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A tumor-specific microenvironment is characterized by hypoxia, in
which oxygen tension is considerably lower than in normal tissues.
The hypoxic status of various solid tumors has been attributed as an
indicator of adverse prognosis due to tumor progression toward a
more malignant phenotype with increased metastatic potential and
resistance to treatment. Various exogenous and endogenous
markers for hypoxia are currently available and studied in relation
to each other, tumor architecture, and tumor microenvironment.
Over the last few decades, various methods have been suggested to
assess the level of oxygenation in solid tumors. Among them,
nitroimidazole compounds have provided promising information on
tumor hypoxia. To quantify the extent of hypoxia requires that
nitroimidazole binding be primarily dependent on oxygen
concentration as well as nitroreductase levels in the tumor cells.
Furthermore, recent progress in molecular biology has highlighted
a transcription factor, hypoxia-inducible factor (HIF)-1, whose
activity is induced by hypoxia. HIF-1 plays a central role in malignant
progression by inducing the expression of various genes, whose
functions are strongly associated with malignant alteration of the
entire tumor. The cellular changes induced by HIF-1 are extremely
important therapeutic targets of cancer therapy, particularly in the
therapy against refractory cancers. In this review, we will discuss the
significance of pimonidazole and HIF-1 as exogenous and endogenous
hypoxia markers, respectively, as well as their evaluation and
imaging of tumor hypoxia. (Cancer Sci 2009; 100: 1366–1373)

Most solid tumors contain a tumor-specific microenviron-
ment that is completely different from that inside normal

tissues. The microenvironment of a solid tumor is characterized
by low pO2 and low pH, which are well below physiological
levels.(1,2) This is due to the generation of areas within the solid
tumors that do not receive adequate nutrients and oxygen from
blood vessels because of the uncontrolled growth of tumor cells
and disproportionate and incomplete tumor blood vascular structures
formed during angiogenesis. The hypoxic status of various solid
tumors has been attributed mainly to a poor prognosis due to
tumor progression toward a more malignant phenotype, with
increased metastatic potential and treatment resistance.(1–4)

Due to certain physical factors within these hypoxic areas,
hypoxic tumor cells are resistant to cancer therapy.(1,2) As trans-
port of anticancer agents via blood flow to hypoxic tumor cells,
which are located at some distance from blood vessels, is in-
efficient, there is only a small chance that an anticancer agent
reaches hypoxic tumor cells at an effective concentration. In
addition, many anticancer agents target dividing cells and, thus,
are ineffective in growth-arrested or slowly growing hypoxic
tumor cells. Furthermore, because oxygen molecules enhance
the cytocidal effects of radiation and certain types of anticancer
agents, their therapeutic effects are reduced under hypoxic

conditions. Therefore, there are cases in which hypoxic tumor
cells survive after radiotherapy or chemotherapy even though
the surrounding well-oxygenated and proliferating tumor cells
die, suggesting that they are the cause of poor treatment outcomes
and recurrence of cancers.

Hypoxia-inducible factor-1

Hypoxia-inducible factor (HIF)-1 is a heterodimer consisting of
HIF-1α and HIF-1β (Fig. 1).(5) The β subunit (HIF-1β), also
known as the aryl hydrocarbon receptor nuclear translocator
(Arnt1), is a constitutively expressed protein. The α subunit
(HIF-1α) is regulated at the translational level and strictly
controlled by post-translational modification. HIF-1α trans-
locates to the nucleus, forms a heterodimer with HIF-1β through
protein–protein interactions via their Per-Arnt-Sim (PAS) domains,
and binds to hypoxia-responsive elements of the target genes.
Thus, the HIF-1 activity depends on the degree of HIF-1α
expression. The control of HIF-1α via post-translational modi-
fication mainly occurs via oxygen-dependent proline hydroxylases
(PHD). The oxygen-dependent degradation (ODD) domain is
responsible for regulation of the oxygen-dependent degradation
of the HIF-1α protein, which stabilizes in a hypoxic
environment and degrades immediately under normal oxygen
conditions (Fig. 1). The details of this control mechanism were
clarified at the molecular level by cloning three human proline
hydroxylase genes.(6) These genes encode PHD1, PHD2, and
PHD3, which have closely related catalytic domains and belong
to the superfamily of 2-oxoglutarate-dependent oxygenases. The
PHD contain Fe(II) in their catalytic center, which is oxidized
to Fe(III) via interaction of molecular oxygen during the
hydroxylation reaction, and should be regenerated prior to
another round of catalysis.(7) Therefore, PHD are considered as
oxygen sensors, and HIF-1 and its target-gene products are
endogenous hypoxia makers,(8) because HIF-1 transcription
activity is eventually regulated by the oxygen sensors.

