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Cotylenin A, a plant growth regulator, and rapamycin, an inhibitor
of mammalian target of rapamycin (mTOR), are potent inducers of
differentiation of myeloid leukemia cells. Recently, we found that
cotylenin A and rapamycin effectively inhibited the proliferation of
several human breast cancer cell lines including MCF-7. Herein, we
demonstrate that cotylenin A and rapamycin rapidly and markedly
induced the cyclin G2 gene expression in several cancer cells including
MCF-7 cells. The growth arrest of the MCF-7 cells at the G1 phase,
induced by the treatment with cotylenin A and rapamycin or the
culture in low serum medium, markedly induced the cyclin G2 gene
expression. Anticancer drugs including doxorubicin, etoposide and
5-fluorouracil also induced cyclin G2 expression during induction of
growth arrest of the MCF-7 cell at the G1 phase or G2/M phase.
Ectopically inducible cyclin G2 expression potently inhibited the
proliferation of MCF-7 cells. Furthermore, cyclin G2 knockdown
induced by cyclin G2 small interfering RNA markedly reduced the
potency of cotylenin A plus rapamycin to induce growth inhibition.
Taken together, our results suggest that cotylenin A and rapamycin
induce inhibition of cancer cell growth through the induction of
cyclin G2. (Cancer Sci 2008; 99: 1693-1698)

Cotylenin A (CN-A), which is a novel fusicoccane-diterpene
glycoside with a complex sugar moiety, was originally
isolated as a plant growth regulator and has been shown to affect
several physiological processes in higher plants."? We reported
previously that CN-A has a potent differentiation-inducing
activity in several human and murine myeloid cell lines and in
leukemia cells that were freshly isolated from patients with
acute myelogenous leukemia.®® Furthermore, the administration
of CN-A also significantly prolonged the survival of mice with
severe combined immunodeficiency that had been inoculated
with cells of human promyelocytic leukemia cell line NB4.™

Rapamycin (Rapa), a macrocyclic antibiotic in complex with
a 12-kDa immunophilin (FKBP12) potently inhibits mammalian
target of rapamycin (mTOR) signaling resulting in cytostatic or
cytotoxic effects on cancer cells. Rapa and several analogs are
currently undergoing clinical evaluation as anticancer agents.®”
However, the level of sensitivity to Rapa with respect to growth
inhibition differs markedly among various cancer cells, and
Rapa shows promise against only a few cancers.!'” To improve
the therapeutic efficacy of Rapa against a broad range of human
tumor cells, effective combination therapy of Rapa with other
agents should be investigated. We also found previously that
Rapa has a differentiation-inducing activity in several human
myeloid cell lines.?

Cyclin G2 (CG2) is an unconventional cyclin expressed at
modest levels in proliferating cells, peaking during the late S/
early G2-phase, and is significantly upregulated as cells exit the
cell cycle in response to DNA damage and receptor-mediated
negative signaling in B-lymphocytes.!>"'¥ Recent reports of cDNA
microarray analyses consistently point to CG2 upregulation in
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parallel with cell cycle inhibition during the responses to diverse
growth inhibitory signals, such as heat shock, oxidative stress
and hypoxia.>!19 Ectopic expression of CG2 inhibits the prolif-
eration of several cell types.!!” Although these results support
the hypothesis that CG2 has cell cycle inhibitory functions, the
mechanism of CG2 regulation and cellular function in cancer
cells is poorly understood.

