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Pirh2 (p53-induced RING-H2) is an E3 ubiquitin ligase that can tar-
get p53 for degradation and thereby repress a diverse group of
biological activities regulated by p53. Notably, Pirh2, rather than
MDM2, is the primary degrader of active p53 under conditions of
DNA damage. Moreover, Pirh2 is highly expressed in multiple can-
cer cell lines regardless of p53 status. Recent research has shown
that Pirh2 is involved in many signalling pathways related to the
genesis and evolution of cancer. This review aims to summarize a
comprehensive picture of the role of Pirh2 in cellular processes and
its significance to tumorigenesis. Furthermore, this review focuses
on its potential role as a cancer therapeutic target. (Cancer Sci
2011; 102: 909–917)

T he tumor suppressor p53, known as ‘‘the guardian of the
genome’’, plays a key role in eliciting cellular responses to

many signals of cell stress. Upon activation, p53 can affect cel-
lular functions including transcription, DNA synthesis and
repair, cell cycle arrest, senescence and apoptosis. Recent stud-
ies have demonstrated that p53 also influences metabolism and
angiogenesis, regulates cell motility and immune responses and
mediates cell–cell communication.(1) By promoting cell cycle
arrest, apoptosis, senescence and DNA repair, p53 helps prevent
cancer development.(2,3) The importance of p53 in tumor sup-
pression is highlighted by the abundant, inactivating, somatic
p53 mutations that are found in more than 50% of human cancer
cells.(4) p53 is subjected to a variety of post-translational modifi-
cations, including phosphorylation, acetylation, ubiquitylation
and methylation.(5,6) Ubiquitylation is an important mechanism
for controlling p53 activity.(7)

Pirh2, first identified as an androgen receptor N-terminal-
interacting protein (ARNIP)(8) and also known as ring finger and
CHY zinc finger domain-containing 1 (Rchy1), is a member of
the RING finger family of E3 ubiquitin ligases, which can facili-
tate protein degradation via the ubiquitin-proteasome path-
way.(9) The RING domain of Pirh2 contains a RING-H2
(Cys3His2Cys3) motif, which is critical for maintaining the func-
tions of several important E3 ubiquitin ligases including c-Cbl,
anaphase-promoting complex (APC) and SCF complexes.(10–12)

The N-terminal lobe of the Pirh2 N-terminal domain is a mem-
ber of the CHY zinc finger family (Fig. 1).(13) Currently, the
best understood function of Pirh2 is its role in the Pirh2–p53
feedback loop that is independent of MDM2. Pirh2 is transcrip-
tionally activated by p53, and Pirh2, in turn, inhibits p53 activity
in several ways. Notably, Pirh2 has been shown to degrade
active p53 under conditions of DNA damage when MDM2 dis-
sociates from and fails to degrade p53.(14) In addition, the dis-
ruption of Pirh2 homeostasis is closely related to the formation
of various human tumors (Table 1).(15–22) Rchy1 is one of the
key genes related to the locoregional recurrence control of breast
cancer,(23,24) and Pirh2 was elevated in approximately 93% of
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all murine lung tumors.(19,25) Mouse models of Pirh2 functions
have provided data suggesting that the overexpression of Pirh2
promotes tumorigenicity.(26,27) Moreover, Pirh2 is highly
expressed in multiple cancer cell lines regardless of p53 status,
in a manner distinct from MDM2.(28) Therefore, Pirh2 not only
promotes degradation of p53 but also interacts with other pro-
teins to function as an oncoprotein. Recent studies showed that
Pirh2 is involved in a wide array of cellular signalling pathways;
most of these are related to DNA damage signalling, which is
closely linked to the genesis and evolution of cancer. These data
suggest that Pirh2 could be a novel oncoprotein and a promising
target of cancer therapy. In this review, we highlight the recent
findings on the functions of Pirh2 in cells and focus on its role
as a novel oncoprotein.

