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Cancer gene therapy, in which pharmacologically active compounds
are administered to cancer patients in a genetic form, has been
examined not only in animals but also in cancer patients. Viral
vector-induced severe side effects in patients have greatly
underscored the importance of non-viral gene transfer methods.
Even though the importance of pharmacokinetics is undoubtedly
understood in the development of anticancer therapies, its
importance has been less well recognized in non-viral cancer gene
therapy. When transgene products express their activity within
transduced cells, such as herpes simplex virus type 1 thymidine
kinase and short hairpin RNA, the pharmacokinetics of the vectors
and the expression profiles of the transgenes will determine the
efficacy of gene transfer. The percentage of cells transduced is
highly important if few by-stander effects are expected. If
transgene products are secreted from cells into the blood
circulation, such as interferons and interleukins, the pharma-
cokinetics of transgenes becomes a matter of significant importance.
Then, any approach to increasing the level and duration of
transgene expression will increase the therapeutic effects of cancer
gene therapy. Here we review the pharmacokinetics of both non-
viral vectors and transgene products, and discuss what should be
done to achieve safer and more effective non-viral cancer gene
therapy. (Cancer Sci 2008; 99: 856–862)

Since the first cancer gene therapy clinical trial was carried
out in the early 1990s, many cancer patients have received

gene transfer in an attempt to treat their cancer or to obtain
clinical data. Even though a number of achievements in such
clinical trials have been reported, gene therapy is still in its
infancy phase especially when compared with other anticancer
treatments. There are a number of major drawbacks, depending
on the type of vector, the type of cancer, and the type of
therapeutic compound (protein) used, and these variations make
it very difficult to develop rational and universal cancer gene
therapy protocols. In general, viral vectors are believed to be
more hazardous than non-viral vectors, and the death of a
patient receiving adenoviral vectors tragically proved this.(1)

However, non-viral gene transfer is considered ineffective due
mainly to the low and transient nature of transgene expression.

Continued progress has been made in improving viral and
non-viral vectors in the last 15 years. As for non-viral methods,
the hydrodynamic injection of naked plasmid DNA(2) has had a
great impact on the subsequent development of non-viral meth-
ods. The level of transgene expression achieved by this method
is as high as that obtained using adenoviral vectors, one of the
most efficient viral vectors.(2,3) Complex formation of plasmids
with cationic compounds has decreased as vectors for in vivo
use because their levels of transgene expression are very low
compared with those obtained by hydrodynamic injection or
viral vectors.(3,4) Furthermore, extensive studies on the innate

immune response against vectors have proven that non-viral
vectors are not always safe, especially when cationic liposomes
are used for DNA delivery. Large amounts of inflammatory
cytokines are produced when plasmid DNA complexed with cat-
ionic liposomes are recognized by antigen-presenting cells.(3,5,6)

Recognition of unmethylated CpG dinucleotides, or CpG
motifs, by Toll-like receptor-9 is involved in such responses.(7,8)

In addition, DAI, an intracellular DNA-recognizing protein, has
recently been identified,(9) and this molecule may respond to
DNA irrespective of the presence of CpG motifs.

Once it became known that high levels of transgene expres-
sion could be achieved by non-viral methods, including hydro-
dynamic injection, the reality of non-viral cancer gene therapy
increased greatly. However, the therapeutic efficacy is deter-
mined not only by the level of expression, but also by other
characteristics of gene transfer and transgene expression.(10,11)

