 cells, and is
produced by Th2 cells. IL-13 is also a Th2 cytokine, which
regulates inflammation, mucus production, tissue remodeling
and fibrosis.(99)

Genotype and gastric atrophy measured with pepsinogens

Studies on the association between genotype and gastric atrophy
among the infected are relatively limited (Table 2).(100–102)

Significant associations were reported for PNPN11, and for
IL-2 and IL-13 polymorphisms.

PTPN11 G/A at intron 3 (IMS-JST057927, rs2301756). IMS-JST057927
is a G-to-A single nucleotide polymorphism 223 bp upstream
of exon 4 of PTPN11 gene encoding SHP-2 on chromosome
12q24.1. The function of this polymorphism has not been reported.
The first dataset showed that one (11.1%) out of nine infected
individuals with the AA genotype had gastric atrophy, while 134
(56.1%) out of 239 infected individuals with the G allele had gastric
atrophy.(57) If the polymorphism is functional or linked to a
functional one, the association can be biologically explained by
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the strength of signal transduction through the CagA–SHP2 complex.
According to rs2301756 of the National Center for Biotechnology
Information (NCBI) dbSNP, the frequency of the G allele (high-risk
allele for gastric atrophy) is 0.802 among 1484 Japanese, 0.917 among
48 Chinese, 0.348 among 46 African American, and 0.064 among
46 Caucasians. This indicates that Japanese and Chinese become
high-risk ethnic groups through CagA-positive H. pylori infection.

IL-2 T-330G and IL-13 C-1111T. T-330G of the IL-2 gene on chro-
mosome 4q26-27 was reported to be a functional polymorphism,(103)

and IL-2 production is higher in the GG genotype than in the TT
genotype.(104) The TT genotype was at a higher risk of gastric
atrophy,(101) and was less frequent among Asians (38% out of 29
individuals) than among Caucasians (51% out of 199 individuals).(105)

The IL-13 gene on chromosome 5q31 has several polymor-
phisms; at least three at the promoter region, two at intron 1
(Arg130Gln) and four at the 3′ untranslated region of exon 4.(106)

The −1111TT genotype was reported to have increased bind-
ing of nuclear proteins, and to be associated with asthma.(106,107)

Concerning gastric atrophy, −1111TT was a low risk geno-
type.(101) The biological mechanism has not yet been elucidated.

Genotype and advanced precancerous lesions

Some H. pylori-infected individuals go on to develop advanced
precancerous lesions. A study in China showed no significant
differences in genotype frequencies of CYP2E1, GSTM1, GSTP1,
GSTT1, ALDH2 and ODC between those with mild chronic
atrophic gastritis (including 29.7% of H. pylori-negative patients)
and those with deep intestinal metaplasia or dysplasia (including
20.2% of H. pylori-negative patients), but did show a significant
interaction between CYP2E1 DraI and smoking.(108) In Germany,
harboring both IL-1B −511T and IL-1RN 2rpt alleles relative to
lacking IL-1B −511T or/and IL-1RN 2rpt alleles was significantly
associated with atrophic gastritis, intestinal metaplasia and
severe inflammation.(109)

Epidemiology of gastric cancer

There are many epidemiological studies on risk factors for gastric
cancer,(110,111) but studies on the gastric cancer factors among
those with gastric atrophy are limited. The plausible risk factors
among those with gastric atrophy are smoking, salty food and a
lower intake of fresh fruit and vegetables, as well as family
history of gastric cancer.(112,113)

Smoking elevates the risk of gastric cancer,(114–116) as well as of
precancerous lesions, intestinal metaplasia and dysplasia.(117–119)

Smoking was reported to promote the grade of atrophic gastritis
in infected Japanese.(120) In addition to these epidemiological
findings, biological studies on tobacco smoke carcinogenesis
indicate that smoking plays a role also in the final step of
carcinogenesis of H. pylori-related gastric cancer.(121)

