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The extracellular-signal-regulated kinase (ERK) mitogen-activated
protein (MAP) kinase signaling pathway plays an important
role in various cellular responses, including cell proliferation, cell
differentiation and cell survival. Recent studies have identified a
number of Ras/ERK signaling-related proteins, such as scaffold
proteins and inhibitors. These proteins modulate ERK signaling
and thereby could give variations in ERK signaling outputs that
regulate cell fate decisions. Here we focus on the role of ERK
signaling in cell cycle progression from G0/G1 to S phase and cancer.
(Cancer Sci 2006; 97: 697–702)

The Ras/extracellular-signal-regulated kinase (ERK) mitogen-
activated protein (MAP) kinase signaling pathway is

among the key mechanisms that transmit signals from the cell
surface to the nucleus.(1–7) A wide variety of extracellular stimuli
induce sequential activation of three protein kinases, Raf, MEK
and ERK, in the Ras/ERK signaling pathway (Fig. 1). ERK is
a highly conserved serine/threonine kinase activated by MEK
via phosphorylation on both threonine and tyrosine residues
in the TEY sequence. Activated ERK phosphorylates both
cytoplasmic and nuclear substrates, including many enzymes,
cytoskeletal proteins and transcription factors. Recent studies
have identified a number of Ras/ERK signaling-related proteins,
such as scaffold proteins and inhibitor proteins of this pathway.
These proteins provide variations in ERK signaling by modulating
the duration, magnitude and subcellular compartmentalization
of ERK activity.(3,8) Accumulating evidence suggests that such
differences in ERK activity generate variations in signaling
outputs that regulate cell fate decisions. Moreover, crosstalk
with other pathways could also be crucial for determining
signaling specificity. The Ras/ERK signaling pathway is known
to regulate various cellular responses and, in particular, its role
in cell cycle progression in G1 phase and cell proliferation is
well established.(9–12) In addition, the pathway is activated
constitutively in many types of cancer. Here we discuss
recent findings, focusing on ERK signaling-mediated normal
cell cycle progression and malignant transformation.

ERK signaling regulators

Recent studies have identified several negative regulators of
the ERK signaling pathway and their action mechanisms have
been analyzed. Among them, Sprouty, Spred and Sef were
found to act as conserved inhibitors of the ERK signaling

pathway.(13–17) More recent reports have demonstrated the
detailed molecular mechanisms of action of these regulators
(Fig. 1). Spred inhibits the ERK signaling pathway at the
level of Raf by binding to Ras and Raf.(14) The inhibitory
mechanisms of Sprouty and Sef have been controversial.
Targets of Sprouty in the ERK signaling pathway are suggested
to be Grb2,(18,19) Sos(19) and Raf1.(20) Hanafusa et al. showed that
Sprouty1 and 2 become phosphorylated on a conserved tyrosine
residue (Y53 in Sprouty1 and Y55 in Sprouty2) in their
amino-terminal domain upon growth factor stimulation, and
become bound to Grb2.(18) This binding prevents Grb2 from
binding to either tyrosine-phosphorylated adaptor proteins or
receptors, resulting in the inhibition of Ras/ERK signaling.
This conserved tyrosine residue of Sprouty1 and 2 could be
phosphorylated by Src family kinases and dephosphorylated
by Shp2.(21–23) Other reports have shown that Sprouty2 becomes
phosphorylated on the same conserved tyrosine residue upon
epidermal growth factor (EGF) stimulation and binds to c-
Cbl, the E3 ubiquitin ligase for the EGF receptor.(22,24–26) This
association leads to polyubiquitylation and subsequent
degradation of Sprouty2, instead of the EGF receptor. In
this case, tyrosine phosphorylation of Sprouty2 results in
enhancement of EGF signaling. However, in MEF cells,
Sprouty2 does not enhance EGF signaling, but rather inhibits
both fibroblast growth factor (FGF) and EGF signaling.(22) The
difference observed might result from the difference in cell
type. Recently, DaSilva et al. reported that Sprouty2 is
phosphorylated by MAP kinase-interacting kinase 1 (Mnkl)
on serines 112 and 121 upon growth factor (FGF or EGF)
stimulation.(27) This phosphorylation enhances the stability of
Sprouty2 by interfering with tyrosine phosphorylation of
Sprouty2 and binding to c-Cbl. Thus, the function of Sprouty
might be regulated by tyrosine and serine phosphorylation,
which are both involved in Sprouty binding to other factors.
Another group reported that the carboxy-terminal cysteine-rich
domain of Sprouty4 binds to Raf1.(20) This binding prevents
VFGF/PKC/Raf kinase-mediated activation of Raf1, but not
Ras-mediated activation of Raf1. As Sprouty4 does not become
phosphorylated in response to growth factor stimulation,(18,22)