While examining whether inducers of differentiation for
leukemia can control the growth of solid tumors, we found
recently that CN-A and Rapa effectively inhibited the proliferation
of human breast cancer cell line MCF-7 cells in vitro and in
vivo."® This treatment induced growth arrest of the cells at the
G1 phase, rather than apoptosis, and induced E-cadherin and
senescence-associated B-galactosidase activity. However, the
mechanisms of the combined effects of these differentiation
inducers are still unknown. Our previous results from cDNA
microarray analysis showed that CG2 was markedly induced in
MCEF-7 cells treated with CN-A plus Rapa.!® In this report, we
examine the role of CG2 in the CN-A plus Rapa-induced growth
inhibition of breast cancer cells. We established an inducible
CG2-expressing cell line MCF7/CG2, in which CG2 is tightly
regulated and induced only upon doxycycline (Dox) addition.
Our results showed that CG2 exhibited an anticancer function by
inducing growth arrest in human breast cancer cells. Furthermore,
CG2 knockdown induced by cyclin G2 small interfering RNA
(siRNA) reduced the potency of CN-A plus Rapa to induce
growth inhibition. These results suggest that the induction of
CG2 in cancer cells treated with CN-A plus Rapa is critical for
inhibition of their growth.

Materials and Methods

Cell culture. Human breast carcinoma cell line MCF-7 cells
and human promyelocytic leukemia NB4 cells were cultured in
RPMI-1640 supplemented with 10% fetal bovine serum at 37°C
in a humidified atmosphere of 5% carbon dioxide in air.

Materials. Rapamycin was purchased from Sigma Chemical
(St. Louis, MO, USA). CN-A was purified from a stock ethyl
acetate extract obtained from the culture filtrate of Cladosporium
fungus sp. 501-7 W by flash chromatography on silica gel with
more than 99% purity.-?

Assay of cell growth. The cells were seeded at 1-3 x 10¥mL
in a 24-well multidish. After culture with or without the test
compounds for the indicated times, viable cells were examined
using either the trypan blue dye exclusion test or a modified
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay.!'®¥
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Gene expression analysis by reverse transcription polymerase
chain reaction. Total RNA was extracted using Isogen (Nippon
Gene, Toyama, Japan) according to the manufacturer’s instructions.
Total RNA (1 ng) from tumor cells was converted to first-strand
c¢DNA primed with random nonamer in a reaction volume of
20 pL using TaKaRa RNA PCR kit (TaKaRa Bio, Otsu, Japan),
and 4 UL of this reaction was used as a template in the polymerase
chain reaction. The oligonucleotides used in polymerase chain
reaction (PCR) amplification were as follows: sense strand, 5’-
AGCACTTGGCAGGTCATGAA-3" and antisense strand, 5’-
CAACTATTCTAGCAGCCAGC-3’ for cyclin G2; sense strand,
5-GGTCGGAGTCAACGGATTTG-3" and antisense strand,
5’-ATGAGCCCCAGCCTTCTCCAT-3" for glyceraldehyde-
3-phosphate dehydrogenase (GAPDH); sense strand, 5’-TGACCT-
CCATAGAAGACACC-3’ and antisense strand, 5’-CAACTATT-
CTAGCAGCCAGC-3’ for transfected cyclin G2 (Exo. CG2). The
sequence of the sense strand primer for Exo. CG2 is located in
the plasmid pTRE2hyg-CG2. PCR consisted of 22 cycles for
cyclin G2 and 17 cycles for GAPDH with denaturing at 94°C
for 30 s, annealing at 60°C for 30 s, and extension at 72°C for
30s as described previously."® Under these conditions, the
amounts of PCR products increased linearly up to 0.4 g total
RNA.

Cell cycle analysis. Cell cycle analysis was carried out by
staining DNA with propidium iodide in preparation for flow
cytometry as described previously.!®