When transgene products distribute within transduced cells,
such as herpes simplex virus type 1 thymidine kinase, both the
pharmacokinetics of the vectors and the expression profile of the
transgene determine the therapeutic efficacy. Ectopic expression
could induce adverse effects, so that controlling the tissue distri-
bution of vectors is the most important issue in the development
of cancer gene therapy. An important class of intracellular ther-
apeutic compounds is RNA, and plasmid vectors expressing
small interfering RNA (siRNA) or short hairpin RNA (shRNA)
have been investigated as a therapeutic tool to treat cancer and
other genetic disorders. Silencing oncogenes or other genes con-
tributing to tumor growth will provide a cancer-specific therapy
with minimal side effects. RNA interference has realized the
silencing of target mRNA expression in a sequence-specific
manner. RNA interference, the event of mRNA degradation by
siRNA or shRNA, takes place only in cells reached by these
molecules. Therefore, the tissue distribution of vectors is highly
important in the development of RNA interference-based cancer
gene therapy.(12) However, when transgene products are secreted
from transduced cells, the pharmacokinetics of vectors is of lit-
tle importance. Then, the pharmacokinetics of the transgenes is
the major factor determining the therapeutic efficacy of cancer
gene therapy.(11)

Here we review first the pharmacokinetics of naked plasmid
DNA, the most frequently used non-viral vector. Because of
its polyanionic nature, it exhibits unique but common tissue
distribution characteristics irrespective of the encoding gene,
sequence, or size. Complex formation with cationic compounds,
a standard method for increasing the level of transgene expression
in cultured cells, is also reviewed. Then, the pharmacokinetics
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Table 1. Non-viral methods for in vivo gene transfer

Vector
Route of 
injection

Stimulus or 
additional 
treatment

Characteristics References

Naked DNA Extracellular 
space

None Localized transgene expression Muscle(15,17), liver(16,17), spleen,17), kidney(17), brain(18), tumor(19–22)

High applicability to various targets
Naked DNA Extracellular or 

intravascular 
space

Electric pulse Localized transgene expression Muscle(17,26), liver(17,27), spleen(17), kidney(17), tumor(25)

High applicability to various targets
Possible tissue damage caused by electric pulses

Naked DNA Extracellular or 
intravascular 
space

Ultrasound Localized transgene expression Tumor(29), carotid artery(30), femoral artery(31)

High applicability to various targets

Naked DNA Intravascular 
space

Massage Localized transgene expression Liver(32,33)

Applicability to other organs not reported
Naked DNA Intravascular 

space
Occlusion of 
blood flow

Localized transgene expression Liver(35,37), diaphragm(38)

Surgery required for the occlusion
Naked DNA Intravascular 

space
Pre-injection of 
cationic 
liposomes

Lung-selective transgene expression Lung endothelial cells(36)

Reduced immunostimulatory response compared with DNA–cationic 
liposome complexes

Naked DNA Intravascular 
space

Large volume 
injection at high 
speed

Extremely high transgene expression Whole body(2,4,39)

Possible tissue damage

DNA–cationic 
liposome 
complex

Extracellular or 
intravascular 
space

None Low-level transgene expression in vivo Lung endothelial cells(46)

High induction of inflammatory cytokines upon administration

DNA–cationic 
polymer 
complex

Extracellular or 
intravascular 
space

None Low-level transgene expression in vivo Lung endothelial cells(45)

Concerns about cytotoxicity of cationic polymers
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of transgene products is discussed using our recent data on can-
cer gene therapy in which interferon (IFN)-expressing plasmids
were injected into tumor-bearing mice.(13,14)

Non-viral gene transfer methods

So far, various non-viral gene transfer methods have been
developed and their characteristics for gene transfer and
transgene expression have been examined after administration
in vivo. Table 1 summarizes the major non-viral methods for
in vivo gene transfer.

Tissue injection of naked DNA. The usefulness of naked
plasmid DNA as an in vivo gene transfer vector was realized as
early as 1990, when Wolff et al. reported that transgene
expression was obtained in skeletal muscle by a simple intra-
muscular injection of naked plasmid DNA.(15) This injection-
mediated gene transfer had been discussed as a skeletal
muscle-specific event, but the development of sensitive
detection systems for expression has revealed that any organ or
tissue examined can express transgenes at detectable levels.(16–18)