the action mechanism of Sprouty4 would be different from
that of Sprouty1 and 2. Recently, Ozaki et al. showed functional
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cooperation among Sprouty isoforms.(19) The four Sprouty
isoforms have been shown to interact with each other through
their carboxy-terminal domains.(18,19) Ozaki et al. reported that
Sprouty1 and Sprouty4 bind specifically to Grb2 and Sos1,
respectively, and thus the Sprouty1/Sprouty4 heterooligomer pre-
vents the Grb2/Sos1 complex from binding to FRS2, exhibiting
the most potent inhibitory activity among hetrooligomers of
Sprouty proteins. These findings increased our understanding
of the Sprouty mechanisms of action. As described above, the
conserved tyrosine residue of Sprouty is important for its
inhibitory activity. The Sprouty1, 2 and 4 mutants, in which
this conserved tyrosine residue is mutated (Sprouty YF), act
as dominant-negative forms.(18,28) Hanafusa et al. have found
that Sprouty controls the duration of ERK activity and thus
acts as a temporal regulator of ERK signaling.(18)

The targets of Sef in the ERK signaling pathway are reported
to be either the FGF receptor or MEK.(29) Torii et al. have
shown that Sef on the Golgi apparatus or plasma membrane
regions binds to the MEK–ERK complex, blocks dissociation
of the MEK–ERK complex, and thus inhibits ERK nuclear
translocation. As a result, Sef inhibits phosphorylation of
nuclear ERK substrates, such as Elk-1.(30) Interestingly, Sef does
not inhibit phosphorylation of cytoplasmic ERK substrates,
such as RSK2. Thus Sef provides spatial control for Ras/ERK
signaling. In summary, these regulatory proteins could
modulate the duration, magnitude and subcellular compart-
mentalization of ERK activity.

ERK signaling and cell cycle progression

Activation of the Ras/ERK signaling pathway in cell cycle
progression from G0/G1 to S phase has been linked to
cyclin D induction and consequent retinoblastoma (Rb)
phosphorylation.(9–12,31,32) Extracellular stimuli, such as growth
factors, induce phosphorylation and activation of ERK.
Activated ERK then translocates from the cytoplasm to the
nucleus, where ERK phosphorylates and activates several nuclear
ERK targets, including transcription factors such as Elk-1.
Consequently, ERK induces the expression of the immediate
early genes, such as c-fos. The expression of the immediate early
genes has been implicated in regulating subsequent induction
of the delayed early genes, including a first class of G1 cyclins,
cyclin D. Upregulation of cyclin D expression results in
upregulation of the cyclin D–CDK4/6 complex. Activation of
cyclin D–CDK4/6 kinase activity leads to phosphorylation and
inactivation of Rb, which then activates the E2F family of
transcription factors and induces expression of target genes,
including a second class of G1 cyclins, cyclin E. Activation of
cyclin E–CDK2 kinase activity leads to further phosphorylation
and inactivation of Rb, thus further enhancing the activity of
the E2F family. This positive feedback leads to the synthesis
of proteins required for S phase entry (Fig. 2).(33,34) Therefore,
in response to growth factor stimulation, ERK triggers these
sequential events, including sequential induction of a number
of genes, and thereby causes S phase entry.

