Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;95(2):112–117. doi: 10.1111/j.1349-7006.2004.tb03190.x

DNA repair and cancer: Lessons from mutant mouse models

Takatoshi Ishikawa 1,, Samuel S‐M Zhang 1,, Xiusheng Qin 1,, Yoshihisa Takahashi 1,, Hideaki Oda 1,, Yoko Nakatsuru 1,, Fumio Ide 1,2,
PMCID: PMC11158213  PMID: 14965359

Abstract

DNA damage, if the repair process, especially nucleotide excision repair (NER), is compromised or the lesion is repaired by some other error‐prone mechanism, causes mutation and ultimately contributes to neoplastic transformation. Impairment of components of the DNA damage response pathway (e.g., p53) is also implicated in carcinogenesis. We currently have considerable knowledge of the role of DNA repair genes as tumor suppressors, both clinically and experimentally. The deleterious clinical consequences of inherited defects in DNA repair system are apparent from several human cancer predisposition syndromes (e.g., NER‐compromised xeroderma pigmentosum [XP] and p53‐deficient Li‐Fraumeni syndrome). However, experimental studies to support the clinical evidence are hampered by the lack of powerful animal models. Here, we review in vivo experimental data suggesting the protective function of DNA repair machinery in chemical carcinogenesis. We specifically focus on the three DNA repair genes, O 6‐methylguanine‐DNA methyltransferase gene (MGMT), XP group A gene (XPA) and p53. First, mice overexpressing MGMT display substantial resistance to nitrosamine‐induced hepatocarcinogenesis. In addition, a reduction of spontaneous liver tumors and longer survival times were evident. However, there are no known mutations in the human MGMT and therefore no associated cancer syndrome. Secondly, XPA mutant mice are indeed prone to spontaneous and carcinogen‐induced tumorigenesis in internal organs (which are not exposed to sunlight). The concomitant loss of p53 resulted in accelerated onset of carcinogenesis. Finally, p53 null mice are predisposed to brain tumors upon transplacental exposure to a carcinogen. Accumulated evidence in these three mutant mouse models firmly supports the notion that the DNA repair system is vital for protection against cancer.

References

  • 1. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 2001; 411: 342–8. [DOI] [PubMed] [Google Scholar]
  • 2. Schar P. Spontaneous DNA damage, genome instability, and cancer‐when DNA replication escapes control. Cell 2001; 104: 329–32. [DOI] [PubMed] [Google Scholar]
  • 3. Sieber OM, Heinimann K, Tomlinson IP. Genomic instability‐the engine of tumorigenesis Nat Rev Cancer 2003; 3: 701–8. [DOI] [PubMed] [Google Scholar]
  • 4. Lindahl T, Wood RD. Quality control by DNA repair. Science 1999; 286: 1897–905. [DOI] [PubMed] [Google Scholar]
  • 5. Friedberg EC. DNA damage and repair. Nature 2003; 421: 436–40. [DOI] [PubMed] [Google Scholar]
  • 6. Hoeijmakers JHJ. Genome maintenance mechanisms for preventing cancer. Nature 2001; 411: 366–74. [DOI] [PubMed] [Google Scholar]
  • 7. Friedberg EC. How nucleotide excision repair protects against cancer. Nat Rev Cancer 2001; 1: 22–33. [DOI] [PubMed] [Google Scholar]
