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During the last few decades, many studies have been performed
on the early detection of cancer using noninvasive or minimally
invasive techniques in lieu of traditional excisional biopsy. Early
detection can make an immense difference because cancer treat-
ment is often simpler and more effective when diagnosed at an
early stage. Cancer detecting methods may help physicians to
diagnose cancer, to dissect the malignant region with a safe mar-
gin, and to evaluate the tumor bed after resection. In this paper,
the advanced hyperspectral imaging system has been assessed
using infrared wavelengths region for tumor detection. We were
able to identify an appropriate wavelength region for cancer
detection, spatially resolved images, and highlight the differences
in reflectance properties of cancerous versus non-cancerous tis-
sues. The capability of this instrument was demonstrated by
observing gastric tumors in 10 human subjects. The spectral signa-
tures were extracted and evaluated in cancerous and non-cancer-
ous tissues. Processing means with the standard deviation of the
spectral diagram, support vector machine, and first derivatives and
integral of in spectral diagram were proposed to enhance and
detect the cancerous regions. The first derivatives in spectral
region between 1226–1251 nm and 1288–1370 nm were proposed
as criteria that successfully distinguish between non-cancerous
and cancerous tissue. The results of this study will lead to
advances in the optical diagnosis of cancer. (Cancer Sci 2011; 102:
852–857)

T o reduce the morbidity and mortality of the cancer, many
efforts have been made to improve early diagnostic and

therapeutic procedures. One of the most challenging concerns in
medical procedures in diagnosis or management of tumors is the
segmentation of tumors because of the ambiguity between the
cancerous and the non-cancerous adjacent tissues. In almost all
endoscopic and laparoscopic procedures, surgeons face the prob-
lem of detecting and localizing tumors before a biopsy, to deter-
mine the border for resection, and to evaluate the resection bed
after tumor extraction. Imaging techniques such as radiography
and endoscopy are routinely used as diagnostic tools for patients
suspected of having gastric cancer. However, diagnosis is sub-
jective and thus requires expert judgment. Gene detection in the
target organ is a promising method for cancer diagnosis.(1,2)

However, the problem of low specificity of this method due to
the large variety of gene expression patterns must be resolved
before the method can be used clinically.(1,3) Histopathology is
the current gold standard for diagnosis of cancer. On the other
hand, even this method has caveats such as its invasiveness and
great dependence on the judgment of the pathologists. There-
fore, new techniques that are simple and enable rapid detection
of cancer would be very helpful.(1) Recently, Fourier transform
infrared spectroscopy has widely been used as a cancer diagnos-
tic technique that can only be applied to point measure-
ments.(1,4–9)

The hyperspectral imaging that operates as a tunable optical
band pass filter has been utilized to discriminate between
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non-cancerous and cancerous tissue.(10) Nonetheless, this
method is limited to the visible wavelength range and requires
injecting a fluorescent material, porphyrin, which can be poten-
tially hazardous. The hyperspectral imaging was evaluated for
cytologic diagnosis of cancer cells(11) and the high-resolution
hyperspectral imaging microscopy was evaluated to detect
abnormalities in skin tissue using H&E stained preparations of
normal and abnormal skin, benign nevi and melanomas.(12) Con-
versely, these methods are limited to the use at the cytological
level, visible wavelength range, and require sample preparation.

The goal of this research is to develop an advanced hyper-
spectral image processing technique to obtain spatially resolved
images and highlight the differences in luminescent properties
of malignant tumors versus non-cancerous tissues. This paper
lays the groundwork for these goals by demonstrating the instru-
ment’s capabilities for gastric cancer detection. Three image
processing methods were proposed and evaluated. We tried to
find an appropriate wavelength region for discrimination of
cancerous and non-cancerous tissue in ten patients.