It has been suggested that sustained ERK activation, but
not transient activation, is necessary for inducing S phase

Fig. 1. The Ras/extracellular-signal-regulated kinase (ERK) signaling
pathway and its regulators. Extracellular stimuli induce the dimerization
and activation of receptor tyrosine kinases (RTK). Activated RTK
phosphorylate themselves or adaptor proteins, such as FRS2 and
Shp2, on their tyrosine residues. Other adaptor proteins, such as
Grb2, bind to phosphorylated tyrosine residues through their SH2
domain. The Grb2/Sos complex then translocates to the plasma
membrane, where the guanine nucleotide exchange factor Sos
activates Ras. Activated Ras induces activation of the ERK cascade
composed of three protein kinases: Raf, MEK and ERK. Activated
ERK translocates to the nucleus, in which ERK phosphorylates nuclear
substrates, such as Elk-1, while part of activated ERK remains in the
cytoplasm and phosphorylates cytoplasmic ERK targets, such as RSK.
Several regulators of the ERK signaling pathway, such as Sprouty
(Spry), bind to and interfere with components of this pathway.

Fig. 2. Regulation of G1 cell cycle progression through ERK signaling.
In response to growth factor stimulation, ERK is phosphorylated and
activated. Activated ERK causes enhanced expression of immediate
early genes, including the AP-1 protein family. Subsequently, delayed
early genes, including cyclin D, are induced. The Cyclin D–CDK4/6
complex then initiates retinoblastoma (Rb) phosphorylation, which
activates the E2F family of transcription factors and induces expression
of target genes, including cyclin E. The cyclin E–CDK2 complex
further phosphorylates Rb and thus activates the E2F family. This
positive feedback loop drives the cells to S phase entry.
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entry of quiescent fibroblastic cells.(7,35–37) The ERK activity
must be sustained until approximately 2 or 3 h before the
onset of S phase.(38) Thus, the duration of ERK activity is a
key factor for ensuring G1 phase progression. How does
sustained ERK activation elicit the appropriate cellular
responses? Recently, Murphy et al. have provided some clues
to this question.(39,40) Both transient and sustained ERK acti-
vation induce expression of immediate early genes, such as
Fos, Jun, Myc and Egr-1. However, only sustained ERK
activation induces sustained phosphorylation of immediate early
gene products, which leads to their stabilization and activation,
resulting in appropriate gene expression. Thus, sustained, but
not transient, ERK activation can induce cyclin D expression
several hours after growth factor stimulation.(37,41,42) More
recently, Yamamoto et al. have provided another clue to this
question.(39) Genome-wide analyses of transcriptional pro-
grams in cell cycle progression from G0/G1 to S phase have
shown that there are not only ERK-dependent upregulated
genes but also ERK-dependent downregulated genes. The
expression level of almost all of these ERK-dependent down-
regulated genes is maintained at a lower level throughout G1

phase, and the decreased expression levels return to the orig-
inal levels rapidly if ERK inactivation occurs. Remarkably,
these ERK-dependent downregulated genes include known
and hitherto unknown antiproliferative genes, suggesting that
continuous ERK activation downregulates antiproliferative
genes until the onset of S phase to allow successful G1 phase
progression (Fig. 3). The cells receive not only mitogenic
signals but also diverse stimuli such as environmental stresses
that induce transient ERK activation. As transient ERK
activation does not induce sustained downregulation of
antiproliferative genes, these inappropriate stimuli do not
cause cell proliferation. Thus, this mechanism may work as a
fail-safe mechanism, which prevents inappropriate stimuli
from causing cell cycle progression.

Among the antiproliferative genes that are downregulated
in an ERK-dependent manner, Tob1 and JunD have been
relatively well characterized.(43–45) Tob1 has been shown to
regulate cyclin D1 expression negatively by recruiting histone
deacetylase to the cyclin D1 promoter.(46) JunD has also
been shown to inhibit cyclin D1 expression, and it may exert
this effect through antagonizing the function of c-Jun.(47) In
contrast, the other antiproliferative genes might target mole-
cules other than cyclin D to inhibit cell cycle progression. In
fact, recent studies have shown that quiescent fibroblasts
lacking D-type cyclins or D-type cyclin-dependent kinases
are able to enter S phase in response to mitogenic stimula-
tion.(48,49) In addition, Dekanty et al. have shown that when
leukemia inhibitory factor induces DNA synthesis in Swiss
3T3 cells, ERK activity is required for their mitogenic
responses, which are independent of cyclin D1 expression.(50)

Detailed functional analysis of these ERK-dependent down-
regulated genes and identification of their target molecules
will provide new insights into G1 phase progression.

