Natural killer T cells from interleukin-4-deficient mice
are defective in early interferon-y production in
response to a-galactosylceramide
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Discovery of the natural killer (NK) T cell-specific ligand, o-
galactosylceramide (a-GalCer) has enabled us to investigate the
functional regulation of NKT cells. However, the detailed
mechanism of cytokine production by NKT cells remains to be
elucidated. Here we evaluated the role of interleukin (IL)-4 in the
production of interferon (IFN)-y from NKT cells using IL-4-deficient
C57BL/6 mice (IL-47- mice). Administration of a-GalCer into wild-
type C57BL/6 mice caused the production of both IFN-y and IL-4 in
serum or cytoplasm within 4h of the injection. Unexpectedly,
however, IL-47- mice-derived NKT cells did not produce any IFN-y at
early phase after primary stimulation with a-GalCer. Because NKT
cells from IL-47- mice produced IFN-y when they were stimulated
secondarily with a-GalCer in vitro for 72 h, NKT cells from IL-4-- mice
were not completely genetically deficient for IFN-y production.
To elucidate which cells, NKT cells or dendritic cells (DC), were
responsible for the deficiency in IFN-y production in IL-47- mice, we
carried out an add-back experiment using purified NKT cells and DC,
which were prepared from either wild-type mice or IL-47- mice. NKT
cells from wild-type mice produced IFN-ywhen they were cocultured
with DC prepared from either wild-type or IL-4”~ mice, whereas NKT
cells from IL-47~ mice did not produce IFN-y by coculturing with DC
from either wild-type or IL-47~ mice. These results indicate that NKT
cells, not DC, were responsible for the deficiency in IFN-y production
in IL-4- mice. Thus, IL-4 is required for the activation of NKT cells to
produce IFN-yin response to o-GalCer. (Cancer Sci 2007; 98: 721-725)

N atural killer (NK) T cells are characterized by the expression
of a single invariant T-cell receptor oo (TCRa) chain
encoded by Vo14-Ja281 and activated by the specific ligand o-
galactosylceramide (0.-GalCer) in a CD1d-dependent manner.~'
They promptly produce a large amount of T-helper type 1 (Thl)
cytokines and T-helper type 2 (Th2) cytokines simultaneously and
are considered to play an important role as immunoregulatory cells
in antitumor immunity,">'> autoimmunity,"®'” and in maintaining
some forms of tolerance. 2% As interferon (IFN)-y and interleukin
(IL)-4 are representative cytokines involved in Thl and Th2
immunity, respectively, the control of cytokine production by NKT
cells leads to the regulation of immune diseases, including tumor
disease, through the control of immune balance.®'?? For instance,
Miyamoto et al. synthesized an o-GalCer analog named OCH
that stimulated NKT cells to produce IL-4 predominantly rather
than IFN-y.“D Thus, OCH administration resulted in the suppres-
sion of experimental autoimmune encephalomyelitis induction."
Fujii et al. reported that o-GalCer-loaded dendritic cells (DC)
produced mainly IFN-y from NKT cells and inhibited the metastasis
of B16 melanoma.®? Therefore, it is of great importance to
investigate the mechanisms underlying the regulation of cytokine
production by NKT cells to develop new strategies for the
treatment of immune diseases.
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Here we demonstrate the role of IL-4 in the production of
IFN-y from NKT cells using IL-47~ mice during the stimulation
of o-GalCer. As IL-4 antagonizes IFN-y production,®2> we
first hypothesized that IFN-y production from NKT cells might
be augmented in IL-47- mice. However, unexpectedly the level
of IFN-y produced by NKT cells was mostly diminished in the
early stage of activation. We also found that NKT cells, not DC,
were the cells responsible for the deficiency in IFN-y production in
IL-47 mice. These results suggest that IL-4 was a critical cytokine
required for NKT cells to produce IFN-y in response to o-GalCer.