Materials and Methods

To capture the hyperspectral image data, the ImSpector Spectral
Camera, SW ver 2.739 (Spectral Imaging Ltd, Oulu, Finland) is
employed. This model has the spectral range 1000–2500 nm and
spectral resolution 6.29 nm. Figure 1 shows the acquisition
setup. The light source consists of two 150 W halogen lamps
with diffusing reflectors that were fixed on a frame with the
camera and illuminate the object to be captured. The two lamps
provide a fairly uniform illumination on the subject. Also, the
camera was calibrated and the frame was fixed. The frame was
installed on a computer-controlled linear actuator. The linear
actuator was fixed on a bridge that was itself installed over the
surgical bed. Therefore, the distance between the lens and the
sample was kept constant.

Prior to this study, approval was obtained from the Institution
of Ethics Committee, Tokyo Medical and Dental University.
Ten patients whom were suffering from a gastric cancer under-
went a total gastrectomy. After the surgical operation, for patho-
logical inspection, the gastric cancer samples were taken from
randomly selected patients. Immediately after gastrectomy, the
stomachs were prepared for hyperspectral imaging from the
resected stomachs. The hyperspectral images of stomach from
the mucosal surface of the tumor were collected. These resected
stomachs consist of normal tissue and the tumor. It was believed
that the region with 5–10-cm distance from the tumor was to be
healthy and that was confirmed by pathologic results. A total of
101 hyperspectral images were captured from these ten resected
stomach. After image the stomachs were sent to the patho-
logical laboratory. Pathologic diagnosis was carried out by a
doi: 10.1111/j.1349-7006.2011.01849.x
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Fig. 1. The acquisition setup.
professional pathologist and the results were compared with the
image processing results.

In a hyperspectral image, each pixel has a sequence of reflec-
tance in different spectral wavelengths that can display the spec-
tral diagram of that pixel. Figure 2 shows a schematic view of
the hyperspectral image. The differences in spectral diagrams of
the normal and cancerous tissues were evaluated and four differ-
ent image processing methods were compared to classify the
tumor and normal tissue. The methods that were utilized for can-
cer detection were support vector machine (SVM), a filter based
on the standard deviation, a filter designed based on first deriva-
tive, and a wavelet decomposition method that are explained in
the following sections. We tried to find a wavelength region that
has more functional information for cancer detection.

Hyperspectral image capturing. The halogen lamps illuminate
the stomach and the camera objective lens collects the radiation
from the tissue and displays an image on the entrance slit plane.
The slit determines the field of imaging in spatial directions.
The radiation from the slit is projected to the prism-grating-
prism components (ImSpector optics); therefore the direction of
propagation of the radiation changes on its wavelength. Every
point of the tissue is represented on the matrix detector by a ser-
ies of monochromatic points that makes a continuous spectrum
in the direction of the spectral axis. The imaging technique used
with this camera is a pushbroom scanner; the slit entrance limits
the imaging field. By moving the camera between subsequent
images, eventually all regions and wavelengths of the object are
captured. By reconstructing the subsequent images, a monochro-
matic spectral image for each wavelength can be constructed.
Fig. 2. Left side, a schematic view of a hyperspectral image of
stomach is shown. In right side, a spectral graph of a sample pixel is
shown. The graph depicts the normalized reflectance for each
wavelength in that pixel.
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The linear actuator, a ROBO Cylinder Slider, model RCS-
SM-A-100-H-1000-T1-S (IAI Corporation, Shizuoka, Japan), is
used to move the camera. This actuator is controlled by an
XSEL-J-1-100A-N3-EEE-2-1 type controller (IAI Corporation).
The movement and velocity are adjusted by a setting tool that is
connected to the controller. The actuator moves the camera with
a constant velocity (10 mm ⁄ s).