PI3K/Akt signaling and cell cycle 
progression

The lipid kinase phosphatidylinositol 3-kinase (PI3K) and its
downstream protein kinase Akt, also known as PKB, are
involved in growth factor-stimulated cell cycle progression
from G0/G1 to S phase.(9–12,51,52) PI3K translocates to the cell
membrane and binds to receptor tyrosine kinases or Ras. At
the membrane, PI3K generates phosphatidylinositol-3,4,5-
triphosphate (PIP3). Akt then translocates to the PIP3-rich
membrane and is phosphorylated by protein kinases, such as
PDK1 and PDK2, and becomes activated. Activated Akt
phosphorylates various targets, such as Bad, and has a strong
anti-apoptotic function, thus playing an important role in cell
survival signaling.(51,52) PI3K/Akt signaling has also been
implicated in CDK activation. First, Akt phosphorylates and
inhibits glycogen synthase kinase 3-β (GSK3-β), which
phosphorylates and destabilizes cyclin D1 protein. Second,
Akt phosphorylates and inhibits FOXO transcription factors,
which can repress cyclin D1 expression and induce expression
of p27 (kip1) and p21 (WAF), the inhibitors of G1 cyclin/
CDK activity. Thus, PI3K/Akt signaling is involved in the
regulation of cell cycle progression.

Activation of the ERK signaling pathway usually promotes
cell cycle progression. However, in some cases it leads to cell
cycle arrest. In fact, high level activation of ERK upregulates
the activity of the CDK inhibitor p21 (WAF) through both
transcriptional and post-translational mechanisms.(53–55) Interest-
ingly, this ERK-mediated cell cycle arrest can be bypassed
by the PI3K/Akt signaling pathway.(56) In addition, PI3K/
Akt signaling would regulate ERK signaling, more directly.
Recently, Hayashi et al. have shown that Centaurin-α1 is a
PI3K-dependent activator of ERK signaling.(57) Centaurin-α1

is known as a PIP3-binding protein that has two pleckstrin
homology (PH) domains and a putative ADP ribosylation
factor GTPase-activation protein domain. Transient expression
of Centaurin-α1 is shown to induce activation of ERK, and
this activation is dependent on PI3K and Ras. Taken together,
PI3K/Akt signaling acts cooperatively with ERK signaling in
regulating growth factor-stimulated cell cycle progression.

Fig. 3. Role of ERK-dependent downregulation of antiproliferative
genes in G1 phase progression. Sustained activation of ERK induces
and maintains decreased expression levels of antiproliferative genes,
and thus causes S phase entry (upper). Cessation of ERK activation even
at mid or late G1 leads to a rapid increase in the antiproliferative
genes, and thus inhibits S phase entry (lower).
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ERK signaling in cancer

As mentioned above, both the ERK and PI3K signaling
pathways are involved in G1 cell cycle progression. Thus, it
is not surprising that several components of these signaling
pathways are involved in carcinogensis.(10,12,51) In fact, increased
expression of EGF receptor is found in most carcinomas.
Human EGF receptor-2 (HER2)/neu expression is increased in
breast cancers. Platelet-derived growth factor (PDGF) expression
is elevated in glioblastoma, and mutations in PDGF and
kit receptors are found in gastrointestinal sarcomas. Ras
activation by point mutations occurs in approximately 20%
of human cancers. Three members of the Ras family, H-Ras,
K-Ras and N-Ras, are found to be activated in human
cancers. Among them, K-Ras is activated most frequently. B-
Raf is mutated and activated in approximately 7% of human
cancers, particularly in melanomas. Mutations in B-Raf
occur in a very limited number of residues in the kinase
domain, resulting in its constitutive kinase activation. One of
these mutants is a V600E mutant. Recently, Solit et al.
showed that B-Raf mutant cancer cells have enhanced and
selective sensitivity to MEK inhibition when compared to
cells in which Ras is mutated.(58) In the B-Raf V600E mutant
cells, MEK inhibition causes reduced cyclin D expression
and Rb hypophosphorylation, resulting in G1 arrest. This
finding suggests that there is a strong dependency on MEK
activity in active B-Raf-mediated cancers.