Establishment of inducible CG2 stable clones in MCF-7 cells
(MCF-7/CG2). Tetracycline/Dox inducible expression of CG2 was
established in MCF-7 cells using the Tet-On Gene Expression
System according to the manufacturer’s instructions (Clontech,
Palo Alta, CA, USA). Stable Tet-On MCF-7 cells were first
established by the introduction of pTet-On vector DNA (Clontech,
Palo Alta, CA, USA) into the cells followed by selection for
growth in the presence of the antibiotic G418. G418-resistant
clones were tested for the expression of Dox-responsive luciferase
by transient transfection assay with pTET2hyg-Luc (Clontech).
CG2 cDNA was prepared from MCF-7 cells treated with CN-A
plus Rapa by reverse transcription (RT)-PCR using LA-Taq
(Takara Bio) and then subcloned into the Sall and EcoRV
restriction sites of expression vector pTRE2hyg (Clontech) to form
plasmid pTRE2hyg-CG2. The sequence of the cDNA insert of
the plasmid was confirmed by sequencing. MCF-7/CG2 cells
and MCF-7/empty cells were established by the introduction
of pTRE2hyg-CG2 plasmid DNA or pTRE2hyg plasmid DNA,
respectively, into the Tet-On MCEF-7 cells followed by selection
for growth in the presence of G418 and hygromycin.

Western blot analysis. Cells were packed after washing with
cold phosphate-buffered saline, and then lysed at a concentration
of 1.5%x 107 cells/mL in sample buffer (63 mM Tris-HCI
[pH 6.8], 15% glycerol, 2% sodium dodecyl sulfate [SDS], 5%
2-mercaptethanol and 0.005% bromophenol blue). The resultant
lysates were resolved on 10-20% SDS-polyacrylamide gels.
The proteins were transferred electrically from gel to an
Immobilon-P membrane (Millipore, Bedford, MA, USA) and
immunoblotted with anti-CG2 antibody (rabbit monoclonal IgG)
(Epitomics, Long Beach, CA, USA) (1:5000 dilution) and anti-
o-tubulin antibody (TU-02) (Santa Cruz Biotechnology, Santa
Cruz, CA, USA). Horseradish peroxidase (HRP)-conjugated
antirabbit or antimouse immunoglobulin G antibody (Cell
Signaling Technology, CA, USA) was used as a secondary antibody
(1:2000 dilution). The bands were developed by treatment with
the Immune-Star HRP chemiluminescent (Bio-Rad Laboratories,
Danvers, MA, USA) for 5 min at room temperature, and detected
using a Fuji Lumino Image Analyzer LAS-1000 system (Fuji
Film, Tokyo, Japan).

Transfection with siRNA. Duplexes of siRNA corresponding to
the nucleotide sequence from CG2 (siCG2) (5’-CUAGAAGCU-
CAGCUGAAAGTT-3’) and a negative control siRNA (5'-
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AAUUCACAGGCGCUGAAAGTT-3"), were transfected using
TransIT-TKO (Mirus, Madison, WI, USA) according to the
manufacturer’s instructions. The siCG2 and the negative control
siRNA were prepared using the siRNA Design Support System
(TaKaRa Bio). The sequence of the negative control siRNA was
a scrambled sequence of the siCG2 and its specificity was
confirmed by BLAST (National Institutes of Health; www.ncbi.
nlm.nih.gov/blast/Blast.cgi).

Results

CG2 expression is markedly increased in cancer cells by treatment
with CN-A plus Rapa. As described in our previous report,!®
CN-A and Rapa synergistically inhibited the proliferation of
breast cancer carcinoma cell line MCF-7 cells (Fig. 1a). CG2
was initially identified by cDNA microarray analysis as one of
the genes that are markedly upregulated by treatment with CN-A
plus Rapa."® Fig. 1(b) shows the detailed time-course of CG2
gene expression in MCF-7 cells after treatment with CN-A and
Rapa. The treatment with CN-A or Rapa was capable of rapidly
increasing CG2 expression as early as 3 h in MCF-7 cells. The
combinatorial treatment of CN-A plus Rapa induced greater
expression of CG2 than did either agent alone. CN-A and Rapa
also synergistically inhibited the proliferation of human
promyelocytic leukemia NB4 cells (Fig. 1c) and also induced
greater expression of CG2 than did either agent alone (Fig. 1d).
We also observed similar growth inhibition and induction of
CG2 expression in two other breast cancer cell lines (T-47D and
MDA-MB-231 cells) and a human lung cancer cell line A549
when they were treated with CN-A plus Rapa (data not shown).