Data normalization. The problem with the spectral non-uni-
formity of the illumination device and the influence of the dark
current are eliminated through normalization of the image data
to find the normalized reflectance of the specimen. A standard
reference white board was placed in the scene of imaging and its
data were utilized as the white reference. This white reference is
a standard reflectance that should be used for data normalization
which shows maximum standard reflectance in each wavelength
and in capturing time temperature. The reflectance from the
board provides an estimate of the incident light on the organs at
each wavelength and normalizes the temperature changes, which
is used in normalization of the spectrum. The dark current was
captured by keeping the camera shutter closed. Then the data
were normalized to find a relative reflectance using the follow-
ing equation:

RðkÞ ¼ IrawðkÞ � IdarkðkÞ
IwhiteðkÞ � IdarkðkÞ

ð1Þ

where RðkÞis the calculated relative reflectance value for each
wavelength, IrawðkÞ is the raw data radiance value of a given
pixel, and IdarkðkÞ and IwhiteðkÞare, respectively, the dark cur-
rent and the white board radiance acquired for each line and
spectral band of the sensor.

Spectral diagrams. Each point in the stomach tissue has a
sequence of relative reflectance in different wavelength that
makes the spectral diagram or spectral signature of a point. The
spectral diagrams in all tumor and normal tissues in all 10 cases
were evaluated to find a difference between tumor and normal
tissue. Figure 3 shows nine samples of spectral signatures of
normal tissue and nine samples of spectral signatures of the
tumors were captured of several regions.

The differences of spectral signatures in tumors and normal
tissues that are consistent in all cases and regions are evaluated
to find the best classification method. It is obvious in Fig. 3 that
one of the main differences between normal tissues and tumors
is in standard deviations of the spectral signatures. The standard
deviations of spectral signature of the tumor spatially and spec-
trally are much higher compared to normal tissues. The area
under the spectral diagram looks higher in tumor compared to
normal tissue and the slops about 1200–1400 nm seem lower in
tumor regions. Therefore, these differences were employed in
finding the best method for tumor classification in hyperspectral
images.

Support vector machines. SVM have been employed in
hyperspectral image segmentation and have shown superior per-
formance to the other available segmentation methods.(13–17)

Therefore, an SVM method was compared with the other pro-
posed method. The least squares SVM with kernel method, a
modified configuration of the SVM, was employed in this
paper.(13,18) The optimization function of the SVM was
expressed as follows:

Min
w;b;e

f ðw; eÞ ¼ 1

2
wTwþ c

1

2

XN

i¼1

e2
i ; ð2Þ

subject to the equality constraints

yi½wTuðxiÞ þ b� ¼ 1� ei; i ¼ 1; :::;N; ð3Þ

where w is the weighting vector, b is the bias term, e is
for misclassifications, and c is the tuning parameter. This
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Fig. 3. Normalized reflectance spectra. The hori-
zontal axis shows different wavelengths in nano-
meters and the vertical axis shows the normalized
reflectance. Tumor pixels are shown in red and
normal pixels are shown in blue.
constrained optimization problem can be solved by determin-
ing the saddle points in the Lagrange functional as:

Lðw; b; e; aÞ ¼ f ðw; b; eÞ �
XN

i¼1

aifyi½wTuðxiÞ þ b� � 1þ eig;

ð4Þ
where ai 2 R are Lagrange multipliers that can be positive or
negative in the least squares SVM formulation. The RBF
kernel was as follows:

Kðx; xiÞ ¼ expf� x� xik k2
2

.
r2g; ð5Þ

where r is constant.
The grid search method was used to select the kernel parame-

ter.(19) Leave-one-out cross-validation was employed in this
method.

Spectral standard deviation. To enhance the differences of
the standard deviations in normal tissue and tumors, two meth-
ods were used and compared. In the first method, the standard
deviation is calculated in a square around each pixel in each
wavelength. In the other words, the standard deviation in two
spatial dimensions is calculated as follows.

SDði; jÞ ¼ C
Xk2

k¼k1

Xiþi1

i¼i�i1

Xjþj1

j¼j�j1

½Rði; j; kÞ � Rav�2
( )1

2

: ð6Þ

In second method, the three-dimensional (two spatial and one
spectral dimension) standard deviation is calculated as follows.