Activating mutation or amplification of PI3K and Akt
family members is found in carcinomas, especially in ovarian
and breast cancers. The most significant activation of the
PI3K/Akt signaling pathway in cancers is caused by a loss
of PTEN, which acts as a PI3K signaling inhibitor. PTEN is
depleted in approximately 30–40% of human cancers. Cyclin
D1 expression is enhanced in 50% of breast cancers. As cyclin
D1-deficient mice are resistant to breast cancers induced by
the HER2/neu and ras oncogenes, cyclin D1 should be required
for mammary tumor formation by aberrant activation of the
HER2/Ras pathway.(59) Taken together, ERK and PI3K/Akt
signaling pathways are involved in many types of cancer,
suggesting that several components of these signaling
pathways could be useful therapeutic targets in the treatment
of human cancers.

ERK signaling regulators and cancer

Several regulators of ERK signaling, such as Sprouty, Spred
and Sef, could control the duration, magnitude and/or sub-

cellular compartmentalization of ERK activity. Therefore, these
regulators may be involved in regulating cell cycle progression
or carcinogensis. Indeed, recent reports have shown a
correlation between expression of these regulators and cancer
(Table 1).(60–68) The expression of Sprouty isoforms or Sef is
found to be downregulated in several cancers, including breast,
prostate and liver cancers.(61–66) Generally, the expression
levels of Sprouty isoforms and Sef are positively regulated by
ERK signaling, and thus these regulators act as a negative
feedback regulator. In these cancers, expression of these
factors is downregulated by several mechanisms, such as loss
of heterozygosity, methylation of their promoter sites, and
other unknown mechanisms. Moreover, Lo et al. reported
that Sprouty2 YF, a dominant-negative form of Sprouty2,
induces enhanced cell proliferation, and injection of cells
expressing Sprouty2 YF into nude mice causes a significantly
larger tumor mass.(62) On the other hand, two groups reported
that expression of Sprouty2 is upregulated in melanoma cell
lines with a B-Raf V600E mutation or an N-Ras activated
mutation.(67,68) Interestingly, Sprouty2 has an inhibitory effect
on ERK signaling in melanoma cell lines with wild-type B-
Raf, but not with B-Raf mutations, especially exon 15 B-Raf
mutations such as V600E. In addition, it was shown that
Sprouty2 and Sprouty4 bind to wild-type B-Raf, but not exon
15 B-Raf mutants, although there is no evidence that binding
of Sprouty to B-Raf is required for the inhibitory activity of
Sprouty in ERK signaling. Nevertheless, it is possible that, in
these melanoma cells, increased levels of Sprouty fail to inhibit
ERK signaling, as Sprouty proteins inhibit ERK signaling
upstream of Ras. These reports point to the possibility that
ERK signaling regulators, such as Sprouty and Sef, are
involved in malignant transformation and cancer.

Conclusions

The ERK MAP kinase signaling pathway plays a pivotal role
in various cellular responses, including cell proliferation,
cell differentiation and cell survival. In addition, Ras/ERK
signaling-related proteins, such as Sprouty and Sef, are also
important for the regulation of these cellular responses. In
fact, deregulation of ERK signaling leads to inappropriate
responses, perhaps through inappropriate gene expression.
Further elucidation of the action mechanisms of ERK
signaling regulators, their control mechanism, and their
expression patterns will provide new insights into the signal
transduction mechanisms underlying cell cycle progression
and malignant transformation.

Table 1. ERK signaling regulators and cancer

Regulator Action point Cancer type Gene expression Reference

Sprouty1 Grb2 Breast, prostate Downregulated 60, 61
Sprouty2 Grb2, Raf, c-Cbl Breast, prostate, liver Downregulated 61–63

Melanoma Upregulated 66, 67
Sprouty4 Sos, Raf Prostate Downregulated 64
Spred Raf – – –
Sef FGF receptor, MEK/ERK Prostate Downregulated 65
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