The mechanism of gene transfer by tissue injection of naked
plasmid DNA has been debated, but injection-induced cellular
damage and increased pressure is involved in the entry of DNA
directly into the cytoplasm and transgene expression follows.
Tumor tissues are no exception, and direct injection of naked
plasmid DNA into solid tumors results in detectable transgene
expression.(19–22) Therefore, in spite of it being the simplest,
most unsophisticated system, direct tissue injection of naked
plasmid DNA is a useful method for in vivo gene transfer. The
major drawbacks of this approach are the relatively low level of
transgene expression and the limited distribution of the cells
transduced.(23)

Physical method. Various physical forces have been used to
increase the level of transgene expression by applying them to
the target site for gene transfer after topical or systemic
administration of non-viral vectors. Physical methods with
proven positive effects include electric pulses (electroporation),
ultrasound (sonoporation), and physical pressure (massaging),
all of which are believed to increase the amount of DNA
delivered to cells.

Electroporation-mediated gene transfer is believed to involve
high-voltage pulse-mediated pore formation and electrophoretic
delivery of charged molecules through the pores.(24) Because
of its universality and flexibility, in vivo electroporation has
been applied to increase transgene expression in various organs,
including tumors.(25–27)

Another physical method used frequently to increase trans-
gene expression is the application of ultrasound. Cavitation
is considered a major mechanism for an ultrasound-induced
increase in membrane permeability.(28) Several reports have
demonstrated that transgene expression by plasmid DNA is
greatly increased by application of ultrasound.(29,30) In addition,
the expression can be further increased by using microbubble
echo contrast agents, which enhance ultrasound-induced
acoustic cavitation. Recently, Suzuki et al. developed bubble
liposomes, a liposomal formulation of an ultrasound imaging
gas perfluoropropane, and applied them to ultrasound-mediated
gene transfer.(31)

A unique and simple gene transfer method was reported by
Liu and Huang,(32) who manually pressed or ‘massaged’ mouse
liver after systemic injection of naked plasmid DNA. The authors
suggested the involvement of pressure-mediated effects in this
mode of gene transfer.(33)

Intravascular and hydrodynamic injection of naked DNA. Admini-
stration methods and techniques are most critical when naked
plasmid DNA is injected into the blood circulation. Because of
the presence of high nuclease activity in serum, naked plasmids
injected into the tail vein of mice are degraded rapidly,(34)

leading to no detectable transgene expression in any organ.
Several techniques have been developed to alter the
ineffectiveness of naked plasmid DNA. Budker et al. injected
naked plasmid DNA dissolved in hypertonic solutions into the
portal vein of mice whose hepatic veins were transiently
occluded.(35) Song et al. injected naked plasmid DNA into the
tail vein of mice who had received an intravenous injection of
cationic liposomes.(36) This sequential injection greatly pro-
longed the exposure time of plasmid DNA to the lung
endothelial cells, the target cells, and increased the transgene
expression. Increasing the retention time of DNA in target
organs was simply achieved by occluding blood vessels, and
significantly high transgene expression was obtained in the
liver,(37) and in the diaphragm.(38)

Regarding gene transfer methods using intravascularly
injected naked plasmid DNA, the most important finding was
the hydrodynamic injection of naked plasmid DNA, which was
first reported independently by Liu’s group(2) and Wolff’s
group(39) in 1999. A simple injection of naked plasmid DNA
solution into the tail vein of mice produces a significantly high
level of transgene expression in internal organs, with highest
expression in the liver. The key points of this delivery are the
volume of solution and the injection speed.(2) Since these first
reports, this method has been applied to deliver not only
plasmids but also other compounds, such as siRNA.(4) Direct
cytoplasmic delivery of the injected DNA is involved in the
very high transgene expression obtained by this method.(40–43)

Cationic DNA complex. Since Felgner et al. proposed the
concept of ‘lipofection’ in 1987,(44) lots of cationic lipids have
been developed as transfection reagents. The report of an
efficient transfection using polyethyleneimine(45) led to a rush of
researchers searching for natural and synthetic polymers that
possess gene transfer activity. Mixed formulations of cationic
lipids and cationic polymers have also been developed.(46,47)

In most cases, these DNA complexes are generally designed
to have a net positive charge because binding to target cells,
the first step of gene transfer, depends on the electrostatic
interaction between positively charged complexes and the
negatively charged cell surface.