SDði; jÞ ¼ C
Xiþi1

i¼i�i1

Xjþj1

j¼j�j1

Xk2

k¼k1

½Rði; j; kÞ � Rav�2
( )1

2

; ð7Þ

where SD is the standard deviation, i and j are spatial coordi-
nates, i1 and j1 are predefined neighboring area size, k is the
wavelength band number, k1 and k2 are the rang of the wave-
length bands, C is a coefficient, R is the reflectance, and Rav is
the mean of the reflectance. By changing i1, j1, k1, and k2, the
contrast between tumor regions and normal tissues was tried to
maximize. The equation(7) could enhance the tumor visualiza-
tion better than equation.(6) By changing k1 and k2, a key
wavelengths rang was chosen from all wavelengths that pro-
vides the best differentiation between normal and malignant
tissues while potentially reducing the amount of data collected
in subsequent work. The experiments showed that k1 =
1251 nm and k2 = 1302 nm results were the best enhanced. In
each spatial dimension, different filter size can be assigned. By
changing the filter size, through i1 and j1, the best enhance-
ment was defined as i1, j1 = 3 which was used for detection.
The pixels that were detected as tumor tissue due to the glare
854
were eliminated. The surfaces under the spectral diagram in
glare pixels have a high magnitude that can easily be detected.
These pixels were detected by defining a threshold equal to
the average intensity of each image multiplied by seven that
was enough to eliminate the glare regions.(20)

Cancer index. The normalized difference index is a fast and
simple method to evaluate hyperspectral data. The large-sized
hyperspectral image can be processed and visualized by this
method in a short time. Many normalized difference indices
have been proposed in different studies.(21–24) To find the opti-
mum difference index, the spectral diagrams of the tumor
regions, and normal tissues were compared through different
methods. To increase the signal to noise ratio, a median noise
removal filter was employed. The subtraction of the spectral dia-
grams, the absolute value of the subtraction of the spectral dia-
grams, the squared value of the subtraction of the spectral
diagrams, first and second derivatives, and integrals differences
are compared in all wavelengths. These methods were evaluated
for all regions in hyperspectral images. The optimum contrasts
between the tumors and normal tissue were result from the first
derivative method in between 1226–1251 and 1288–1370 nm
wavelength regions. The following equation was designed to
calculate the normalized difference cancer index:

NDCI ¼ C1

Xk2

k¼k1

ðdðRkÞÞ2 þ C2

Xk4

k¼k3

ðdðRkÞÞ2; ð8Þ

where NDCI is the normalized cancer index, C1 and C2 are
coefficients, Rk is the normalized reflectance in wavelength k
after smoothing, d(Rk) is the first derivative of Rk with respect
to wavelength, k1, k2, k3 and k4 are the range of the wave-
length bands which were defined as k1 = 1226 nm,
k2 = 1251 nm, k3 = 1288, and k4 = 1370 nm. The integral of
the spectral signatures in different wavelength regions were
evaluated to find the maximum contrast between tumor and
normal tissues. The maximum contrast was found in the inte-
gral of the spectral diagram between 1057 and 2440 nm.

Results

The experiment was performed using the stomachs after total
gastrectomy. The captured hyperspectral images were analyzed
through the methods that were explained above. The standard
deviation methods, SVM, integral filters, and NDCI equation
were employed as filters to enhance the tumor region in images
captured with the hyperspectral camera. To obtain a nor-
mal ⁄ tumor classification, the grayscale images were binarized
by defining a threshold value. The capturing time for each image
is about 15 s and calculation time is <20 s using Matlab software
(MathWorks, Inc., Natick, MA, USA) on a 3.6 GHz computer
with a 2 GB RAM. A generic methodology for target-detection
doi: 10.1111/j.1349-7006.2011.01849.x
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and performance evaluation was applied. The thresholds were
adjusted in order to maximize the tumor detection to ensure
detection of all the tumor regions. The performance was evalu-
ated using the quality of detection with respect to the pathology.