Pirh2: rising from the shadow of MDM2

The RING-finger-containing oncoprotein MDM2 is the first and
best characterised ubiquitin ligase that antagonises p53.(29,30)

Since 1992, numerous scientific studies have characterised this
E3 ubiquitin ligase. This extensive focus on MDM2 is partly
due to its function as an antagonist of the tumor suppressor pro-
tein p53. MDM2 can both degrade p53 and quench its activity
by concealing its transactivation domain.(31) Several lines of evi-
dence support the role of MDM2 as an important regulator of a
variety of fundamental cellular processes; the best characterised
and understood is the MDM2–p53 feedback loop.(32) Although
13 additional ubiquitin ligases have been shown to mediate p53
ubiquitylation, MDM2 is considered to be the most efficient pro-
tein to antagonise p53 activity.(7) However, MDM2 dissociates
from p53 after DNA damage.(14,33) Furthermore, previous
reports showed that MDM2 mainly regulates the basal levels of
p53, and MDM2 is the main regulator of p53 in unstressed
conditions.(34–36) The phosphorylation of serine 15 on p53 is
sufficient to prevent its degradation by MDM2, and the
overexpression of MDM2 does not prevent the activation of
p53.(14)

Tai showed that Pirh2 can target the serine 15 phosphorylated
form of p53 for degradation even though this form does not
appear to be regulated by MDM2.(14) Serine 15 is one of two
serines in p53 that is phosphorylated following DNA damage
(induced by ionising or ultraviolet irradiation) in multiple cell
types.(37) Serine 15 is a key phosphorylation target during the
p53 activation process and is critical for p53-dependent transac-
tivation.(38) Mouse models showed that the phosphorylation
of serine 18 (human serine 15) was required for robust p53-
mediated apoptosis.(39) Pirh2 knockout mice are viable, develop
normally and show no difference in the basal level of p53
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Fig. 1. Schematic models depict Pirh2. The
numbers in the figure represent the amino acid
residues corresponding to full-length Pirh2. (A) The
CHY zinc finger domain and RING-H2 domain
structure. (B) Part of the Pirh2-interacting proteins
are indicated. (C) Schematic illustration of full-
length Pirh2 (Pirh2A) and Pirh2 isoforms. The
Pirh2B isoform lacks amino acids 171–179, whereas
Pirh2C misses C-terminal amino acids 180–261.
Pirh2b is a 188-residue protein with 179 amino
acids corresponding to Pirh2C and nine unique
amino acids at the carboxyl-terminal end. Pirh2D
harbors 67 amino-terminal amino acids identical to
those in Pirh2A and has eight additional unique
amino acids at the carboxyl-terminal end.

Table 1. Overview of the overexpression of pirh2 in human tumors

investigated

Tumor type
No. tumors

investigated

No. tumors

with elevated

Pirh2

References

Primary breast cancer 124 51 15

Hepatocellular carcinoma 122 78 16

Head and neck cancers 57 35 17

Prostate cancer 82 57 18

Lung cancer 32 27 19

Lung cancer 53 42 20
compared with the wild type in unstressed conditions; however,
these mice display elevated levels of phosphoserine 15 p53 after
DNA damage.(14) Among the ubiquitin ligases that target p53
for ubiquitin-mediated proteolysis, only Pirh2 and CARP are
reported to target p53 for degradation after DNA damage.
CARP1 ⁄ 2 targets phosphoserine 20 of p53 for degradation. This
form of p53 is active, is only present under conditions of double
strand breaks and can only be induced by checkpoint kinase 2
(Chk2).(40,41) Based on these data, Tai proposed that the role of
Pirh2 in regulating p53 might be to fine-tune the DNA damage
response (Fig. 2). This could explain why Pirh2 promoted
limited degradation of p53 in some cell lines(42,43) and p53 did
not accumulate in R1 ES cell lines, even though a significant
910
reduction of Pirh2 abundance was detected after the transfection
of Pirh2-siRNA.(44)

Duan et al.(28) also showed that Pirh2 levels were not affected
by the presence of wild-type p53 in the detected cancer cells and
were elevated in p53() ⁄ )) cells under conditions of DNA dam-
age. In contrast, MDM2 was upregulated by wild-type p53 in
detected cancer cells and was absent from the p53() ⁄ )) cells.(28)

As mentioned above, Pirh2 is highly expressed in multiple can-
cer cell lines regardless of p53 status, and previous studies have
shown that the MDM2 amplification and p53 mutation were
mutually exclusive.(30) The fact that Pirh2 overexpression is
decoupled from the p53 mutational status is another important
distinction between Pirh2 and MDM2. Therefore, in addition to
targeting activated p53 for degradation, Pirh2 is perhaps a ‘‘key
player’’ of another p53-independent pathway to promote the
genesis of cancer. Here, we describe the functions of Pirh2 in
both a p53-dependent and p53-independent manner.

Functions of Pirh2

p53-dependent functions of Pirh2. Leng et al.(9) were the first
to show that Pirh2 can directly bind to p53 in vitro and in vivo.
Pirh2 catalyses the ubiquitylation of tetrameric p53 primarily
through the interaction between the C-terminal domain residues
249–256 of Pirh2 and the tetramerisation domain of p53.
The disruption of this interaction could represent a potential
target for some cancer therapies. Additionally, a much weaker
doi: 10.1111/j.1349-7006.2011.01899.x
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Fig. 2. Schematic diagram illustrating the regulation of p53 by
murine double minute 2 protein (MDM2) and Pirh2. (A) Under
unstressed conditions, MDM2 is the main regulator of p53. (B) MDM2
and p53 are phosphorylated after DNA damage. MDM2 dissociates
from p53, and Pirh2 becomes a main regulator of active p53. Adapted
from Tai,(14) with permission. UB, ubiquitin, p, phosphorylation.
interaction was detected between the DNA binding domain of
p53 and the N-terminal domain of Pirh2.(13) Intron 3 of Pirh2
has been shown to contain a p53 binding site. Pirh2 can repress
p53-dependent transactivation, and p53 transactivates Pirh2,
which can target p53 for ubiquitin-proteasome degradation;
therefore, a feedback loop exists (Fig. S1).(9) The interaction
inhibits apoptosis and the growth-inhibiting ability of p53, and it
ultimately contributes to tumorigenicity, caused by the accumu-
lation of genomic mutations that disrupt p53 homeostasis.(9,27)

Tight regulation of p53 levels is crucial for maintaining normal
cell growth and preventing tumorigenesis. These data might
explain why Pirh2 is overexpressed in many types of cancer
cells. Sheng et al.(13) observed Pirh2-mediated p53 ubiquityla-
tion in vitro. However, Li et al.(26) showed that Pirh2 did not
exhibit any E3 ubiquitin ligase activity towards p53 in vitro.

In response to sublethal DNA damage, Pirh2 also inhibits
Axin-HIPK2-induced p53 phosphorylation of serine 46 by com-
peting with HIPK2 for binding to Axin in a manner indepen-
dent of the RING domain.(26) An in vitro reconstitution assay
showed that high levels of Pirh2 correlated with higher dissoci-
ation rates of HIPK2 from Axin. The competition results in a
decreased level of activated p53, thus inhibiting p53-induced
apoptosis. The interaction was abolished by Tat-interactive pro-
tein of 60 kDa (Tip60) because an Axin-Tip60-HIPK2-p53
complex was formed when a lethal treatment was administered
to reverse the Pirh2-Axin-induced p53 inactivation; this
allowed for the maximal activation of p53, which triggered
apoptosis (Fig. S1). Because Pirh2 and Tip60 can bind to the
same sites of Axin, it was inferred that the two are in compe-
tition. ATM and ATR are also involved in this process by
Wang et al.
promoting the assembly of the Axin–Tip60 complex.(26) DNA
polymerase g, a Y-family DNA polymerase that plays an
important role in translesion DNA synthesis (TLS) through
UV-induced cyclobutane pyrimidine dimers and photoproducts,
can be targeted for proteasomal degradation by Pirh2.(45–47)

DNA polymerase g might activate p53 in an ATM-dependent
manner, therefore activating p53 via the phosphorylation of p53
serine 15.(48) DNA polymerase g is also involved in the regula-
tion of ATM activity towards Chk2, which can phosphorylate
p53 on serine 20 and promote its stability; this leads to cell
cycle arrest and provides the cell with extra time to repair its
DNA.(48) Cells deficient in DNA polymerase g are hypersensi-
tive to UV-induced cell death. Pirh2-mediated proteasomal
degradation of DNA polymerase g might play a role in UV-
induced cancer formation.(45)

In addition to directly ubiquitylating p53 and targeting it for
degradation, Pirh2 can also act synergistically with three
additional major negative regulators of p53, MDM2, MDMX
and COP1, to inhibit p53-mediated transcriptional activity
(Fig. S1).(49–53) MDM2 and COP1 can both dramatically
increase Pirh2 protein levels, and the overexpression of Pirh2
leads to a substantial increase in MDM2 and MDMX levels and
a milder increase in COP1 levels.(50) Pirh2 can also increase
MDM2 levels indirectly by targeting the SCY1-like 1 binding
protein 1 (SCYL1-BP1) for proteasomal degradation, which can
accelerate MDM2 self-ubiquitylation.(54)

Notably, Pirh2 can also degrade histone deacetylases 1
(HDAC1), which can inactivate p53 transcriptional activity.
Recent biochemical studies revealed that Pirh2 can ubiquitylate
HDAC1 and reduce HDAC1 levels, thus reducing the repressive
activity of HDAC1 on transcription (Fig. S1).(18) Previous
reports have shown that acetylation controls p53 stability
by potentially interfering with MDM2-mediated ubiquityla-
tion.(55,56) The recruitment of HDAC1 by MDM2 promotes p53
degradation by removing these acetyl groups.(57) HDAC1 also
repressed the transcriptional activation of p53 and p21.(58,59)

Moreover, HDAC1 is involved in the repression of the E2F1
transcription factor that determines the timely expression of
many genes that are required for entry into and progression
through S phase of the cell cycle.(60) E2F1 also indirectly regu-
lates the levels and activity of p53.(61) Based on these data,
Pirh2 has a dual role as a tumor suppressor and as an oncopro-
tein. Additionally, the ubiquitin modification has been shown to
promote the transcriptional activity of some transcription fac-
tors,(62,63) so the ubiquitylation of HDAC1 might also promote
its transcriptional repression of p53, p21 and E2F1. It is unclear
whether HDAC1-mediated deacetylation of p53 is essential for
Pirh2 to facilitate p53 degradation.

p53-independent functions of Pirh2. Under the stress of DNA
damage, cells first initiate cell cycle arrest to make time for
DNA repair.(64) p27Kip1 can inhibit the activation of cyclinE-
CDK2 and cyclinA-CDK2, which can activate the transcription
of genes that are required for the G1-S transition.(65,66) Pirh2 is a
key regulator of p27Kip1 (Fig. S1) and degrades p27Kip1 late in
the G1 phase in a ubiquitin-proteasome-dependent manner.(67)

These data are in agreement with the fact that the Pirh2 expres-
sion level is low in G0 and early G1 phases and gradually
increases toward the S phase in a cell cycle-dependent manner.
Skp2 and the KPC are able to ubiquitylate p27Kip1 for degrada-
tion. However, neither protein can degrade p27Kip1 at the G1-S
transition.(68,69) High expression levels of Pirh2 are associated
with low expression levels of p27 and a poor prognosis in head
and neck cancers(17) and lung cancer.(20) Pirh2 might also affect
the function of p21, another important cell cycle-dependent
kinase inhibitor. p21 is targeted by p53 and can be transactivated
by p53. Transfection studies have shown that p21 accumulated
in Pirh2 knockdown H1299 (p53) ⁄ )) cells.(45) p21 can be tar-
geted by several E3 ubiquitin ligases for degradation,(70) but
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whether Pirh2 can directly regulate p21 warrants further investi-
gation.

Cells are targeted for apoptosis if DNA damage is too severe
for recovery. Pirh2 can inhibit the apoptosis pathway by binding
to Kertain8 ⁄ 18 (K8 ⁄ 18); the phosphorylation of either target
leads to apoptosis.(71) Duan et al. showed that the Pirh2-K8 ⁄ 18
association is significant for cells to maintain the K8 ⁄ 18 filament
and that the mitochondria in these cells are normal (Fig. S1).(71)

Mitochondria play a key role in controlling cell life and death
by releasing cytochrome c into the cytoplasm; cytochrome c is a
primary activator of the caspase cascade and its release activates
the apoptotic process.(72) K8 ⁄ 18 is preferentially bound to
unphosphorylated Pirh2 in the cytoplasm. The disruption of this
association sensitises the cells to UV-induced apoptosis. This
process is caused, in part, by enhancing the release of pro-apop-
totic proteins, such as cytochrome c and Smac ⁄ DIABLO, from
the mitochondria to the cytoplasm.(71) This partially explains
why Pirh2 mainly exists in its unphosphorylated form in most
tumor cell lines. Pancreatic tumor epithelial cells contained an
increased level of phosphorylated K8 ⁄ 18,(73) and another
group showed that K8 ⁄ 18 was hyperphosphorylated after an
apoptotic challenge.(74) These data suggest that the phosphory-
lation of K8 ⁄ 18 by JNK or p38 leads to morphological changes
in the mitochondria, caused by the dissociation of Pirh2-
K8 ⁄ 18.(71,73,74) Studies also revealed that K8 ⁄ 18 can modulate
the cellular response to specific pro-apoptotic signals. Moreover,
it is involved in resisting TNF- and Fas-induced cytotoxicity or
apoptosis.(75,76) Until now, it was unclear whether the Pirh2-
K8 ⁄ 18 interaction was involved in these processes.

Although it was determined long ago that Pirh2 and p73
interacted(9) and Pirh2 could not directly degrade p73,(43) no
new information about this interaction has emerged. p73 can
induce cell apoptosis by functioning with many cofactors in
both a p53-dependent and p53-independent manner.(77) There-
fore, it is worthwhile to further investigate the relationship
between them.

It has been shown that Pirh2 inhibits the androgen-dependent
secretion of prostate-specific antigen (PSA); this implies that
Pirh2 can negatively regulate protein secretion.(78) Previous
studies have shown that some cellular proteins can utilise ubiqu-
itin modification as their targeting signal.(79) Pirh2 ubiquitylates
the signal recognition particle receptor b (SR b), which is a
subunit of the signal recognition particle receptor (SR) heterodi-
mer composed of SR a and SR b.(80) SR b contains a transmem-
brane segment, providing the membrane anchor for SR a. SR b
also plays an important role in both the assembly and disasso-
ciation of SR subunits, which are essential for protein transpor-
tation.(81–83) The SR is located on the endoplasmic reticulum
membrane and can associate with a signal recognition particle
that recognises the N-terminal hydrophobic signal sequence of
the secretory protein; this process targets the ribosome-nascent
chain complex to the endoplasmic reticulum (ER). Once a pro-
tein has passed the ER quality control process it is transported to
the Golgi. The continuous loss of material at the trans-face of
the ER is antagonised by retrograde cargo retrieval to the ER,
which is predominantly mediated by the coatomer complex.
Pirh2 can promote the ubiquitylation of e-COP, a subunit of
COPI, and target it for degradation.(78) Because e-COP plays an
important role in the assembly and disassembly of COPI, the
ubiquitylation and degradation of e-COP can block the normal
transportation of secretory proteins (Fig. S1).(78) Notably, the
overexpression of Pirh2 causes a morphological change in the
trans-Golgi network.(78) Previous studies have shown that
K8 ⁄ 18, another Pirh2-interacting protein, helps to orchestrate
the positioning and function of Golgi and protein secretion.(84)

Further studies will help elucidate this process. Finally, it is
worth noting that knockdown of Rchy1 specifically downregu-
lated epidermal growth factor (EGF) internalisation.(85)
912
Pirh2, which was first identified as an ARNIP,(8) was able to
enhance androgen receptor (AR) signalling by inhibiting
HDAC1’s repressive activity towards AR.(18) Pirh2 can inhibit
the AR N-C terminal interaction, which helps determine its tran-
scriptional activity by regulating the androgen dissociation rate
and the efficient recruitment of coactivators.(86–88) Although two
groups showed that Pirh2 upregulates AR-mediated transcription
of the PSA target gene,(18,78) Beitel et al.(8) reported that Pirh2
does not significantly affect AR transcriptional activation.
Because AR signalling plays an important role in prostate cancer
and Pirh2 overexpression was detected in prostate cancer cells,
Pirh2 might contribute to prostate cancer formation via the AR
signalling pathway.(89)

Regulation of Pirh2 activity

Phosphorylation and ubiquitylation are the best understood
post-translational modifications of Pirh2. When Calmodulin-
dependent kinase II (CaMKII) is at its maximal activity level, it
hyperphosphorylates Pirh2 in the G2 ⁄ M phase of the cell cycle
at residues threonine 154 and serine 155.(27) The phosphoryla-
tion of Pirh2 enhances its self-ubiquitylation, which causes the
phosphorylated form of Pirh2 to be more unstable than the
unphosphorylated form. Phosphorylated Pirh2 mainly exists in
the cytoplasm, and the Pirh2–p53 interaction putatively occurs
in the nucleus. Because p53 preferentially interacts with the
unphosphorylated form of Pirh2, the phosphorylation of Pirh2
by CaMKII impairs its E3 ubiquitin ligase activity towards p53.
In normal cells, Pirh2 primarily exists in the phosphorylated
form, but in tumor cells and tissues, Pirh2 mainly exists in the
unphosphorylated form.(27) These data could explain why the
levels of CaMKII are decreased in tumor cells.(90)

Pirh2 is a short-lived protein and is rapidly degraded by ubiqu-
itin-dependent proteolysis.(91) Pirh2 can act as an E3 ubiquitin
ligase on itself, resulting in autoubiquitylation and proteasomal
degradation; some Pirh2-interacting proteins have been shown to
influence the autoubiquitylation activity of Pirh2.(92) The muta-
tion of a single cysteine residue (Cys145 or Cys164) in the RING-
H2 domain abolished this E3 ubiquitin ligase activity.(8,25,26,78)

The fact that Pirh2 containing a mutant RING domain can still be
ubiquitylated indicates that Pirh2 can be both autoubiquitylated
and ubiquitylated by an unidentified E3 ubiquitin ligase.(91) Both
Pleomorphic Adenoma Gene like 2 (PLAGL2) and Tip60 can
promote Pirh2 stability by inhibiting its ubiquitin-dependent deg-
radation.(91,93) PLAGL2 is an oncoprotein involved in many
malignancies.(94,95) Tip60 can also target p53 into the nucleus,
where Pirh2 mainly interacts with p53 and stabilises Pirh2.(91)

EGR1 can induce the expression of Pirh2, thus decreasing the p53
levels.(96,97) Measles virus phosphoprotein and porcine circovirus
type 2 open reading frame 3 are two pathogenic proteins that
affect the stability of Pirh2.(98–100)

For proteins targeted for ubiquitin-proteasomal destruction,
cellular localisation is an important mechanism that can regulate
protein stability. This is the case for p53, for which nuclear
export is essential for its degradation by MDM2.(101) Pirh2 dis-
plays a diffuse nuclear and cytoplasmic subcellular localisa-
tion.(26,27,71,91,92,97,98) The subcellular localisation of Pirh2 is
critical for its regulation and stability. Pirh2 primarily meditates
the polyubiquitylation of p53 in the nucleus; as a result, p53 is
exported to the cytoplasm and subsequently removed via prote-
asomal degradation.(27) Measles virus phosphoprotein, porcine
circovirus type 2 open reading frame 3 and the presence of
androgens can recruit Pirh2 into the cytoplasm.(98–100) In addi-
tion, NTKL-BP1 and ARF4 can interact with and colocalise
with Pirh2 in the cytoplasm surrounding the nucleus.(102,103)

Tip60 can induce the migration of Pirh2 to the nucleus,(91)

whereas phosphorylation of Pirh2 leads to its migration to the
cytoplasm.(27)
doi: 10.1111/j.1349-7006.2011.01899.x
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Pirh2 as a promising target for cancer therapy

Pirh2 was overexpressed in several kinds of cancers
(Table 1).(15–20) Increasing levels of Pirh2 were correlated with
poor survival in patients with hepatocellular carcinoma.(16) Fur-
thermore, high expression of Pirh2 was associated with a poor
prognosis in head and neck cancers.(17) Increased Pirh2 expres-
sion affects lung tumorigenesis by reducing p53 activity.(19)

Another group showed that Pirh2 shRNA mediated by the
psiRNA-hH1 vector plasmid effectively inhibits the prolifera-
tion of lung carcinoma cells.(104) Pirh2 is also involved in the
measles virus’ association with lung cancer and the human pap-
illomavirus’ association with cervical cancer.(105,106) Moreover,
Pirh2 can regulate AR activity and PSA secretion, which are
tightly associated with prostate cancer.(18,78) Importantly, the
overexpression of Pirh2 is also detected in prostate cancer
cells.(18) Pirh2 can also account for the correlation of the over-
expression of PRL-1 and PRL-3 with tumorgenesis in various
cancer cells.(96,97,107,108) Because abundant inactivating,
somatic mutations of p53 are found in more than 50% of
human cancer cells, Pirh2 might be an important regulator of
p53 during DNA damage. The association between Pirh2 and
p53 is well characterised at the structural and biological levels;
inhibiting the Pirh2–p53 interaction is a promising approach for
activating p53.(13,109,110) In summary, several lines of evidence
strongly suggest that Pirh2 positively regulates cell cycle pro-
gression and tumor growth. These findings also indicate that
Pirh2 might be a novel prognostic marker for some types of
cancer.

Inflammation plays a crucial role in tumorigenesis, and
some of the underlying molecular mechanisms have been elu-
cidated.(111,112) Pirh2 might also impact the immune system
to promote tumor growth. Pirh2 can target DNA polymerase
g for ubiquitin-proteasome degradation; this is involved in
Table 2. Pirh2-interacting proteins with a proven or putative role in tum
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Wang et al.
the diversification of immunoglobulin genes at different
stages of the B cell differentiation pathway, known as
somatic hypermutation (SHM).(113) Pirh2 may regulate RhoA
activation via p27Kip1.(114) The inhibition of RhoA decreases
B cell proliferation and T cell differentiation.(115) Pirh2 could
also promote tumorigenicity by interfering with the normal
immune responses and may be involved in the genesis of
lymphoma. Therefore, Pirh2 could be a promising candidate
as a molecular target for cancer therapy. The use of molecule
inhibitors to block the action of Pirh2 has not been previ-
ously reported.

Future perspectives

Previous data showed that Pirh2 serves as an important regula-
tor in tumorigenicity (Table 2). Pirh2 is functionally connected
to a broad range of cellular signalling pathways with important
functions in cell proliferation, apoptosis, AR signalling and pro-
tein secretion (Fig. 3). In response to DNA damage in cells,
Pirh2 operates in a manner distinct from MDM2. Under
unstressed conditions, MDM2 is the primary regulator of p53.
MDM2 and p53 are phosphorylated after DNA damage, and
MDM2 dissociates from p53, whereas Pirh2 becomes a primary
regulator of active p53. Another important difference between
Pirh2 and MDM2 is that Pirh2 overexpression is decoupled
from the mutational status of p53. The involvement of Pirh2 in
tumor genesis is extensive. Numerous activities of Pirh2 affect
tumor growth, both in a p53-dependent and p53-independent
manner.

Currently, the best understood function of Pirh2 is its role
in a Pirh2-p53 feedback loop. However, several questions con-
cerning the function of Pirh2 in this pathway remain. Pirh2
can decrease the level of HDAC1, the activity of which is
required for the degradation of p53 by MDM2.(57) In this
origenesis
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Fig. 3. A non-comprehensive list of recently
described substrates and regulators of Pirh2. This
model depicts the roles of Pirh2 in cellular signalling
pathways and its key regulators. The Pirh2 levels and
stability are tightly regulated in cells. AR, androgen
receptor; COP1, constitutive photomorphogenesis
protein 1; EGR1, early growth response 1; HDAC1,
histone deacetylases 1; HIPK2, homeodomain-
interacting protein kinase 2; MDM2, murine double
minute 2 protein; MDMX, MDM4 p53 binding
protein homolog; PLAGL2, Pleomorphic Adenoma
Gene like 2; SCYL1-BP1, SCY1-like 1 binding protein
1; SHM, somatic hypermutation; SR b, signal
recognition particle receptor b; Tip60, Tat-interactive
protein of 60 kDa; TLS, translesion DNA synthesis.
respect, Pirh2 plays dual roles. Pirh2 can enhance AR signal-
ling through the inhibition of the AR corepressor HDAC1.
Tip60 is an AR coactivator(56) that can be ubiquitylated and
degraded by both MDM2 and a p300-associated E4 ubiquitin
ligase, and possibly by Pirh2.(116,117) Pirh2 might also target
Tip60 for degradation.

Phosphorylation plays an important role in regulating protein
activity; COP1 and MDM2 can be phosphorylated by ATM,
which impedes the assembly of the Axin–Pirh2 complex.(36,118)

It is not clear whether Pirh2 can be phosphorylated by ATM.
The monoubiquitylation of p53 can contribute to mitochondrial
p53 migration;(119) it is worth investigating whether Pirh2 can
monoubiquitylate p53. Pirh2 can also interact with protein
kinase Cd (PKCd), but the nature of the interaction is currently
unclear.(14) Pirh2 has also been shown to interact with Gfi1b and
Atrophin 1 in the yeast-two-hybrid assay.(120) Logan et al.(18)

showed that Pirh2 can be recruited to androgen response ele-
ments in the PSA gene in response to androgens. Just as zinc-
finger proteins can bind to DNA, Pirh2 might also be involved
in blocking the DNA damage response by directing its binding
to DNA to act as a transcriptional factor.(121) Furthermore, iden-
tification of the Pirh2 degron will facilitate the identification of
more Pirh2 interactors.

An ultimate goal of these studies is to translate them into
clinical applications. As a novel oncoprotein involved in a
diverse group of biological activities, Pirh2 might be a novel
prognostic cancer marker and a new target of cancer therapeu-
tics. The development of pharmaceutics can enable the discov-
ery of small molecules that can inhibit the Pirh2 ligase
activity.
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ARF4 ADP-ribosylation factor 4
ATM ataxia telangiectasia mutated
ATR ATM- and rad3-related
CARP caspase 8 ⁄ 10-associated RING proteins
Cbl casitas B-lineage lymphoma
COP1 constitutive photomorphogenesis protein 1
COPI coatomer complex I
EGR1 early growth response 1
Gfi1b growth factor independent 1B transcription repressor
HIPK2 homeodomain-interacting protein kinase 2
KPC kip1 ubiquitylation-promoting complex
MDM2 murine double minute 2 protein
MDMX MDM4 p53 binding protein homolog
NTKL-BP1 N-terminal kinase-like protein–binding protein 1
PRL phosphatase of regenerating liver
RhoA Ras homologue gene family member A
SCF Skp1–Cul1–F-box protein
Skp2 S-phase kinase-associated protein 2
Smac ⁄ DIABLO second mitochondria-derived activator of

caspase ⁄ direct inhibitor of apoptosis (IAP) binding
protein with low protein isoelectric point (PI)
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Fig. S1. A comprehensive picture of the overall Pirh2-involved cellular processes.
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