Although the cationic nature of these DNA complexes is
effective for delivering genes to cells in culture, this process is
sensitive to the presence of any other negatively charged com-
pounds. Therefore, serum proteins interfere significantly with
the cationic DNA complex-mediated transfection to cultured
cells.(48) This clearly means that it will be difficult to achieve
in vivo transfection using cationic DNA complexes, and many
reports have confirmed this. Because of the non-specificity of
the interaction of cationic DNA complexes with negatively
charged molecules, cationic DNA complexes administered
in vivo interact with various biological components.(49)

Requirements for effective cancer gene therapy

Delivering plasmid vectors to tumor tissues has been carried out
using some non-viral gene delivery methods, including direct
injection into tumor tissues. Other gene delivery methods by
which transgenes are hardly expressed in tumor cells, including
hydrodynamic injection, can be used to express anticancer
proteins that are secreted into the blood circulation. Thus, the
requirements for effective cancer gene therapy vary markedly
depending on what types of therapeutic proteins are used.
Recently, rapid progress has been made in the application of
siRNA and shRNA to cancer gene therapy.(12) Because the site
of action of these RNA molecules is the cytosol, their
requirements would be the same as those for intracellular
proteins.

In a previous review article,(11) we discussed the efficacy of
in vivo gene transfer in connection with the following four
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characteristics: (i) target cell specificity of gene transfer; (ii) the
number of cells transduced; (iii) the level of expression; and (iv)
the duration of expression (Fig. 1). Even though the efficiency
of non-viral gene transfer methods has improved significantly,
the level and duration of expression are still major obstacles to
achieving effective cancer gene therapy. Two other parameters,

the specificity of gene transfer and the number of cells trans-
duced, are important only when intracellular proteins or shRNA
are used as therapeutic compounds. In these cases, all four
parameters are important for better therapeutic effects, but the
delivery of vectors to the majority of target cells in a cell-
specific manner is often the bottle neck in the development of
efficient gene therapy methods.

This problem relating to vector delivery is less important
when secreted proteins, such as IFN, are used. The type of cells
expressing transgenes can be chosen arbitrarily by researchers,
depending on a number of factors, such as the accessibility for
vector administration, the profile of transgene expression, the
distribution of transgenes into the systemic circulation, and pos-
sible tissue damage. It is well known that the profile of trans-
gene expression is highly dependent on the organ injected with
naked plasmid DNA.(17) In addition, the level of transgene
expression depends greatly on the type of non-viral gene trans-
fer method. Figure 2 summarizes the luciferase activity in
mouse liver after in vivo administration of a firefly luciferase-
expressing plasmid vector using various methods. Plasmid DNA
complexes with cationic liposomes or cationic polymers were
much less effective in expressing the transgene, even though
galactose, a hepatocyte-specific ligand, was incorporated into
the complexes.(50–54) The expression level achieved by the hydro-
dynamic delivery of naked plasmid DNA is at least 1000 times
greater than that of other methods.(41) Furthermore, hydro-
dynamic delivery of as little as 10 ng of naked plasmids (for an
approximately 20-g mouse) reaches the highest expression
levels achieved by other non-viral methods using more than
10 μg of the same plasmid (Fig. 2).

Pharmacokinetics of vectors

Intravascular injection. Unlike low molecular weight
compounds, plasmid DNA and other macromolecular
compounds are significantly limited in their distribution within
the body. Plasmid DNA and its complexes with non-viral
vectors can cross blood vessels only in organs with a
discontinuous-type endothelium, such as the liver and spleen,
or in solid tumors.(55)

Fig. 1. Processes of non-viral gene transfer.
Non-viral cancer gene therapy is achieved by
delivering a proper vector directly to tumor
tissue or to another part of the body. The
therapeutic effects of gene transfer can be
determined by the pharmacokinetics of
both vectors and transgene products.
Characteristics determining the effects are:
(i) the target cell specificity of gene transfer;
(ii) the number of cells transduced; (iii) the
level of expression; and (iv) the duration of
expression.