A performance criterion for cancer detection was a false nega-
tive rate (FNR) and the false positive rate (FPR), which was cal-
culated for each hyperspectral image. When a pixel was not
detected as a tumor pixel, the detection was considered as a false
negative if the pixel was an actual tumor pixel in pathological
results. The FNR was defined as the number of false negative
pixels divided by the total number of the tumor pixel. When a
pixel was detected as a tumor tissue, the detection was a false
positive if the pixel was not a tumor. The FPR was defined as
the number of false positive pixels divided by the total number
of normal tissue. The numerical results of the FPR and FNR and
a comparison among standard deviation method, SVM, NDCI,
and integral method are given in Table 1. Figure 4 shows the
tumor enhancement and detection through integral and NDCI
methods. As it is obvious in this image and Table 1, NDCI is
the best method for cancer detection in hyperspectral images.
These results were compared with pathological data. The
method worked well even in tumors with a depth <2–3 mm and
was covered with normal mucosa.

Discussion

Cancer detection is one of most important challenges in medi-
cine today. The incidence of gastric cancer remains the second
most common cancer worldwide. The highest incidence rates
are found in Asia (especially Japan and Korea).(25,26) In many
cancer cases, if the cancer is diagnosed earlier and treated, the
patient will have a better prognosis and a much greater chance
of a full recovery. The initial diagnosis of gastric cancer often is
delayed as up to 80% of patients are asymptomatic during the
early stages of gastric cancer. Esophagogastroduodenoscopy is
the diagnostic imaging procedure of choice in the work up of
gastric cancer.(27) In this paper, the hyperspectral imaging tech-
nique is employed to detect cancer. While previous studies that
employed hyperspectral in visible wavelength and microscopi-
cally,(10,12) in current paper invisible light at the macroscopic
level was utilized for cancer detection. Several methods were
evaluated to find the best method for cancer detection. Among
the proposed methods, NDCI resulted in the lowest FPR and
FNR. The FPR in NDCI method is 7% which shows 93% speci-
ficity. The FNR is 9% that shows 91% sensitivity. It is a great
improvement compared to the reported specificity of 74.2% for
identifying normal fibroblast cell type based on spatial and spec-
tral algorithms.(11) The sensitivity of Fourier transform infrared
spectroscopy for diagnosis of cervical cancer and gastric cancer
has reached 79% and 88.6%, respectively.(1,8) Various research
groups have developed laser-induced fluorescence techniques
for diagnosis of cancer.(10,28,29) It is well known that biological
tissues exhibit fluorescent properties when excited with ultra-
violet light.(10) However, in current method the cancer can be
detected without injecting a fluorescent material. Esophagogas-
troduodenoscopy is a sensitive and specific diagnostic test, espe-
cially when combined with endoscopic biopsy. Multiple biopsy
specimens should be obtained from any visually suspicious
areas; this step involves repeated sampling at the same tissue
Table 1. Evaluation results

Method SD (%) SVM (%) Integral (%) NDCI (%)

FPR 18 20 12 7

FNR 46 27 16 9

FNR, false negative rate; FPR, false positive rate; NDCI, normalized
cancer index; SD, standard deviation; SVM, support vector machine.
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site, so that each subsequent biopsy reaches deeper into the gas-
tric wall.(30) Histopathology is the current gold standard for
diagnosis of cancer. However, even this method has problems
such as invasiveness, great dependence on the judgment of
pathologists, and needs time for results preparing. Moreover, the
biopsy specimens can only be captured form a few points. A
simple, noninvasive, and reliable technique that enables rapid
detection of cancer would aid many physicians.

Each patient’s sample was imaged about 10 times that may be
an evidence for reproducibility of the imaging and the method.
The proposed method detects a cancerous tissue pixel by pixel.
The detection of one pixel as a cancerous pixel does not depend
to adjacent pixels. Therefore, the cancer size or shape would not
cause a problem. It means this method can detect the tumors
with a size of <0.5 mm.

Using the white reference and dark currents could normalize
the image intensities. The white reference shows the maximum
reflectance in each wavelength and current temperature.
Although the cancerous and non-cancerous spectra presented in
Fig. 3 seem to have similar spectral shape, after noise removal
using a median filter, the difference could be extracted using the
proposed method. The changes of the spectral signature are
strongly related to the proteins changes as shown in Tsenkova’s
paper.(31) Excessive expression of p53, expression of Trefoil
factor family 1, overexpression of c-erb B-2 (HER-2 ⁄ neu), high
intranuclear levels of b-catenin protein(32) are some of changes
in molecular level that can perform a key role in spectral
changes. The normalized spectra for each pixel were employed
for cancer detection. Therefore, the sample size did not take
effect on the results. The difference between cancerous and non-
cancerous region due to higher reflectance at all region was
extracted using integral method. Although this difference is
meaningful after data normalization, the first derivative in the
mentioned wavelength regions resulted in better detection.

The hyperspectral camera in the current shape cannot be used
in endoscopic diagnosis. However, using the more useful bands
that are extracted would be used in laparoscopic and endoscopic
procedures. The mentioned wavelength region may be utilized
to insert narrow band filters to the laparoscope or optic fibers
may be utilized which are two possibilities for using this method
to access organs within the body with minimal invasiveness.
Moreover, this modification would decrease the detection time
to be converted to endoscopic procedure. This method may be
replaced by biopsy and pathological diagnosis.

The spatial resolution can increase by decreasing the distance
between the camera and the sample and by decreasing the veloc-
ity of the camera. Although the idea of the spectral signature
may be utilize in microscopic level, a macroscopic method was
proposed in the current paper. Although more evaluation with
more patient data may result in a higher statistical power, the 10
patients imaged represent an evidence to start up a bigger pro-
ject with more patients. This patient number was defined based
on similar research project for evaluation of the cancer detection
methods.(10–12)

Infrared spectroscopy is based on molecular overtone and
combination vibrations. One advantage is that NIR can typically
penetrate much farther into a sample than visible wavelength.
Therefore, infrared spectroscopy is a sensitive technique that
can be very useful in detecting bulk material with no sample
preparation. The molecular overtone and combination bands
seen in the infrared (IR) are typically very broad, leading to
complex spectra; it can be difficult to assign specific features to
specific chemical components. However, it is possible to employ
multiple wavelengths and signal processing techniques to
analyze the IR data for detection of specific properties or com-
ponent.(33)

Hyperspectral image aids cancer detection and can be used
not only for diagnosis but also for determining the tumor
Cancer Sci | April 2011 | vol. 102 | no. 4 | 855
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(b) (c)

Fig. 4. Cancer detection using the normalized
cancer index (NDCI) and integral filter and
comparison with pathological results. (a) the RGB
image; (b) the cancer enhanced regions using
integral filter in the hyperspectral image (1057–
2440 nm), the tissues are shown in a blue to red
spectrum and the red regions represent the tumor;
(c) the cancer enhanced regions using NDCI; (d)
pathological results; (e) detected tumor using
integral filter (f) detected tumor using NDCI.
margin. The extent of gastric resection is an important concern
for surgeons. Safe margin resection accompanied with low oper-
ative mortality and morbidity will remove the field change of
gastric mucosa, reduces the risk of resection margin involve-
ment, and therefore yields better long-term survival. Moreover,
it may be employed to evaluate the tumor base after tumor
resection to ensure that the tumor resection was complete.
Hyperspectral imaging allows physicians to survey and examine
a vast area less invasively and has the potential to be employed
in other types of cancer.
856
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