Induction of cell arrest correlates the induction of CG2 expression.
The treatment of CN-A plus Rapa induced growth arrest of
MCEF-7 cells at G1 phase (Fig. 2a-ii) and induced CG2 expression
(Fig. 2b). Low serum concentration (0.1%) also induced growth
arrest at G1 phase and also induced CG2 gene expression
(Fig. 2a-iii,b). To examine whether the induction of CG2 expre-
ssion associates with cell cycle arrest at a specific phase, we
induced cell cycle arrest in MCF-7 cells with chemotherapeutic
drugs (Fig. 2a-iv—vi and Fig. 2b). 5-Fluorouracil (5-FU) induced
growth arrest at the G1 phase and markedly induced CG2 gene
expression. On the other hand, daunomycin (DNR) and etoposide
induced growth arrest at G2/M phase, but they also could induce
significant increases in CG2 gene expression. These results suggest
that the induction of CG2 expression is associated with cell cycle
arrest in any phase rather than cell cycle arrest in a specific phase.

Ectopic expression of CG2 inhibited proliferation of MCF-7 cells.
Stable clones that express Dox-inducible CG2 under the control
of a tetracycline response element-driven promoter in MCF-7
cells were established as described in Materials and Methods.
The transfected cells were incubated in the presence and absence
of 1 ug/mL Dox for 2 days. The results showed that MCF7/CG2
cells, but not MCF7/empty cells, were induced to express CG2
mRNA (Fig. 3a) and CG2 protein (Fig. 3b). Cell growth in
MCF7/CG2 cells (Fig. 3d) was progressively inhibited in the
presence of Dox, compared to that in Dox-treated MCF7/empty
cells (Fig. 3c). The inhibition began to appear on day 4 after
Dox addition and became much more significant from that point
in MCF7/CG?2 cells. Another clone of MCF7/CG2 cells showed
similar results (data not shown). These results suggest that CG2
expression induces growth arrest of MCF-7 cells.

CG2 knockdown induced by CG2 siRNA reduced the potency of
CN-A plus Rapa to induce growth inhibition. To determine the role
of CG2 gene expression in CN-A plus Rapa-induced growth
inhibition, a siRNA corresponding to the nucleotide sequence
from CG2 (siCG2) and a negative control siRNA were prepared
and transfected transiently into MCF-7 cells. The CG2 siRNA
reduced the induction of CG2 mRNA (Fig. 4a) and CG2 protein
(Fig. 4b) in MCF-7 cells treated with CN-A plus Rapa compared
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to the control siRNA. The basal level of CG2 mRNA in CG2
siRNA-transfected MCF-7 cells was also reduced compared to
that in control siRNA-transfected MCF-7 cells (Fig. 4a). Although
the growth of CG2 siRNA-transfected MCF-7 cells without
CN-A plus Rapa treatment was not significantly different
from that of control siRNA-transfected cells without the
combination treatment as shown in Fig. 4(c), the growth of
CG2 siRNA-transfected MCF-7 cells without treatment slightly
but significantly increased compared with the control siRNA-
transfected MCF-7 cells without treatment when inoculum
sizes of cells were increased (>0.75 % 10* cells/well) (Fig. 5
and data not shown). Similar to the results in non-transfected
MCEF-7 cells as mentioned above, CN-A plus Rapa markedly
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inhibited the proliferation of the control siRNA-transfected
MCF-7 cells. In contrast, the potency of CN-A plus Rapa to
induce growth inhibition was almost impaired in CG2 siRNA-
transfected MCF-7 cells (Fig. 4c). We also obtained similar
results using one other CG2 siRNA prepared from a different
nucleotide sequence from CG2 (data not shown). These results
suggest that CN-A plus Rapa induced inhibition of cancer cell
growth through induction of CG2. The potency of DNR or
etoposide to induce growth inhibition was also markedly
impaired in CG2 siRNA-transfected MCF-7 cells (Fig. 5a,b),
whereas the levels of 5-FU-induced growth inhibition were
almost same in CG2 siRNA-transfected MCF-7 cells and control
siRNA-transfected MCF-7 cells (Fig. 5c).
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Discussion