  • 8. Mitchell JR, Hoeijmakers JH, Niedernhofer LJ. Divide and conquer: nucleotide excision repair battles cancer and ageing. Curr Opin Cell Biol 2003; 15: 232–40. [DOI] [PubMed] [Google Scholar]
  • 9. Ishikawa T, Ide F, Qin X, Zhang S, Takahashi Y, Sekiguchi M, Tanaka K, Nakatsuru Y. Importance of DNA repair in carcinogenesis: evidence from transgenic and gene targeting studies. Mutat Res 2001; 477: 41–9. [DOI] [PubMed] [Google Scholar]
  • 10. Sedgwick B, Lindahl T. Recent progress on the Ada response for inducible repair of DNA alkylation damage. Oncogene 2002; 21: 8886–94. [DOI] [PubMed] [Google Scholar]
  • 11. Margison GP, Povey AC, Kania B, Santibanez Koref MF. Variability and regulation of O6‐alkylguanine‐DNA alkyltransferase. Carcinogenesis 2003; 24: 625–35. [DOI] [PubMed] [Google Scholar]
  • 12. Matsukuma M, Nakatsuru Y, Nakagawa T, Utakoji T, Sugano H, Kataoka H, Sekiguchi M, Ishikawa T. Enhanced O6‐methylguanine‐DNA methyltransferase activity in transgenic mice containing an integrated E. coli ada repair gene. Mutat Res 1989; 218: 197–206. [DOI] [PubMed] [Google Scholar]
  • 13. Nakatsuru Y, Matsukuma S, Sekiguchi M, Ishikawa T. Characterization of O6‐methylguanine‐DNA methyltransferase in transgenic mice introduced with the E. coli ada gene. Mutat Res 1991; 254: 225–30. [DOI] [PubMed] [Google Scholar]
  • 14. Nakatsuru Y, Matsukuma S, Nemoto N, Sugano H, Sekiguchi M, Ishikawa T. O6‐Methylguanine‐DNA methyltransferase protects against nitrosamine‐in‐duced hepatocarcinogenesis. Proc Natl Acad Sci USA 1993; 90: 6468–72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Berneburg M, Lehmann AR. Xeroderma pigmentosum and related disorders: defects in DNA repair and trascription. Adv Genet 2001; 43: 71–102. [DOI] [PubMed] [Google Scholar]
  • 16. Bootsma D, Kraemer KH, Cleaver JE, Hoeijmakers JHJ. Nucleotide excision repair syndrome: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Kinzler KW, Vogelstein B, editors. The metabolic basis of inherited disease. 8th ed. New York : McGraw‐Hill; 2001. p. 677–703. [Google Scholar]
  • 17. Cleaver JE. Defective repair replication of DNA in xeroderma pigmentosum. Nature 1968; 218: 652–6. [DOI] [PubMed] [Google Scholar]
  • 18. Nakane H, Takeuchi S, Yuba S, Saijo M, Nakatsu Y, Murai H, Nakatsuru Y, Ishikawa T, Hirota S, Kitamura Y, Kato Y, Tsunoda Y, Miyauchi H, Horio T, Tokunaga T, Matsunaga T, Nikaido O, Nishimune Y, Okada Y, Tanaka K. High incidence of ultraviolet‐B‐ or chemical‐carcinogen‐induced skin tumours in mice lacking the xeroderma pigmentosum group A gene. Nature 1995; 377: 165–8. [DOI] [PubMed] [Google Scholar]
  • 19. de Boer J, Hoeijmakers JHJ. Cancer from the outside, aging from the inside: mouse models to study the consequences of defective nucleotide excision repair. Biochimie 1999; 81: 127–37. [DOI] [PubMed] [Google Scholar]
  • 20. Guimaraes DP, Hainaut P. TP53: a key gene in human cancer. Biochimie 2002; 84: 83–93. [DOI] [PubMed] [Google Scholar]
  • 21. Lozano G, Liu G. Mouse models dissect the role of p53 in cancer and development. Semin Cancer Biol 1998; 8: 337–44. [DOI] [PubMed] [Google Scholar]
  • 22. Ide F, Kitada M, Sakashita H, Kusama K. Reduction of p53 dosage renders mice hypersensitive to 7, 12‐diemthylbenz(a)anthracene‐induced salivarygland tumorigenesis. Anticancer Res 2003; 22: 201–4. [PubMed] [Google Scholar]