Hypoxia-inducible factor-1 activity and tumor hypoxia

Cells in hypoxic areas contribute to malignant alteration of tumors
and HIF-1 contributes to this. Compared with the actively
growing tumor cells, which are exposed to an aerobic environment,
tumor cells in hypoxic regions are ‘impaired tumor cells’ and
are not normally considered as serious targets for cancer
therapy. However, recent research has shown that these ‘impaired
tumor cells’ increase the malignancy of the entire tumor.(1–5)

3To whom correspondence should be addressed. 
E-mail: skondoh@kuhp.kyoto-u.ac.jp



Kizaka-Kondoh and Konse-Nagasawa Cancer Sci | August 2009 | vol. 100 | no. 8 | 1367
© 2009 Japanese Cancer Association

Although these hypoxic tumor cells are in a ‘moribund state’,
they try to adapt to their poor environment. HIF-1 supports their
adaptation by inducing the expression of genes that are related
to glucose metabolism, glucose transport, and angiogenic and
growth factors, and helps to improve the nutritional environment
(Fig. 1). HIF-1 helps prevent apoptosis and death by inducing
the expression of genes that induce mutations (Fig. 2). At the
same time, it induces the expression of genes that are involved
in metastasis and invasion (Fig. 2). These chain-of-survival
actions are linked to malignant alteration of the entire tumor.
Therefore, HIF-1 is an excellent marker for tumor malignancy
as well as hypoxia.

Hypoxia-inducible factor-1 activity and genetic alterations 
in tumor cells

Many genetic alterations that inactivate tumor suppressors or
activate oncoproteins also increase the HIF-1 activity in tumor
cells through a variety of molecular mechanisms that are
independent of hypoxia.(5) In tumor cells that have sustained the
loss-of-function of a tumor suppressor (such as PTEN) or gain-
of-function of an oncoprotein (such as HER2, IGF1R, or PI3K),
increased signal transduction through the phosphatidylinositol-
3-kinase–AKT pathway leads to increased mTOR activity,
which in turn results in increased synthesis of the HIF-1α
protein and increased HIF-1 activity (Fig. 2). Loss-of-function
of the von Hippel-Lindau tumor suppressor interrupts the
recruitment of a ubiquitin ligase complex that targets HIF-1α
for ubiquitination and proteasomal degradation, resulting in
constitutive activation of HIF-1. The binding of p53 inhibits
HIF-1-dependent transactivation and facilitates Mdm2-dependent
degradation of HIF-1α. Thus loss-of-function of p53 increases
HIF-1 activity.(9) Independent of any specific mechanism, increased
HIF-1 activity is associated with increased patient mortality in
many different tumors. Therefore, although HIF-1 and its target-
gene products are excellent markers for tumor malignancy, they
are not always accurate markers for hypoxia.

Nitroimidazole compounds and HIF-1 as hypoxia markers

Its beneficial impact on cancer management has motivated
efforts to exploit hypoxia imaging for elucidation of the role of

hypoxia in solid tumors. Consequently, over the last decade,
various methods have been suggested to assess the level of
oxygenation in solid tumors, including invasive measurement
using pO2 electrodes and fiber-optic probes,(10,11) immunohisto-
chemical detection of exogenously administered drugs that label
hypoxic tumor cells,(12) and of proteins overexpressed in response
to hypoxia as endogenous markers.(8) More recently, non-

Fig. 1. Regulation of hypoxia-inducible factor
(HIF)-1. In the presence of oxygen (normoxia),
prolyl hydroxylase (PHD) hydroxylates proline
residues on HIF-1α, allowing HIF-1α to interact
with a ubiquitin–protein ligase complex (VHL,
CLU2, and Elongin-B and Elongin-C) through
VHL. Ubiquitination of HIF-1α makes it a target
for degradation by the 26S proteasome. Growth
signals through receptor tyrosine kinases (Rec-
Tyr) and Ras activate the PI3K–Akt pathway and
the Ras–Raf–MAP kinase pathway, respectively,
increasing the translation of HIF-1α. When oxygen
supply is not enough to activate PHD or when
HIF-1α expression exceeds the capacity of ubiquitin–
proteasome degradation, HIF-1α binds to
ubiquitously expressing HIF-1β to form a
heterodimer. The heterodimer then translocates
to the nucleus and binds to hypoxia-responsive
elements in the promoter and enhancer region of
target genes, inducing the expression of various
HIF1-responsive genes. HRE, hypoxia-responsive
element; Ub, ubiquitin.

Fig. 2. Tumor microenvironment. Tumor hypoxia arises in regions with
impaired oxygen delivery. The regions proximal to blood vessels are Ki-
67-, FDG-, and glucose transporter (Glut)-1-positive but radiosensitive,
whereas the diffusion-limited regions are Ki-67-, FDG-, and Glut-1-
negative and radioresistant. In hypoxic regions, HIF-1-active regions
(red/pink) are located closer to the blood vessels than pimonidazole
(Pimo)-positive regions (light green). Pimo-positive regions are located
next to necrotic regions (dark blue) and barely express HIF-1α; they
possess little HIF-1 activity. CA9, carbonic anhydrase 9; FMISO,
fluoromisonidazole.
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invasive techniques for imaging tissue function have been
established to accelerate the development of new applications.(13)

Currently, pimonidazole (Pimo) is considered to be the
‘standard’ exogenous hypoxic marker. It is commercially avail-
able and injectable 2-nitroimidazole derivative. The binding of
exogenous hypoxia markers such as Pimo to cellular macro-
molecules has been shown to increase dramatically below an
oxygen concentration of 10 mmHg and is considered to indicate
chronic hypoxia.(14) Recently, it was reported that the intratumor
regions in which endogenous hypoxia marker, HIF-1α is expressed
(HIF-1-active regions) hardly overlapped with the Pimo-positive
regions (Fig. 2); HIF-1-active regions were more closely distrib-
uted to blood vessels than Pimo-positive regions.(15) Janssen
et al. extensively studied surgical specimens from patients and
reported that although typical Pimo-positive regions were
observed at a distance from blood vessels with peaks around
80 μm, the HIF-1-positive regions were more variable without
clear peaks and there was no correlation between the percentage
of positive tumor tissue for both markers; although the median
values of the positive area were similar for both (5.8 vs 5.6%),
the median percentage of the regions positive with the both
markers was below 5% (range 0.2–2.3%).(16) These reports indi-
cate that Pimo is a specific marker for severe hypoxia and hardly
crosses HIF-1-active regions.

Correlation between hypoxia markers and other markers

However, there are many studies on the correlation of the
exogenous 2-nitroimidazole hypoxia markers, such as Pimo,
EF5, and fluoromisonidazole (FMISO), with endogenous
hypoxia-related markers, such as carbonic anhydrase 9 (CA9)
and glucose transporter-1, that are HIF-1 target-gene products.
A statistically significant correlation (P < 0.05) was obtained
between the hypoxic volumes identified by FMISO-PET and the
volumes detected with Pimo and CA9 staining in rat rhabdom-
yosarcomas.(17) More recently, a novel tumor xenograft model
was established by transplanting the hypoxia-inducible HT29–
9 HE-TKeGFP tumor into nude mice to study tumor hypoxia
imaging. They demonstrated that intratumoral distributions of
[124I]FIAU and [18F]FMISO were similar, and that hypoxia-
responsive element-controlled enhanced GFP, Pimo, EF5, and
CA9 colocalized in the same areas but not in well-perfused regions
by means of either optical or nuclear imaging techniques.(18)

Although the reasons for the controversial reports described
above are still unclear, one possible explanation is that the bio-
logical status of tumors, which includes the levels of HIF-1α
expression, ODD regulation, and reductase activity, differs among
cell types and the tissues they originated from.

The hypoxic subregions that express HIF-1a and HIF-1 target
genes are overlapped with proliferation markers such as BrdU

and Ki-67, whereas Pimo-positive cells are hardly stained with
them.(19) Therefore, FDG-PET, which effectively images meta-
bolically active cells including well-proliferating cancer cells, is
able to image HIF-1-active cells but poorly images Pimo-positive
quiescent cells (chronic hypoxia), which are located adjacent to
the necrotic regions.(20) However, it is well known that local
fluctuations in blood perfusion and oxygen supply result in a
transient hypoxia (acute hypoxia),(21) which may be long enough
for nitroimidazole compounds to bind to macromolecules in
hypoxic tumor cells. Because the binding of nitroimidazole
compounds is an irreversible reaction and acute hypoxia can be
produced in any place including the regions close to blood
vessels,(21) it is no wonder that cells stained with both mitotic
markers and Pimo exist in tumors.

Nitroreductase for bioreductive activation

In the development of imaging probes for tumor hypoxia,
nitroimidazoles have received particular attention(22,23) because
of their unique behavior in hypoxic environments arising from
their high electron affinity. Several 2-nitroimidazole derivatives
have been applied to the imaging of the hypoxic region in both
solid tumor tissues and in myocardial and brain ischemia.(24)

2-Nitroimidazole (azomycin) was originally found to be an
antibiotic against anaerobic bacteria and protozoa in 1953.(25) Its
selective toxicity was determined by biological reduction to
the reactive species in the absence of oxygen.(26,27) Over the
intervening 40 years, electron-deficient nitroaromatic compounds
have been investigated for use in cancer treatment as chemical
modifiers that increase the sensitivity of hypoxic tissue to
radiation or chemotherapeutic agents,(28,29) and as bioreductive
prodrugs or hypoxia selective cytotoxins(30–32) (Fig. 3).

The bioreductive activation of 2-nitroimidazoles has also been
adapted for the labeling procedure of hypoxic cells in vivo.(33)

The specificity of nitroimidazole imaging will depend on the
oxygen concentration at which bioreductive trapping occurs and
the enzyme activity of bioreductive activation. Nitroaromatics
are selectively reduced by nitroreductase enzymes under
hypoxic conditions to form reactive products that can bind to
cellular nucleophiles irreversibly, as shown in Figure 4.(34,35) In
mammals, different nitroreductase enzymes associated with the
cytoplasm, mitochondria, and microsomes are capable of the
reductive metabolism of nitroheterocycles.(36) These enzymes
include one-electron reductases such as a NADPH-cytochrome
P450 reductase, cytochrome b5 reductase, xanthine oxidase, and
aldehyde dehydrogenase, and two-electron reductases such as
DT-diaphorase. It is likely that different specific enzymes, which
are able to reduce substrates in two separate one-electron reac-
tion steps, will be responsible for reductively activating nitro-
aromatics under hypoxic conditions. Although a specific enzyme

Fig. 3. Representative hypoxic cell radiosensitizers
and bioreductive prodrugs containing a nitro-
heterocyclic group.
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for the reductive activation in mammalian cells has not been
completely identified, a NADPH-cytochrome P450 reductase has
been shown to be involved in the reductive activation and
hypoxic accumulation of various nitroaromatics.(37,38) In the
activation reactions, the addition of the first electron to form a
nitro radical anion, , is reversible in the presence of
molecular oxygen, and this step is believed to be the basis of the
oxygen dependence of bioreductive activation and binding of
nitroaromatics. In contrast to one-electron reductases, two-electron
reductases such as DT-diaphorase are able to reduce nitroaro-
matics in two-electron steps, which result in the bypassing of the
first oxygen-dependent reduction and thus reduce independently
of the oxygenation status of the cell.(39) Therefore, DT-diaphorase
does not generally seem to account for the majority of hypoxia-
induced binding of nitroimidazoles.(40) In fact, differentiation-
associated and oxygen-independent staining with anti-Pimo
antibodies was reported in some clinical cancers,(40–42) indicating
not only that some oxygen-insensitive reductases might be
responsible for the process of exogenous marker reaction but also
that other hypoxia-independent events may occur in exogenous
hypoxia markers.

Bioreductive activation of nitroaromatics

In aerobic conditions, the nitroradical anion is back-oxidized to
the parent nitro compound, resulting in a “futile” cycle without
generation of an active intermediate.(43) As shown in Figure 4,
the “futile” metabolism to afford  reflects competition
between natural radical-decay pathways (rightward) and a
one-electron transfer reaction from intracellular oxygen to yield
superoxide ion,  (leftward). The unique biological properties
of nitroaryl compounds indicate the ease of nitroreduction, which
is estimated by reduction potential as an appropriate index.(44,45)

The most intensively investigated nitroaromatic compounds
contain 2-nitroimidazole, which has a higher reduction potential
(  vs normal hydrogen electrode in water at
pH 7: –0.39 V) than those of 4-nitroimidazole (–0.56 V) and 5-
nitroimidazole (–0.47 V). The rate of regeneration of the parent
nitro compound is dependent on the intracellular oxygen
concentration because the reduction potential of oxygen
(approximately –0.15 V) is significantly higher than that of all
nitroaryl compounds. If the oxygen concentration is low,
subsequent natural radical-decay steps provide a reactive

intermediate such as a hydroxylamine binding to cellular
macromolecules, such as proteins or DNA, and nitroaromatic
compounds are then retained in the cells. These processes are
essential in differentiating normoxic from hypoxic tissue. Thus,
it has been suggested that the selective labeling reaction of
hypoxic cells by nitroimidazole at non-toxic doses could be used
to detect tumor hypoxia.(23)

Molecular structures and characteristics of nitroaryl 
hypoxia markers

Many studies have been conducted on the radiosensitizer
misonidazole (MISO) and its analogs as hypoxia markers. In
studies of the correlation between concentrations of tritiated
MISO ([3H]MISO) and oxygen pressures using EMT6/Ro multicell
spheroids, accumulation of MISO near the central necrosis was
observed where oxygen tensions lower than 10 mmHg were
measured.(46) Because bioreduction and subsequent binding of
nitroimidazole to cellular macromolecules are inhibited as a
function of increasing oxygen concentration but require intact
nitroreductase enzymes, the markers can only detect viable
hypoxic cells, except in areas of necrosis. The Km of binding
inhibition (oxygen concentration for half-maximal binding) for
the tumors varied with the kind of tumor (1000–6000 p.p.m.,
0.1–0.6% O2)

(22,47) whereas similar maximal labeling patterns of
binding are obtained at less than 5 p.p.m. (0.0005%) oxygen in
a variety of tumors. The most commonly used nitroimidazole
hypoxic markers are listed in Table 1. In the structure of
nitroimidazole hypoxia markers, generally the nitoroaryl moiety
is essential and works as a bioreductive alkylating unit to
selectively bind hypoxic tissue. However, the side chains control
pharmacokinetics and toxicity (i.e. drug distribution), accumu-
lation, and duration of retention in the target hypoxic site, and
rapidity of clearance from normoxic cells. Pharmacokinetics and
accumulation rates depend on the presence or absence of
dissociable groups and lipophilicity, which is predicted by n-
octanol/water partition coefficient (P or log P).(48) For example,
the tumor uptake of Pimo and EF-5 is expected to improve
because of their considerably higher P-values than the criterion
values for less-toxic radiosensitizers (0.026–0.4).(49) Moreover,
because Pimo is weakly basic (pKa = 8.9), the intracellular
incorporation was affected by the extracellular pH.(50) The extent
of Pimo binding exceeds that for hexafluoromisonidazole (CCI-

Fig. 4. Oxygen-dependent bioreductive metabolism
of nitroimidazoles in cells and proposed mechanism
for selective covalent binding reaction of
hydroxylamine intermediates with cellular
nucleophiles under hypoxic conditions.
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103F) by a factor ranging from 1.0 to 1.65, and the binding of
Pimo is greater at all pH values.(51) Sustained oral ingestion of
Pimo revealed a larger hypoxic fraction than a single injection
of an alternative hypoxia marker, CCI-103F.(52,53)

Immunological detection of exogenous hypoxia markers

The stability of the labeled marker in viable hypoxic tissue
enables invasive detection, biopsy, and immunological identific-
ation to be carried out after the administration of nitroimidazole
hypoxia markers. Intracellular Pimo and [18F]FMISO adducts
are more stable than an adduct of CCI-103F.(54,55) The turnover
rates of hypoxic tumor cells were observed with half-lives
ranging from 17 to 49 h in various solid tumors.(56) Protein
adducts of reductively activated nitroimidazoles are effective
immunogens for the production of both polyclonal and

monoclonal antibodies. For preparation of the immunogens for
polyclonal and monoclonal antibodies, Pimo was bound to
bovine serum albumin by means of a radiation chemical
reduction.(12,57) The antiserum was obtained for the Pimo-bound
bovine serum albumin with no cross reactivities to other
nitroimidazole derivatives, such as misonidazole and etanidazole.
At present, clinically relevant exogenous hypoxia markers are 2-
nitroimidazole derivatives such as Pimo and EF5, which are
injected once i.v. before an invasive biopsy and immuno-
histochemical staining are carried out.(58) Information on the
prognostic role of these markers is so far limited because of the
low number of patients in the published data.(59) However, it may
become a new gold standard for assays detecting hypoxia at the
cellular level. The outcome for patients treated with radiotherapy
can be predicted by assessment of the hypoxic fraction in a tumor
biopsy by means of immunodetection using Pimo or EF5.(60)

Table 1. Structures, partition coefficients, and detection methods of the most common 2-nitroimidazoles

Structure
Partition coefficient 

(n-octanol/water)

Imaging method

Invasive Non-invasive

log P = –0.39
P = 0.43

Autradiography
([3H]MISO or [14C]MISO)

Misonidazole (MISO)

P = 8.5
IHC

ELISA
Flow cytometry

Pimonidazole

log P = 0.40
P = 2.6

IHC
ELISA

Flow cytometry
PET [18F]

Fluoromisonidazole (FMISO)

P = 20
IHC

ELISA
Flow cytometry

MRI [19F]

Hexafluoromisonidazole
(CCI-103F)

log P = 0.6
P = 4.0–5.7

IHC
ELISA

Flow cytometry

PET [18F]
MRI [19F]

EF5

log P = 1.1 PET [18F]

Fluoroazomycin arabinoside
(FAZA)

log P = –0.24
P = 0.63

PET/computed tomography [124I]

Iodoazomycin galactopyranoside
(β-D-IAZGP)

IHC, immunohistochemistry.
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Noninvasive imaging probes for hypoxia

PET, particularly PET or computed tomography imaging, has been
developed to achieve non-invasive in vivo mapping of tumor
hypoxia with anatomical resolution. For the synthesis of hypoxia
probes for PET imaging, short-lived radionuclides such as 123I,
124I, 64Cu, and 18F are been bound to nitroimidazole. FMISO,(58)

[18F]EF5,(61,62) [18F]fluoroazomycin arabinoside,(63) and
[124I]iodoazomycin galactopyranoside(64) are available for PET.
An alternative PET probe for hypoxia consists of radioactive
64Cu(II), 62Cu(II), or 60Cu(II) complexed with diacetyl bis(N4-
methylthiosemicarbazone), which permeates the cell membrane
easily, is reduced biologically, and is trapped in viable cells
under low cellular oxygen tension.(65) PET permits the pretreatment
assessment of oxygen status non-invasively by measuring the
spatiotemporal distribution of the hypoxia-specific tracers.
Among them, FMISO has been studied most extensively to
demonstrate the utility in both basic research and clinical
practice.(66) FMISO-PET promises to predict the response to
treatment and provide a prognosis for cancer patients.(67) 2-
Nitroimidaole labeled with multiple 19F atoms has been used for
magnetic resonance imaging.(68) So far, the achievable signal-to-
noise ratio is typically inadequate.(20,69,70)

Development of imaging bioprobes specific to HIF-1 
activity

We have been developing bioprobes with protein transduction
domain (PTD)–ODD fusion proteins, which consist of a PTD
and part of the human HIF-1α ODD domain containing a VHL-
mediated protein destruction motif.(71–73) We previously reported
that the PTD domain effectively delivers the PTD–ODD fusion
protein to hypoxic regions.(74,75) The VHL-mediated protein
destruction motif provides a fused protein with hypoxia-
dependent stabilization(76) (Fig. 5a). Based on these studies, we
are developing an imaging probe for HIF-1-active cells with a
PTD–ODD fusion protein. Because PTD–ODD fusion proteins
underlie the same ODD control as HIF-1α, they are expected to
be colocated with HIF-1α, and previous results support the
expectation.(74–77) We first constructed PTD–ODD–enhanced
GFP labeled with near-infrared fluorescent dye Cy5.5 for use as
a model protein. When testing the membrane permeability and
oxygen-dependent degradation control of this prototype probe
using cultured cells, we found that it permeated cell membranes
with high efficiency, and its stability was controlled in an
oxygen concentration-dependent manner. When an optimized
and redesigned bioprobe is administered to tumor-bearing mice,
it is delivered to the whole body soon after administration, but
it degrades immediately in cells that are under aerobic
conditions, and this leads to immediate clearance of the probe.
On the other hand, the probe accumulates in hypoxic tumor cells
with HIF-1 activity, and in contrast to the surrounding cells that
are under aerobic conditions, the hypoxic tumor cells with HIF-
1 activity can be imaged (Fig. 5b). Currently, we are conducting
immunohistochemical analyses to investigate whether the probe
accumulates locally in HIF-1-active cells. In addition, we are
continuing our research into the preparation of a probe with
radioactive reagents for clinical PET or SPECT probes. We
are also developing novel near infra-red (NIR) probes for
non-invasive optical imaging of tumor hypoxia, based on a
bioreductive activating trigger or trapping mechanism for
nitroimidazole imaging.

Hypoxia markers and radioresistance

The significance of imaging techniques and markers is useful
for diagnosis and treatments. It is known that there is a strong
correlation between radioresistance and hypoxic fractions in

tumors and that Pimo-positive cells, which are located in severe
hypoxia less than 10 mmHg, are radioresistant. Recently we and
other groups reported that the HIF-1-active fraction can cause
radioresistance.(77,78) A therapeutic benefit has been suggested
for the appropriate combination of hypoxia imaging to select
patients for hypoxia-targeting treatment, such as treatment with
hypoxia-selective cytotoxins.(59,79) Tirapazamin, which is a hypoxic
cytotoxin currently undergoing clinical evaluation, exhibited
selective toxicity to the Pimo-positive primitive stem cell subset
of bone marrow fractions.(80) However, it does have some
limitations in solid tumors, including poor diffusion through
hypoxic tissue. It was suggested that the major effect of
tirapazamin in vivo may be related to tumor vasculature
dysfunction rather than cytotoxicity for the hypoxic cells located
distal to functional blood vessels.(81)

Conclusion

As gene clusters whose expression is induced by the
transcription factor HIF-1 exert functions that contribute greatly
to the malignant alteration of a tumor, the imaging and targeting
of ‘hypoxic cells with HIF-1 activity’ has become important.
Nitroimidazoles have been advocated as exogenous makers for
imaging hypoxic tissue even though hypoxia-independent cases,
in which specific tissues and situations may have induced the
reaction, have been reported. Although the oxygen concentrations
at which HIF-1 is activated differs among tissue cells,
nitroimidazole compounds such as Pimo function at absolute
oxygen concentrations below 10 mmHg, indicating that

Fig. 5. Imaging of hypoxia-inducible factor (HIF)-1 active cells. (a)
Protein transduction domain (PTD)–oxygen-dependent degradation
(ODD) fusion protein consisting of three domains: PTD, ODD, and a
functional domain. PTD enables the fusion protein to diffuse and enter
the cell. ODD is derived from ODD548–603 of the HIF-1α protein and
endows the fusion protein with the same oxygen-dependent
degradation regulation as the HIF-1α protein. Thus, PTD–ODD is
degraded quickly in normoxia (aerobic conditions) but is stabilized and
functional in hypoxia. (b) The PTD–ODD–enhanced GFP (EGFP) fusion
protein (probe) was labeled with a near-infrared fluorescent dye and
injected into a tumor-bearing mouse. Fluorescence was detected in the
whole body shortly after i.v. injection of the labeled probe. By 6 h after
probe injection, the fluorescence was predominantly detected in the
tumor, suggesting that the PTD–ODD probe could be a potential probe
for imaging HIF-1 activity.
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nitroimidazole compounds are specific markers for severe
hypoxia whereas HIF-1α and HIF-1-induced endogenous markers
are indicators for physiological hypoxia. Many biological factors
and alterations other than hypoxia activate HIF-1; however,
hypoxia is the major factor for HIF-1 activation. As long as
tumor hypoxia is the crucial factor for tumor malignancy and
treatment failures, both nitroimidazole compounds and HIF-1
are important markers for tumor hypoxia. Further studies are
necessary to understand the significance of these exogenous and
endogenous markers, and we are going to address this crucial
issue with the development of specific in vivo imaging probes
for tumor hypoxia.
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Abbreviations

FDG 2-fluoro-2-deoxy-D-glucose
FIAU 2′-fluoro-2′deoxy-1ß-D-arabinofuranosyl-5-iodouracil
HER human epidermal growth factor receptor
IGF1R insulin-like growth factor I receptor
Mdm-2 murine double minute 2
mTOR mammalian Target Of Rapamycin
PETN pentaerythritol tetranitrate 
PI3K phosphatidyl-inositol 3 kinase
SPECT Single photon emission computed tomography
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