In this study, we found that the induction of CG2 gene
expression was very important for the induction of CN-A plus
Rapa-induced growth inhibition of mammary cancer cells and
leukemia cells. The effect of CN-A, Rapa, or CN-A plus Rapa
on MCF-7 and NB4 cell proliferation was almost the same
(Fig. 1). CN-A moderately suppressed the growth of both cell
lines. Rapa also suppressed the growth of the both cell lines
until 3 days after treatment, but thereafter its growth inhibiting
activities appeared to decrease. The kinetic patterns of CG2
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deviation of three determinations. GAPDH,
glyceraldehyde 3-phosphate dehydrogenase.

expression between CN-A-, Rapa-, and CN-A plus Rapa-treated
MCF-7 cells and CN-A-, Rapa-, and CN-A plus Rapa-treated
NB4 cells were also quite similar (Fig. 1). In both cell lines the
induction levels of CG2 expression were well correlated with
the levels of growth inhibition. These results suggest that both
induction of growth inhibition and induction of CG2 expression
are observed not only in CN-A plus Rapa-treated MCF-7 cells
but also in other cancer cells.

Treatment with CN-A plus Rapa also induced phenotypic
changes such as the induction of E-cadherin and senescence-
associated B-galactosidase activity in MCF-7 cells."® Because
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the induction of CG2 could also occur when growth arrest of the
cells was induced by various agents or low serum conditions
(Fig. 2), the induction of CG2 may be correlated with the induction
of growth arrest rather than the induction of phenotypic
changes. Although CN-A, retinoic acid and 1o,25-dihydroxy-
vitamin D3 can induce differentiation of human promyelocytic
leukemia HL-60 cells,"” CN-A and retinoic acid, but not
lo,25-dihydroxyvitamin D3, could induce significant CG2
expression (data not shown). CN-A and retinoic acid showed
strong induction of differentiation with marked growth suppression,
whereas 1a,25-dihydroxyvitamin D3 induced strong induction
of differentiation without marked growth suppression.!'” These
results also support our suggestion that CN-A plus Rapa-induced
CG2 induction is correlated with the induction of growth arrest
rather than the induction of phenotypic changes.

Because ectopic expression of CG2 is expected to suppress
the proliferation of MCF-7 cells, we anticipated that the estab-
lishment of a stable clone of MCF-7 cells expressing exogenous
CG2 would be difficult. We then first established stable clones
of Tet-On MCF-7 cells by introduction of pTet-On vector DNA
into the MCF-7 cells. Next, we generated an inducible human
CG2-expressing cell line MCF-7/CG2 using human breast cancer
Tet-On MCF-7 cells by the introduction of the pTRE2hyg-CG2
plasmid. This cell line presented the advantage of not having
been directly selected for CG2 expression during its estab-
lishment. As such, it had not been preselected with particular
features such as reduced proliferation or differentiation/apoptotic
potential prior to the analysis of CG2 expression. In MCF7/CG2
cells, CG2 was tightly regulated and induced only upon Dox
addition. By using the cell line, we examined the effect of CG2
in breast cancer cells. Our results clearly showed that the prolifera-
tion of MCF7/CG2 cells was arrested upon CG2 induction. Other
reports show that the expression levels of CG2 are downregulated
in human oral cancers,'® and in papillary carcinomas of the
thyroid.®” Therefore, our results suggest that CG2 may play
antagonistic roles with regard to breast cancer development.

Although evidence suggests that CG2 modulates cell cycle
arrest responses, little is known about the effects of elevated
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