  • 23. Oda H, Zhang S, Tsurutani N, Shimizu S, Nakatsuru Y, Aizawa S, Ishikawa T. Loss of p53 is an early event in induction of brain tumors in mice by transplacental carcinogen exposure. Cancer Res 1997; 57: 646–50. [PubMed] [Google Scholar]
  • 24. Nakatsuru Y, Nemoto N, Nakagawa K, Prince Masahito, Ishikawa T. O6‐Methylguanine DNA methyltransferase activity in liver from various fish species. Carcinogenesis 1987; 8: 1123–7. [DOI] [PubMed] [Google Scholar]
  • 25. Nakatsuru Y, Aoki K, Ishikawa T. Age and strain dependence of O6‐methylguanine DNA methyltransferase activity in mice. Mutat Res 1989; 219: 51–6. [DOI] [PubMed] [Google Scholar]
  • 26. Nakatsuru Y, Tsuchiya E, Nakagawa K, Nemoto N, Oda O, Ishikawa T. O6‐Methylguanine‐DNA methyltransferase activity in the human lung persists with advancing age. Gerontology 1994; 40 Suppl 2: 3–9. [DOI] [PubMed] [Google Scholar]
  • 27. Dumenco LL, Allay E, Norton K, Gerson SL. The prevention of thymic lymphomas in transgenic mice by human O6‐alkylguanine‐DNA alkyltransferase. Science 1993; 259: 219–22. [DOI] [PubMed] [Google Scholar]
  • 28. Tsuzuki T, Sakumi K, Shiraishi A, Kawate H, Igarashi H, Iwakuma T, Taminaga Y, Zhang S, Shimizu S, Ishikawa T, Nakamura K, Makao K, Katsuki M, Sekiguchi M. Targeted disruption of the DNA repair methyltransferase gene renders mice hypersensitive to alkylating agent. Carcinogenesis 1996; 17: 1215–20. [DOI] [PubMed] [Google Scholar]
  • 29. Iwakuma T, Sakumi K, Nakatsuru Y, Kawate H, Igarashi H, Shiraishi A, Tsuzuki T, Ishikawa T, Sekiguchi M. High incidence of nitrosamine‐induced tumorigenesis in mice lacking DNA repair methyltransferase. Carcinogensis 1997; 18: 1631–5. [DOI] [PubMed] [Google Scholar]
  • 30. Sakumi K, Shiraishi A, Shimizu S, Tsuzuki T, Ishikawa T, Sekiguchi M. Methylnitrosourea‐induced tumorigenesis in MGMT gene knockout mice. Cancer Res 1997; 57: 2415–8. [PubMed] [Google Scholar]
  • 31. Kawate H, Sakumi K, Tsuzuki T, Nakatsuru Y, Ishikawa T, Takahashi S, Takano H, Noda T, Sekiguchi M. Separation of killing and tumorigenic effects of an alkylating agent in mice defective in two of the DNA repair genes. Proc Natl Acad Sci USA 1998; 95: 5116–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Cleaver JE, Crowley E. UV damage, DNA repair and skin carcinogenesis. Front Biosci 2002; 7: 1024–43. [DOI] [PubMed] [Google Scholar]
  • 33. Kraemer KH, Lee MM, Scotto J. DNA repair protects against cutaneous and internal neoplasia: evidence from xeroderma pigmentosum. Carcinogenesis 1984; 5: 511–4. [DOI] [PubMed] [Google Scholar]
  • 34. Kraemer KH, Lee MM, Scotto LJ. Xeroderma pigmentosum: cutaneous, ocular and neurologic abnormalities in 830 published cases. Arch Dermatol 1987; 123: 241–50. [DOI] [PubMed] [Google Scholar]
  • 35. Satoh Y, Nishigori C. Xeroderma pigmentosum: clinical aspects. Gann Monogr Cancer Res 1988; 35: 113–26. [Google Scholar]
  • 36. Kraemer KH, Lee M‐M, Andrews AD, Lambert WC. The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum paradigm. Arch Dermatol 1994; 130: 1018–21. [PubMed] [Google Scholar]