Fig. 2. Comparison of the level of transgene expression by several
non-viral gene transfer methods. Firefly luciferase activity (relative light
unit [RLU]/s/mg protein) in the liver after non-viral gene transfer to
mice was plotted against the dose of plasmid vector expressing firefly
luciferase (pCMV-Luc). Closed circles are the results of hydrodynamic
delivery of pCMV-Luc injected at different doses.(41) (a) Direct injection
of naked plasmid into the liver.(17) (b) Direct injection of naked plasmid
into the liver followed by electroporation.(17) (c) Intravenous injection
of naked plasmid followed by electroporation.(27) (d) Intravenous
injection of plasmid DNA complexed with galactosylated poly
ornithine-fusogenic peptide.(51) (e) Intraportal injection of plasmid DNA
complexed with galactosylated polyethyleneimine.(54) (f) Intraportal
injection of plasmid DNA complexed with cationic liposomes.(52)
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Naked plasmid DNA is taken up rapidly by liver sinusoidal
endothelial cells and Kupffer cells. This uptake reduces its con-
centration within the systemic circulation,(34,56,57) which results
in little chance of DNA being delivered to tumor cells. When
injected by the hydrodynamic delivery method, plasmid DNA
shows different profiles for its tissue distribution, but the major
organ involved in the tissue distribution is the liver.(56) Applica-
tion of electric pulses to organs after intravenous injection of
non-viral vectors has little effect on their tissue distribution.(17,27)

Depletion of macrophages hardly changes the tissue distribution
of naked plasmid DNA (unpublished data, Kako K, Nishikawa
M, Yoshida H, Takakura Y, 2006). Thus, the tissue distribution
of intravascularly administered naked plasmid DNA is hardly
altered by any means, and a large fraction of the injected DNA
is delivered to the liver.

Complex formation of plasmid DNA with cationic compounds
is intended to increase the interaction with and, following uptake,
by target cells. This inevitably increases the interaction of such
DNA complexes with biological components.(50,58,59) In general,
intravenously injected cationic DNA complexes are first trapped
in capillaries in the lung, followed by accumulation in the
liver.(60,61) Interactions of the DNA–cationic liposome complex
with serum components results in disintegration of the complex,
followed by the release and degradation of plasmid DNA.(58)

Sakurai et al.(59) reported the involvement of erythrocytes in the
interaction of cationic DNA complexes.

Use of receptor-mediated processes for cell-specific delivery
of plasmid DNA complexes has been investigated extensively.
Glycosylation (i.e. covalent conjugation of sugar moieties) of any
compound greatly increases its affinity for cells expressing the
corresponding sugar receptors. Precise control of the physico-
chemical properties of DNA complexes with galactosylated com-
pounds increases their delivery to hepatocytes.(50) Some improvements
in transgene expression were reported when DNA complexes
were modified with transferrin,(62) folate,(63) or antibody.(64) How-
ever, the effects of these modifications on the tissue distribution
of plasmid DNA complexes have not been investigated fully.

Blood flow to solid tumors is generally low compared with
large organs, such as liver and kidney, so the delivery of any
pharmaceutical compound to tumor tissues requires prolonged
circulation in the blood. Several attempts have been made to
deliver plasmid DNA to tumor tissues using DNA complexes.(65–

67) However, the amounts of DNA delivered and the level of
expression seem to be far below the thresholds required for
effective cancer gene therapy.

Direct tissue injection. The pharmacokinetics of plasmid DNA
after tissue injection is simple, because the large size of the
DNA greatly restricts its distribution within and outside the site
of injection. These characteristics are closely associated with the
experimental finding that organs and tissues other than those
injected show very little transgene expression.

As described above, tissue injection of naked plasmid DNA
results in detectable transgene expression in almost all tissues
and organs examined. However, cells surrounding the track of
the needle injection only express transgenes.(16,23) Complex for-
mation of DNA with cationic liposomes further limits the distri-
bution of transgene-expressing cells.(20,21) It has been reported
that the area of transgene expression is increased by physical
methods, such as electroporation.(26,68)

Pharmacokinetics of transgene products. Because transgene pro-
ducts are responsible for therapeutic effects after gene transfer,
the efficacy of any gene transfer application cannot be discussed
without considering its pharmacokinetics. However, the
pharmacokinetics of transgenes has not fully been discussed.
This is largely because most non-viral methods are not efficient
enough to express transgenes at therapeutic levels, and many
reports have simply emphasized how expression is increased
using a number of unpublished methods.

The importance of the pharmacokinetics of transgene products
is easily appreciated when the therapeutic effects of chemically
modified proteins are considered. Of all the technologies devel-
oped, conjugation of polyethylene glycol, or PEGylation, is the
most successful for improving the pharmacological activities of
biologically active proteins.(69–75) PEGylated derivatives show a
much slower clearance from the systemic circulation than
unmodified proteins, so that the area under the plasma concen-
tration–time curve (AUC) and the mean residence time (MRT),
two important pharmacokinetic parameters, are significantly
increased for PEGylated derivatives.

Because the hydrodynamic delivery of naked plasmid DNA
gives an enormously high level of transgene expression, its
application to experimental therapeutic models has been
reported.(4) Kobayashi et al. described how the hydrodynamic
delivery of mouse IFN-β- or IFN-γ-expressing plasmid vector
was effective in inhibiting metastatic growth of colon adenocar-
cinoma cells in mouse liver.(13) However, as demonstrated in this
previous report the transient nature of transgene expression from
a conventional plasmid DNA requires multiple injections.
Therefore, increasing the duration of IFN transgene expression
would be needed for better cancer treatments.

Various methods to increase the duration of transgene expres-
sion from plasmid vectors have been reported. For example, a
controlled-release formulation of plasmid DNA greatly extended
transgene expression.(76) Various plasmid vectors that promise
sustained transgene expression have also been developed,(77–80)

and any of these vectors would be useful for obtaining prolonged
expression of therapeutic proteins. In a previous study, we con-
structed plasmid vectors with reduced numbers of CpG motifs.(14)

Compared with conventional CpG-replete plasmids (pCMV-Muβ
and pCMV-Muγ), the CpG-reduced plasmid vectors pGZB-Muβ
and pGZB-Muγ resulted in sustained expression of mouse IFN-
β and IFN-γ, respectively, after their hydrodynamic delivery to
mice. Significant increases in the pharmacokinetic parameters of
the transgenes were obtained. The AUC and MRT of IFN-γ after
injection of pGZB-Muγ were approximately 60- and 4-fold,
respectively, greater than those of pCMV-Muγ. The survival
time of the pGZB-Muγ-treated mice was significantly longer
than other groups, clearly demonstrating that long-term expression
of IFN enhances the therapeutic effects of IFN cancer gene therapy.

Conclusions and perspectives

Although the initial enthusiasm for gene therapy has been
tempered, continuous progress in both viral and non-viral vector
development and administration devices and methods has
greatly increased the reality of cancer gene therapy. Because of
the difficulty of controlling the pharmacokinetic characteristics
of plasmid DNA, irrespective of the naked or complexed form,
gene delivery of proteins that are released from transduced cells,
such as IFN and interleukins, can be considered to be much
easier than that of intracellular proteins. Although skeletal
muscle has been considered a suitable target for gene transfer,
because of its accessibility, size, and the unique characteristics
of sustained transgene expression compared with other organs,
its usefulness as a platform for producing anticancer proteins
into the systemic circulation remains to be verified. The liver
seems to be another promising ‘factory’ producing secreted
proteins as demonstrated, but less-invasive and safer methods
than hydrodynamic delivery for gene transfer would be required
for future clinical applications.
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