Genotype and gastric cancer risk

To date, many genetic polymorphisms have been examined for
associations with gastric cancer in case-control studies with mixed
cases (H. pylori-related and H. pylori-unrelated) and controls at
different stages (unexposed to H. pylori, exposed but uninfected,
infected but without gastric atrophy, and with gastric atrophy),
as shown in Fig. 5. As those case-control studies compared
genotype frequencies between the mixed cases and heterogeneous
controls, the estimated OR did not reflect any distinct step to
gastric cancer. Controls unexposed to H. pylori have the same
genotype frequency as the average among the exposed, which
reduces the difference in the genotype frequency between the
uninfected and infected. In order to measure the associations
between genotypes and H. pylori infection, studies should be
conducted at a region where exposure to the bacterium is highly
prevalent. Usual case-control studies could provide estimates for
the final step (i.e. literal carcinogenesis), when genotype frequency
is different between gastric atrophy and gastric cancer, and the same
among the uninfected, infected and those with gastric atrophy.

Table 3 lists the polymorphisms reported for gastric cancer
risk, adopted from Gonzalez et al.(122) and recent studies.(123–138)

The OR were listed if they were significant. Accordingly, it
should be noted that there were many insignificant studies
behind Table 3.

There are several studies to demonstrate the risks of both
gastric atrophy and gastric cancer in comparison with the same
controls without gastric atrophy. Individuals with the IL-8
−251A allele had OR = 1.50 with 95% confidence interval (95%
CI) = 0.98–2.23 for gastric atrophy and OR = 1.50 with 95%
CI = 1.00–2.25 for gastric cancer, indicating that the risk elevation
was due to the risk for gastric atrophy, not for the step from
gastric atrophy to gastric cancer.(139) The direct comparisons between
controls with gastric atrophy and cases with gastric cancer have been
reported; there were no associations with p53 Arg72Pro,(140,141)

nor with PTPN11 G/A at intron 3.(57)

Table 2. Polymorphisms reported in association with gastric atrophy (GA) among Helicobacter pylori seropositives, as well as odds ratio (OR)
and/or gastric atrophy percent (GA%)

Polymorphism Subjects OR and/or GA%

IL-1B C-31T 253 Japanese(46) CC(54%), CT(52%), TT(56%)
455 Japanese Brazilians(100) CC, CT:0.61, TT:0.58

CC(36%), CT(31%), TT(21%)
IL-2 T-330G 244 Japanese(101) GG, TG:1.64, TT:2.78*

GG(38%), TG(50%), TT(62%)
IL-4 C-33T 249 Japanese(101) CC, CT:2.47, TT:1.80

CC(38%), CT(60%), TT(53%)
IL-13 C-1111T 248 Japanese(101) CC, CT/TT:0.41*

CC(59%), CT/TT(45%)
PTPN11 G/A at intron 3 248 Japanese(57) GG, GA:0.70, AA:0.09*

GG(59%), GA(49%), AA(11%)
RANTES C-471T 344 Germans(102) No association
TNF-A T-1031C 455 Japanese Brazilians(60) CC(29%), TC(33%), TT(34%)

C-857T 456 Japanese Brazilians(60) CC(32%), CT(36%), TT(39%)
−−−−1031 & −857 455 Japanese Brazilians(60) CC & CC(29%), TT & CC(33%),

TC & CT(43%), TT & TT(39%)

*Statistically significant (P < 0.05).
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Table 3. Polymorphisms reported in association with gastric cancer risk: only significant associations are with odds ratio (OR) and 95%
confidence interval (95%CI)

Polymorphism Country OR (95%CI)

ACE I/D Germany(123) DD, DI:0.55 (0.31–0.96), II:0.20 (0.08–0.54)
Cyclin D1 G870A Germany(124) Significant association (P = 0.003)
CYP1A1 Ile/Val China(125) IleIle, ValVal:4.84 (1.24–22.07)
CYP2C6 *1/*4 Japan(126) *1*1/*1*4, *4*4 : 3.14 (1.05–9.41)
CYP2C19 *1/*2/*3 Japan(127) *1*1, no*1:1.98 (1.07–3.65)
CYP2E1 RsaI Japan†

Brazil†

China(128)

E-cadherin C-160a Taiwan(129) CC, AA:0.20 (0.06–0.56)
EGF A61G Japan(130)

GSTM1 present/null UK† Present, null:2.9 (1.25–6.73)
Japan† Present, null:1.70 (1.05–2.8)
Iran† Present, null:2.3 (1.15–4.95)
Poland†