  • 37. de Boer J, Hoeijmakers JHJ. Nucleotide excision repair and human syndromes. Carcinogenesis 2000; 21: 453–60. [DOI] [PubMed] [Google Scholar]
  • 38. Ide F, Iida N, Nakatsuru Y, Oda H, Tanaka K, Ishikawa T. Mice deficient in the nucleotide excision repair gene XPA have elevated sensitivity to benzo[a]pyrene induction of lung tumors. Carcinogenesis 2000; 21: 1263–5. [PubMed] [Google Scholar]
  • 39. Takahashi Y, Nakatsuru Y, Zhang S, Shimizu Y, Kume H, Tanaka K, Ide F, Ishikawa T. Enhanced spontaneous and aflatoxin‐induced liver tumorigenesis in xeroderma pigmentosum group A gene‐deficient mice. Carcinogenesis 2002; 23: 627–33. [DOI] [PubMed] [Google Scholar]
  • 40. Ide F, Oda H, Nakatsuru Y, Kusama K, Sakashita H, Tanaka K, Ishikawa T. Xeroderma pigmentosum group A gene action as a protection factor against 4‐nitroquinoline 1‐oxide‐induced tongue carcinogenesis. Carcinogenesis 2001; 22: 567–72. [DOI] [PubMed] [Google Scholar]
  • 41. Ide F, Kitada M, Sakashita H, Kusama K, Tanaka K, Ishikawa T. p53 haploinsufficiency profoundly accelerates the onset of tongue tumors in mice lacking the xeroderma pigmentosum group A gene. Am J Pathol 2003; 163: 1729–33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Nebert DW, Roe AL, Dieter MZ, Solis WA, Yang SY, Dalton TP. Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochem Pharmacol 2000; 59: 65–85. [DOI] [PubMed] [Google Scholar]
  • 43. Shimizu Y, Nakatsuru Y, Ichinose M, Takahashi Y, Kume H, Miura J, Fujiikuriyama Y, Ishikawa T. Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc Natl Acad Sci USA 2000; 97: 779–82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Hasty P, Campisi J, Hoeijmakers J, van Steeg H, Vijg J. Aging and genome maintenance: lessons from the mouse Science 2003; 299: 1355–9. [DOI] [PubMed] [Google Scholar]
  • 45. Ishikawa T, Sakurai J. In vivo studies on age dependency of DNA repair with age in mouse skin. Cancer Res 1986; 46: 1344–8. [PubMed] [Google Scholar]
  • 46. Qin X, Zhang S, Matsukuma S, Zarkovic M, Shimizu S, Ishikawa T, Nakatsuru Y. Protection against malignant progression of spontaneously developing liver tumors in transgenic mice expressing O6‐methylguanine‐DNA methyltransferase. Jpn J Cancer Res 2000; 91: 1085–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Becker K, Gregel C, Fricke C, Komitowski D, Dosch J, Kaina B. DNA repair protein MGMT protects against N‐methyl‐N‐nitrosourea‐induced conversion of benign into malignant tumors. Carcinogenesis 2003; 24: 541–6. [DOI] [PubMed] [Google Scholar]
  • 48. Setlow RB. Human cancer: etiologic agents/dose responses/DNA repair/cellular and animal models. Mutat Res 2001; 477: 1–6. [DOI] [PubMed] [Google Scholar]
  • 49. Imai Y, Oda H, Nakatsuru Y, Ishikawa T. A polymorphism at codon 160 of human O6‐methylguanine‐DNA methyltransferase gene in young patients with adult type cancers and functional assay. Carcinogenesis 1995; 16: 2441–5. [DOI] [PubMed] [Google Scholar]
  • 50. de Boer J, Andressoo JO, de Wit J, Huijmans J, Beems RB, van Steeg H, Weeda G, van der Horst GTJ, van Leeuwen W, Themmen APN, Meradji M, Hoeijmakers JHJ. Premature aging in mice deficient in DNA repair and transcription. Science 2002; 296: 1276–9. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES