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Various factors involved in tumor metastasis are regulated by the
transcription factor nuclear factor kB (NF-kB). Because NF-kB
activation may contribute to establishment of hepatic metastasis,
its activation in liver cells and tumor cells was separately evaluated
in a mouse model of hepatic metastasis. pNF-kB-Luc, a firefly luciferase-
expressing plasmid DNA depending on the NF-kB activity, was injected
into the tail vein of mice by the hydrodynamics-based procedure, a
well-established method for gene transfer to BALB/c male mouse
liver. The luciferase activity in the liver was significantly increased by
an intraportal inoculation of murine adenocarcinoma colon26 cells,
but not of peritoneal macrophages, suggesting that the NF-kB in
liver cells is activated when tumor cells enter the hepatic circulation.
Then, colon26 cells stably transfected with pNF-kB-Luc were inoculated.
The firefly luciferase activity, an indicator of NF-kB activity in tumor
cells, was significantly increased when colon26/NFkB-Luc cells were
inoculated into the portal vein of BALB/c male mice. The NF-kB
activation in both liver and tumor cells was significantly inhibited by
injection of catalase derivatives, which have been reported to inhibit
hepatic metastasis of tumor cells. These findings indicate for the
first time that NF-kB, a key agent regulating the expression of various
molecules involved in tumor metastasis, is activated in both liver
and tumor cells during the initial stages of tumor metastasis through
a hydrogen peroxide mediated pathway. Thus, the removal of
hydrogen peroxide will be a promising approach to treating hepatic
metastasis. (Cancer Sci 2008; 99: 1546–1552)

Nuclear factor-κB (NF-κB) is a sequence-specific trans-
cription factor that regulates the transcription of various

genes, the products of which are involved in various biological
processes, including inflammation, immune response, and the
initiation and progression of cancer.(1–5) For example, tumor
progression and metastasis are regulated by numerous NF-
κB-regulated gene products, including matrix metalloproteinases
(MMP), adhesion molecules, angiogenic factors and anti-apoptotic
factors. Thus, the inhibition of NF-κB activation is a good target
for inhibiting tumor growth and metastasis.(6) So far, several
compounds, such as BAY11-7082, have been developed to
inhibit the NF-κB activity by inhibiting proteasomal degradation
of IκBα, the endogenous inhibitor of NF-κB.(7)

The activity of NF-κB and other transcription factors has been
evaluated by an electrophoretic mobility shift assay (EMSA),
which requires isolation of nuclear protein (radio)-labeled probes,
and antibodies for its super-shift assay. In marked contrast,
plasmid vectors expressing reporter genes under the control of
the activity of a transcription factor, such as NF-κB, can be used
to measure the activity of transcription factors. Using luciferase-
expressing vectors is a simple, reliable and highly sensitive
method of measurement. Cells stably transfected with vectors
expressing the luciferase gene in response to the activation of
any transcription factor have been developed and used to evaluate

the activity of transcription factors in those cells.(8) Transgenic
mice that express a luciferase, the transcription of which is
dependent on NF-κB activity, have been developed and the NF-κB
activation in whole animals has been examined by biolumines-
cence imaging.(9,10) We have developed a novel experimental
system involving the injection of plasmid vectors into the tail
vein of mice by the hydrodynamics-based procedure,(11–13) a well-
established gene transfer method.(14,15) NF-κB activity in mouse
liver was easily and quantitatively measured in this system, and
we demonstrated that NF-κB in liver cells is activated when the
liver suffers from thioacetamide-induced injury.(16)

Luciferase-based evaluation of NF-κB activity has advantages
over conventional EMSA. First, the activity can be measured in
live animals, so that the changes of the activity can be traced in
individual animals. Next, the luciferase data are much more sensitive
and quantitative than those obtained by gel-shift assays like
EMSA. More importantly, NF-κB activity of a specific type of
cell can be evaluated without any effect on the activity of other
cells present in the system. The last characteristic is very important
when the NF-κB activity is measured in a complex system, such
as the hepatic metastasis of tumor cells. When plasmid vectors
are selectively introduced to a specific type of cell, it is possible
to examine the changes in NF-κB activity in those cells. Thus,
the elucidation of NF-κB activity in liver cells and tumor cells
during hepatic metastasis can help identify new targets for
inhibition of tumor metastasis.

In the present study, the mouse model developed in our
previous study(16) was used to evaluate the changes in NF-κB
activity in liver cells when tumor cells enter the hepatic circulation.
Murine adenocarcinoma colon26 cells were selected as tumor
cells, which were inoculated into the portal vein of synergetic
BALB/c mice. In addition, the NF-κB activity in colon26 cells
was also evaluated by establishing colon26 cells stably trans-
fected with the plasmid. The responsiveness of luciferase activity
in colon26/NFκB-Luc cells was checked under culture conditions,
and the transfectants were inoculated into the portal vein of
mice. In both cases, catalase derivatives, which had been proved
to inhibit reactive oxygen species (ROS)-dependent hepatic injuries
and hepatic metastasis of tumor cells, were injected into the tail
vein, and their effects on the NF-κB activity in both liver and
tumor cells were quantitatively evaluated.

Materials and Methods

Animals. BALB/c and CDF1 (6 weeks old, male) mice were
purchased from the Shizuoka Agricultural Cooperative Association
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for Laboratory Animals (Shizuoka, Japan). Animals were
maintained under conventional housing conditions. All animal
experiments were conducted in accordance with the principles
and procedures outlined in the National Institutes of Health
Guide for the Care and Use of Laboratory Animals. The protocols
for animal experiments were approved by the Animal Experi-
mentation Committee of Graduate School of Pharmaceutical
Sciences of Kyoto University.

Chemicals. Bovine liver catalase (40 000 units/mg) and gado-
linium chloride (GdCl3) were purchased from Sigma Chemical.
Two types of catalase derivatives, galactosylated (Gal-catalase)
and succinylated (Suc-catalase) were synthesized as reported
previously.(17) The enzymatic activity of catalase derivatives was
measured by monitoring their ability to degrade hydrogen
peroxide. D-luciferin was purchased from Promega.

Monitoring of NF-kB activity in mice. pNF-κB-Luc encoding firefly
luciferase cDNA driven by a basic promoter element plus five
tandem copies of NF-κB binding elements ([TGGGGACTTT-
CCGC]5) was purchased from Stratagene (La Jolla, CA, USA).
pRL-SV40 encoding the renilla luciferase cDNA under the control
of SV40 promoter, which has no NF-κB binding sequences, was
purchased from Promega. Plasmid DNA was injected into the
tail vein of mice by the hydrodynamics-based procedure,(11–15)

which is an established method for in vivo gene transfer to
mouse liver. According to previous reports, plasmid DNA
dissolved in 1.5 mL saline was injected into the tail vein within
5 s. Based on the sensitivity of the assays, the doses of plasmid
DNA were set at 5 μg pNF-κB-Luc/mouse for in vivo imaging,
and 1 μg each pNF-κB-Luc and pRL-SV40/mouse for quantitative
analysis. Mouse tumor necrosis factor (TNF)-α was injected
into the portal vein at a dose of 8 μg/kg to activate NF-κB in
the liver.

Tumor cells. Murine colon adenocarcinoma colon26 cells were
obtained from the Cancer Chemotherapy Center of the Japanese
Foundation for Cancer Research (Tokyo, Japan). Cells were
grown in RPMI-1640 supplemented with 10% heat-inactivated
fetal bovine serum (FBS), 0.15% NaHCO3, 100 units/mL
penicillin and 100 μg/mL streptomycin at 37°C in humidified
air containing 5% CO2. Colon26 cells were transfected with
pNF-κB-Luc using Lipofectamine 2000 (Gibco–Invitrogen)
to obtain colon26/NFκB-Luc cells, according to the method of
Terouanne et al.(18) Then, the cells were treated with medium
containing 1 mg/mL G418 (Geneticin; Sigma, St. Louis, MO,
USA) and single colonies of G418-resistant cells were identified
and examined for their luciferase activity as described below.
TNF-α (1 ng/mL) was added to colonies, and a clone that
showed a marked response to the stimulus in terms of the
expression of the luciferase was selected as colon26/NFκB-Luc.
To examine the response to TNF-α, colon26/NF-κB-Luc cells
were added with a varying concentration of TNF-α (0–10 nM)
and incubated for 12 h. Then, cells were lysed using a lysis
buffer and the luciferase activity in cell lysates was measured as
described below.

Experimental hepatic metastasis and treatment with catalase
derivatives. Mice were anesthetized by an i.p. injection of
pentobarbital sodium (50 mg/kg). A midline abdominal incision
was made to expose the portal vein then colon26 or colon26/
NFκB-Luc cells (1 × 105 cells/0.1 mL HBSS) were injected into
this vein using a syringe with a 29 G-needle. Then, the incision
was sutured and mice were allowed to recover. Catalase
derivatives were injected into the tail vein at a dose of
200 000 units/kg (~5 mg/kg for unmodified catalase).

Measurement of luciferase activity. Mice were transfected with
pNF-κB-Luc and pRL-SV40 as described above, and injected
with TNF-α (8 μg/kg), colon26 cells or peritoneal macrophages
(1 × 105 cells/mouse) into the portal vein at a 24 h-interval.
Eight hours after injection, the liver was excised, homogenized
and centrifuged as previously reported.(19) Then, 10 μL of the

supernatant was assayed for luciferase activity using a
luminometer (Lumat LB 9507, EG&G Berthold, Bad Wildbad,
Germany), Picagene (Toyo Ink, Tokyo, Japan) or the Dual
Luciferase Reporter assay system (Promega). Following
subtraction of the background activity for the liver homogenate
without injection, the ratio of the activity of the firefly luciferase
to the renilla luciferase (F/R) was calculated to correct for
differences in transfection efficiency among mice.

Luciferase imaging. Mice received injections of TNF-α or
colon26 cells into the portal vein 24 h after transfection with
pNF-κB-Luc. Then, 4, 8 and 12 h after injection, mice were injected
i.p. with 2 mg D-luciferin, anesthetized with pentobarbital in
phosphate-buffered saline, and then placed in a NightOwl LB
981 Molecular Light Imager (Berthold Technologies, Bad
Wildbad, Germany). Imaging was then performed in a two-step
process using WinLight32 software (Berthold Technologies, Bad
Wildbad, Germany). First, a black and white photographic
image was acquired using a 1-s exposure. Next, the luminescent
image was acquired using a 5-min photon integration period
with background subtraction. The luminescent image was
processed by the software to color the luminescence intensity,
and then overlaid onto the photographic image. The parameters
in the WinLight32 software used to obtain luminescent images
were the color threshold and indicated color scheme.

Results

TNF-a-induced increase in the luciferase activity in mouse liver.
Mice transfected with pNF-κB-Luc received an injection of
TNF-α, an activator of NF-κB signaling, into the portal vein
24 h after gene transfer. Fig. 1(a) shows the luminescent images
of mice receiving pNF-κB-Luc. Sham-operated, control mice
showed some luminescent signals in the liver, indicating that
some firefly luciferase was produced in the liver under these
conditions. An injection of TNF-α greatly increased the
luminescence in the liver. A dual luciferase assay was applied to
quantitatively evaluate the effects of TNF-α on firefly luciferase
activity in the liver (Fig. 1b). Compared with the sham-operated,
control group, the TNF-α-treated group showed an approximately
sixfold greater F/R ratio. When TNF-α was injected to mice at
different doses from 0.08 to 8 μg/kg, the luciferase activity in
the liver increased in a dose-dependent manner (Fig. 1a). These
results indicate that mice receiving a hydrodynamic delivery of
plasmid DNA expressing luciferase in an NF-κB activity-
dependent manner can be used to monitor the activation of NF-κB
in mouse liver.

NF-kB activity in liver cells during the initial stages of hepatic
metastasis of tumor cells. Fig. 2(a) shows the luminescence images
of mice receiving an i.v. injection of pNF-κB-Luc by the
hydrodynamics-based procedure. Inoculation of colon26 cells
into the portal vein transiently increased the intensity of luciferase
activity in the liver with a peak at 8 h after tumor inoculation.
A quantitative luciferase assay showed that inoculation of
1 × 105 colon26 cells into the portal vein resulted in an
approximately ninefold increase in the expression of firefly
luciferase (Fig. 2b), indicating that NF-κB in liver cells is
activated when tumor cells enter the hepatic circulation. The
increase was dependent on the number of colon26 cells injected
(data not shown). In addition, it was almost completely blocked
by pretreatment of mice with dexamethasone (90 mg/kg), a well-
known suppressor of NF-κB (YuKi Kobayashi, unpublished data,
2007). No significant increase in firefly luciferase of liver cells
was observed when mouse peritoneal macrophage (1 × 105 cells)
were inoculated instead of colon26 cells in the same manner
(Fig. 2c). Injection of catalase derivatives greatly inhibited the
colon26 cell-induced increase in the firefly luciferase activity
of liver cells (Fig. 2b,d). Gal-catalase, a catalase derivative
targeting hepatocytes through the recognition by asialoglycoprotein
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receptors, and Suc-catalase, one targeting liver non-parenchymal
cells through the recognition by scavenger receptors, were more
effective than unmodified catalase. Injection of any catalase
derivative hardly affected the luciferase activity in the liver of
tumor-free mice receiving pNFκB-Luc (Fig. 2e). In a separate
experiment, injection of catalase, Gal-catalase or Suc-catalase
hardly influenced the expression from pCMV-Luc (data not
shown). These results clearly demonstrate that NF-κB in liver

cells is activated when tumor cells, not macrophages, enter the
hepatic circulation, and this activation is blocked by catalase
derivatives targeting liver-constituting cells.

Reduction in colon26 inoculation-induced NF-kB activation by
depletion of Kupffer cells. To evaluate the role of Kupffer cells on
the NF-κB activation in liver cells, gadolinium chloride (GdCl3,
45 mg/kg), which induces a selective and complete destruction
of Kupffer cells,(20) was injected into the tail vein of mice 12 h
before gene transfer. Depletion of Kupffer cells by GdCl3
markedly prevented the NF-κB activation in liver cells induced
by inoculation of colon26 cells into the portal vein (Fig. 3a,b).
No significant differences were observed in the luciferase activity
between the saline- and GdCl3-treated mice receiving pCMV-
Luc, suggesting that GdCl3 hardly interfere with the detection
method. Taken together, these results suggest an important role
for Kupffer cells in the NF-κB activation in liver cells during
initial stages of hepatic metastasis of tumor cells.

Characterization of colon26/NFkB-Luc cells. To evaluate NF-κB
activity in tumor cells, we established cell lines stably trans-
fected with pNF-κB-Luc. Several colonies of colon26/NFκB-Luc
cells were obtained with different levels of luciferase activity. A
colony expressing a high luciferase activity upon addition of
TNF-α was selected as colon26/NFκB-Luc. Fig. 4 shows the
firefly luciferase activity in colon26/NFκB-Luc cells. The baseline
level of expression was 0.387 ± 0.015 relative light units
(RLU)/sec/cells, and this level significantly increased on
addition of TNF-α. The luciferase activity of cells increased
with an increasing concentration of TNF-α (Fig. 4) or hydrogen
peroxide (data not shown). These data indicate that the
luciferase activity of cells is an indicator of the NF-κB activity
of colon26/NFκB-Luc cells.

NF-kB activation in colon26/NFkB-Luc cells.  Fig. 5 shows the
firefly luciferase activity in the liver after inoculation of
colon26/NF-κB-Luc cells into the portal vein. The activity was
measured at 8 h after inoculation of tumor cells, when more than
80% of cells inoculated remain within the liver organ, determined
using colon26/Luc cells (YuKi Kobayashi, unpublished data,
2007). Inoculation of colon26/NF-κB-Luc cells into the portal
vein significantly increased the firefly luciferase activity of cells
compared with the value under in vitro culture conditions. These
results suggest that NF-κB in colon26 cells is also activated during
the initial stages of hepatic metastasis. To examine the effect of
catalase derivatives, mice inoculated with colon26/NF-κB-Luc
cells were injected with catalase, Gal-catalase or Suc-catalase.
Suc-catalase, but not catalase or Gal-catalase, significantly inhibited
the increase in the luciferase activity of colon26/NF-κB-Luc cells.

Discussion

Tumor metastasis is the primary cause of death among cancer
patients. It involves many steps, such as tumor cell survival and
arrest in the bloodstream, and progressive outgrowth at distant
sites. Tumor metastasis is regulated by numerous factors, such
as MMP, adhesion molecules, angiogenic factors and anti-apoptotic
factors. Activation of transcription factors, such as NF-κB, is
involved in the expression of these factors. NF-κB could be
constitutively activated in tumor cells, but it may be activated by
the interaction of tumor cells with other cells. Several reports
have shown that NF-κB inhibitors suppress tumor promotion
and metastasis.(7,21) The importance of NF-κB activation on
tumor growth and metastasis was suggested in a report showing
that the activation suppresses the apoptotic potential of chemo-
therapeutic agents and contributes to drug resistance.(22,23)

One of the most popular methods for analyzing NF-κB activity
is an EMSA. A standard EMSA typically uses 32P-labeled DNA
to detect the presence of any proteins binding to the DNA.
Although isotopic labeling provides high detection sensitivity,
the use of radioisotopes is subject to regulatory procedures, disposal

Fig. 1. Tumor necrosis factor (TNF)-α-induced changes in luciferase
expression in mouse liver transfected with pNF-κB-Luc. Mice
transfected with pNF-κB-Luc were injected with saline (sham operated)
or TNF-α into the portal vein at 24 h after gene transfer. (a) At 4, 8 and
12 h after injection of saline or TNF-α (8 μg/kg), mice were injected
with D-luciferin and the luminescent image was obtained (upper
panels). At 4 h after injection of TNF-α at a dose of 0.08, 0.8 or 8 μg/
kg, mice were injected with D-luciferin and the luminescent image was
obtained (lower panels). (b) Mice were killed at 8 h after injection of
saline or TNF-α (8 μg/kg), and the luciferase activity in the liver was
measured. Results are expressed as mean ± standard deviation of at
least three mice. *P < 0.01, statistically significant difference compared
with the sham-operated group.
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limitations and the short half-life of the label, and requires a
long development period. In marked contrast, the luminescence-
based technology developed in our previous study(16) provides a
simple, sensitive and quantitative method for detecting the close
to real-time transcriptional activity of NF-κB in live animals.

In the present study, reporter genes were introduced into
mouse liver by an i.v. injection of plasmid DNA by the hydro-
dynamics-based procedure. This method produces a very high
transgene expression, although a transient increase in liver
enzyme levels in plasma within the first day of gene transfer has
been reported.(13) Because tumor cells were inoculated with a 24-h
interval from the hydrodynamic injection, it can be considered
that the injection-induced liver damages could hardly affect the
metastatic profile of tumor cells. We previously showed that
mice treated by the procedure can be used to examine the NF-κB
activity in liver cells of mice with fulminant hepatitis and indicated
that the luciferase activity in mouse liver receiving pNF-κB-Luc
is correlated well with the NF-κB activity determined by an
EMSA assay.(16) The luciferase activity, which was monitored
by an in vivo imaging system or quantitatively measured by a
standard assay, corresponded to the changes in the NF-κB activity
in the liver measured by an EMSA. Because gene transfer only
occurs in liver cells, such as hepatocytes, sinusoidal endothelial
cells and Kupffer cells, the luciferase activity detected indicate
the NF-κB activity in liver cells even when tumor cells are
present in the organ. This is in marked contrast to EMSA analysis,
which requires separation of cells for measuring the NF-κB

activity in a specific type of cell. NF-κB signaling is well known
to be oscillating depending on a well-orchestrated negative-
feedback system.(24,25) The analytical system in the present study
is a system where a transient increase in the NF-κB activity can
be easily and sensitively detected without considering the
changes in the NF-κB activity. In addition, the half-life of firefly
luciferase in cells is reported to be approximately 3 h. These
conditions strongly suggest that this analytical method is quite
useful for examining the effect of catalase derivatives on tumor
metastasis.

Biological labeling of cells enables researchers to detect the
cells of interest with a high sensitivity and specificity. Tumor
cell lines stably transfected with a reporter gene have been
widely used for the evaluation of tumor growth and metastasis
in vivo.(26–28) We reported that melanoma B16 cells and colon26
cells stably labeled with firefly luciferase have been successfully
used for the evaluation of tumor metastasis in various experi-
mental settings.(19,29–32) Replacement of a constitutively reporter
gene expressing vector with one expressing in response to NF-κB
activation can be a reliable method of evaluating its activity in
tumor cells. Transgenic mice, with luciferase expressed depending
on NF-κB activity, have been developed(9) but, to our knowledge,
no tumor cells expressing luciferase depending on NF-κB activity
have been reported. In the present study, we established several
clones of colon26/NFκB-Luc cells and selected one that was
sensitive to the stimulation of NF-κB activation. It was reported
that rat colon cancer cells inoculated into the portal vein localize

Fig. 2. Tumor cell-induced changes in luciferase
expression in mouse liver transfected with pNF-
κB-Luc. Mice were transfected with pNF-κB-Luc,
and injected with colon26 cells (1 × 105 cells)
into the portal vein over a 24-h interval. (a) At
1 min, 4, 8 and 12 h after injection of saline or
tumor cells, mice were injected with D-luciferin
and a luminescent image was obtained. (b,c)
Mice were killed at 8 h after injection of saline,
colon26 cells (b) or mouse peritoneal macro-
phages (c, 1 × 105 cells), and the luciferase activity
in the liver was measured. Each catalase derivative
was injected into the tail vein at a dose of
200 000 units/kg immediately after the injection
of cells. The ratio of firefly and renilla luciferase
activities was calculated as an indicator of the
nuclear factor κB activity in liver cells. The ratio
of each treatment was normalized to that in
the saline-treated group. Results are expressed
as mean ± standard deviation of at least four
mice. †P < 0.01 statistically significant difference
compared with the tumor-free, saline-treated
group. *P < 0.05, **P < 0.01, statistically significant
difference compared with the tumor, saline-
treated group. (d) Mice were given an injection
of each catalase derivative into the tail vein at
a dose of 200 000 units/kg immediately after
the injection of colon26 cells. The luminescent
images were obtained 8 h after the inoculation
of colon26 cells. (e) Mice were transfected with
pNF-κB-Luc, and each catalase derivative was
injected into the tail vein at a dose of
200 000 units/kg over a 24-h interval. Mice
were killed at 8 h after injection of each catalase,
and the luciferase activity in the liver was
measured. Gal-catalase, galactosylated catalase;
Suc-catalase, succinylated catalase.
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to sinusoids of the liver at the early stage of metastasis.(33) In our
previous studies,(34) colon26 cells and colon26/Luc cells formed
metastatic colonies in the liver after inoculation into the portal
vein. In the present study, mouse liver inoculated with colon26/
NFκB-Luc cells clearly showed that the luciferase protein,
which should be derived from colon26/NFκB-Luc cells in these
mice, exists in the organ. Imaging of untreated mice or ones
receiving colon26 cells showed no significant chemiluminescence
under the same conditions (data not shown). Therefore, it is
reasonable to speculate that tumor cells localize sinusoids of the
liver at the early stage of metastasis under the conditions used in
the present study.

Tumor necrosis factor-α is reported to be produced as a part
of the host pro-inflammatory response to tumor cells during the
initial stages of hepatic metastasis. Although TNF-α is cytotoxic,
it also facilitates the formation of hepatic metastasis by increasing
the expression of adhesion molecules, by promoting tumor cell

migration, survival and invasion, and by inducing an angiogenic
response.(35,36) It is well known that TNF-α activates NF-κB in
many types of cells through binding to TNF receptors.(37) Thus,
we first examined whether luciferase activity in mouse liver and
tumor cells was responsive to TNF-α. In both cases, the luciferase
activity was significantly increased by administration or addition
of TNF-α. On the other hand, TNF-α had no significant effects
on the luciferase activity in mouse liver when pTK-Luc, which
has no binding sequences for transcription factors including
NF-κB, was injected in place of pNF-κB-Luc (data not shown).
These results strongly support the hypothesis that luciferase
activity can be used as an indicator of NF-κB activity in cells in
which the plasmid vector pNF-κB-Luc was introduced.

When tumor cells were injected into the portal vein, luciferase
activity was significantly increased irrespective of the type of
cells expressing the gene; that is, liver cells or colon26 cells.

Fig. 3. Tumor cell-induced changes in luciferase expression in gadolinium
chloride (GdCl3)-treated mouse liver transfected with pNF-κB-Luc. Mice
received an i.v. injection of saline or GdCl3 (45 mg/kg) saline solution
12 h prior to gene transfer with pNF-κB-Luc. At 24 h after transfection,
mice were given an injection of colon26 cells (1 × 105 cells) into the
portal vein. (a) At 0, 4 and 8 h after injection of the colon26 cells, mice
were injected with D-luciferin and a luminescent image was obtained.
(b) Mice were killed at 8 h after injection of colon26 cells, and the
luciferase activity in the liver was measured. Results are expressed as
mean ± standard deviation of at least four mice. *P < 0.01, statistically
significant difference compared with the saline-treated group.

Fig. 4. Tumor necrosis factor (TNF)-α induced changes in luciferase
expression in colon26/NF-κB-Luc cells. Colon 26/NF-κB-Luc cells were
incubated with a range of concentrations of TNF-α (0–10 nM) for 12 h.
Then, cells were lysed using a lysis buffer and the luciferase activity in
the cell lysates was measured. RLU, relative light units.

Fig. 5. Luciferase expression in colon26/NF-κB-Luc cells inoculated into
the portal vein of mice. Mice were given an injection of colon26/NF-κB-
Luc (1 × 105 cells) into the portal vein, then each catalase derivative
(5 mg/kg) was injected into the tail vein after a minimal interval. At 8 h
after tumor inoculation, mice were killed and the luciferase activity in
the liver was measured. The luciferase activity of 1 × 105 colon26/NF-κB-
Luc cells under culture conditions was also shown for comparison.
*P < 0.05, statistically significant difference compared with the
saline-treated group. Gal-catalase, galactosylated catalase; Suc-catalase,
succinylated catalase.
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Injection of peritoneal macrophages did not increase the
luciferase activity in liver cells, suggesting that the activation of
NF-κB is not mediated by nonspecific events relating to the
injection of cells into the portal vein. On the other hand, the
luciferase activity in colon26/NFκB-Luc cells was significantly
higher when the cells were inoculated into the portal vein compared
with the activity of cells under culture conditions. The NF-κB
activation induced by tumor cell inoculation into the portal vein
would be followed by various events resulting from the activation.
It has been reported that NF-κB activation increases the expression
of anti-apoptotic factors in tumor cells. The activation also
increases the expression of adhesion molecules, pro-inflammatory
cytokines and MMP in host cells.(38) These changes would
produce pro-tumor effects and therefore the inhibition of NF-κB
activation can be used as a cancer treatment.

Reactive oxygen species have been proposed to be involved in
tumor metastasis. It has been reported that ROS generated from
activated phagocytes through nicotinamide adenine dinucleotide
phosphate oxidase facilitated tumor metastasis.(39) In the early
stages of hepatic metastasis, tumor cells entering the liver
through the portal vein interact with Kupffer cells. As a conse-
quence of this interaction, 92% of tumor cells are phagocytosed,
6% were untouched and only 2% of tumor cells remained and
were metastasized to the liver.(40) It has previously been reported
that the host inflammatory response promotes hepatic metastasis
of tumor cells by increasing the arrest and extravasation of
tumor cells. It has also been demonstrated that hydrogen peroxide
is involved in the TNF-α-induced NF-κB activation.(41) In a series
of investigations, we have demonstrated that chemically-modified
catalase derivatives effectively inhibit tumor metastasis to various
organs, including the liver, lung and peritoneal cavity.(19,29–31)

Administration of catalase derivatives was found to be effective
in inhibiting the NF-κB activation in both liver cells and tumor
cells. Targeting delivery of catalase leads to inhibit increase the
expression of anti-apoptotic factors in tumor cells and increase
the expression of adhesion molecules, pro-inflammatory cytokines

and MMP in host cells by suppression of NF-κB activation.
Gal-catalase, a derivative targeting hepatocytes, was highly
effective in inhibiting the NF-κB activation in liver cells, but not
so effective for tumor cells. These results can be explained by
the fact that more than 90% of Gal-catalase is delivered to hepa-
tocytes(17) whereas tumor cells are localized within the sinusoids.
On the other hand, Suc-catalase was effective in inhibiting the
activation in both types of cells. Suc-catalase can be targeted not
only to hepatocytes, but also to Kupffer cells and sinusoidal
endothelial cells. The difference in activity between Gal- and
Suc-catalase on the inhibition of the activation in tumor cells
strongly suggests that the delivery of catalase to liver non-
parenchymal cells, such as Kupffer and endothelial cells, is
important for inhibiting the NF-κB activation in tumor cells.
Localization of tumor cells to the sinusoids in the early stages
of metastasis would explain the different effects of these catalase
derivatives. In Kupffer cell-depleted mice, NF-κB activation in
liver-constituting cells was almost abolished. Soluble factors
from Kupffer cells, such as pro-inflammatory cytokines and
ROS, will be a major cause of NF-κB activation during the
initial stages of hepatic metastasis of tumor cells. Therefore,
targeted delivery of catalase or any other compounds to inhibit
the activation to Kupffer cells will be an effective treatment in
hepatic metastasis.

In conclusion, an experimental system has been successfully
developed in which the NF-κB activity during the initial stages
of hepatic metastasis can be quantitatively evaluated both in
liver cells and metastasizing tumor cells. Using this system, we
have clearly demonstrated that NF-κB is activated both in liver
cells and tumor cells as a consequence of the interaction of
tumor cells with liver cells, through a hydrogen peroxide-
mediated pathway. Because this activation will lead to a
facilitated hepatic metastasis of tumor cells, removal of hydrogen
peroxide can be theoretically considered to be an effective
approach to inhibiting hepatic metastasis of tumor cells, as we
have reported in previous papers.(34,41–43)
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