China(125) Present, null:2.81 (1.39–5.71)
Taiwan(131) Present, null:1.75 (1.04–2.96)

GSTM3 IVS6del3 Poland†

GSTP1 I105V Japan†

Poland†

GSTT1 present/null China† Present, null:2.5 (1.01–6.2)
Poland† Present, null:3.1 (1.5–6.5) among current smokers
Japan†

IL-1B C-1473G Korea(131)

C-511T Poland(63) CC, CT:1.8 (1.3–2.4), TT:2.6 (1.7–3.9)
Portugal† CC, CT/TT:1.7 (1.1–2.7)
Taiwan(116)

C3954T Poland(63)

IL-1RN 86-bp VNTR Poland(63) 4rpt4rpt, 2rp2rp:3.7 (2.4–5.7)
Taiwan(116)

IL-1B C-511T + IL-1RN 86-bp VNTR Portugal† CC + LL/L2rpt, CT/TT +2rpt2rp:9.0 (3.5–23.0)
IL-2 G-384T, G114T China(133)

IL-4 C-590T Taiwan(116,134)

RP1/RP2 Taiwan(134)

IL-4R Ile50Val Taiwan(116)

Gln576Arg Taiwan(116)

IL-10 G-1082A Taiwan(116) AA, AG:2.14 (1.07–4.30)
China(133)

T-819C Taiwan(116) TT, TC:1.83 (1.23–2.71), CC:1.95 (1.03–3.69)
China(133)

MK G-2669A Taiwan(134)

MTHFR C677T China† CC, TT:1.87 (1.00–3.48)
Mexico(135) CC, TT:1.62 (1.00–2.59)

C677T, A1298C Korea(136)

MUC1 VNTR Portugal† Large, small: 4.3 (1.8–10.5)
MUC6 VNTR Portugal† Large, small: P < 0.05
MYCL1(L-myc) EcoRI Japan† LL, LS:1.55 (1.03–2.34)

Japan† LL, LS/SS:3.09 (1.33–7.21)
NAT1 UK† Slow, rapid:2.6 (1.3–5.3)

Japan†

NAT2 UK†

Japan†

NQO1 C609T Japan(137)

OGG1 Ser327Cys Japan†

Brazil†

p16INK4A C540G Germany(124)

C570G Taiwan(134)

p21 codon31 Taiwan(134)

p53 codon72 Taiwan(134) Significant association (P = 0.02)
PPAR Pro12Ala(C/G) China(56) CC, CG/GG:2.5 (1.1–5.8)
TFF2 VNTR Portugal†

TNF-A G-308A Korea†

Taiwan(116)

G-238A Korea†

Taiwan(116)

XRCC1 Arg194Trp Brazil(138)

Arg399Gln Brazil(138)

Arg194Trp + Arg399Gln China† TrpTrp + ArgArg, ArgArg + ArgGln/GlnGln:1.73 (1.12–2.69)
XRCC3 Thr241Met Brazil(138)

†Studies cited in the review by Gonzalez et al.(122); L, alleles longer than 2rpt.
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Lifestyle factors may interact with genotype in the final step.
Biologically, the interactions of smoking, fresh vegetable and
fruit intake, and salty food intake with polymorphisms of
carcinogen-metabolic enzyme and DNA repair enzymes are
very plausible.

Conclusions

It is clear that H. pylori-related gastric cancer develops through
several steps, including infection, gastric atrophy (histologically
intestinal metaplasia, dysplasia) and cancer. Lifestyle factors
such as smoking and diet could influence one or more steps.
However, genotypes may be step specific because the biological
process is distinct in the different steps. Accumulated findings on

the associations between gastric cancer risk and polymorphism
genotypes demonstrate that the strength of association varies
among the studies. As most case-control studies examined the
mixed effects on these steps, the inconsistent findings may be
natural. In addition, the diversity of lifestyle factors interacting
with the genotypes among the different study subjects may
enlarge the inconsistency. In order to elucidate the genetic traits
of H. pylori-related gastric cancer, studies on each step taking
into account lifestyle factors should be conducted. Such studies
will produce useful information for gastric cancer prevention.
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