Materials and Methods

Mice. C57BL/6 mice were purchased from Charles River
Japan (Kanagawa, Japan). IL-4-deficient mice on a C57BL/6
background were kindly donated by Dr Y. Iwakura (Tokyo
University, Tokyo, Japan).?® All mice used in the present study
were 5—8 weeks old and were maintained in specific pathogen-
free conditions.

Monoclonal antibodies and reagents. Phycoerythrin (PE)-anti-
IL-4, fluorescein-isothiocyanate (FITC)-anti-IFN-y, allophyco-
cyanin (APC)-anti-NK1.1 and peridinin chlorophyll protein
(PerCp)-anti-CD3 monoclonal antibodies (mAb) were purchased
from Pharmingen (San Diego, CA, USA). Mitomycin-C was
purchased from Kyowa (Tokyo, Japan).

o-GalCer. a-GalCer, ([2S,3S,4R]-1-0-[o-D-galactopyranosyl]-
2-[N-hexacosanoyl-amino]-1,3,4-octadecanettriol) used for this
study was donated by Kirin Brewery Co. (Tokyo, Japan).?” The
stock solution of a-GalCer (220 pg/mL) was diluted in 0.5%
polysorbate 20 (Nikko Chemical, Tokyo, Japan) in 0.9% NaCl
solution. This stock solution was further diluted to an appropriate
concentration with saline and used for the experiments. A
vehicle control solution was prepared from a solution of 0.5%
polysorbate 20 in 0.9% NaCl solution. The vehicle control was
used in all experiments.

Intracellular cytokine detection of NKT cells in vivo. Hepatic lymph-
ocytes obtained from mice 1, 2 or 4 h after intravenous (i.v.) injec-
tion of o-GalCer (2 pg/mouse) were stained with PerCp-anti-CD3
mAb and APC-anti-NK 1.1 mAb. After several washes they were
fixed with 4% paraformaldehyde and then treated with permeabiliz-
ing solution (50 mM NaCl, 5 mM ethylenediaminetetracetic acid,
0.02% NaN,, 0.5% Triton X-100, pH 7.5). The fixed cells were
further stained with FITC-anti-IFN-y mAb and PE-anti-IL-4 mAbD.
The percentages of cytoplasmic IL-4- and IFN-y-expressing cells
were determined by flour-color flow cytometry using a FACSCalibur
(Becton Dickinson, San Jose, CA, USA).
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Preparation of murine hepatic lymphocytes. Murine livers were
removed and passed through a 200-gauge stainless steel mesh
and then suspended in RPMI-1640 medium (Sigma, Tokyo,
Japan) including 0% serum and 10 IU/mL heparin. After one
wash, the pellet (containing cells) was resuspended in 33%
Percoll solution (Amersham Bioscience, Tokyo, Japan), gently
placed on 70% Percoll solution and centrifuged at 1300 g for
20 min at room temperature. Mononuclear cells (MNC) at the
interface were harvested and washed twice in RPMI-1640
medium including 10% serum. MNC were resuspended in
RPMI-1640 medium including 10% serum for subsequent use.

Purification of splenic NKT and DC. Spleen cells were incubated
on nylon wool columns for 45 min, and the non-adherent cells
were used for the isolation of NKT cells by cell sorting with a
FACSVantage instrument (Becton Dickinson). The purity of the
sorted cells was >98%. The details of the staining and sorting
have been described previously.®

DC were prepared according to the method of Steinman et al.
with some modifications.?” In brief, spleen cells were incubated
in 10-cm plastic dishes for 2 h, and the non-adherent cells were
removed from the culture. The adherent cells were further
incubated overnight and the non-adherent cells were harvested.
Then, CD11c*B220CD4CDS8 cells were isolated from the
non-adherent populations by cell sorting and used as the source
of DC after mitomycin-C treatment.

Cytokine production and detection. Splenic DC (2 X 10°) from
wild-type (wt) mice or IL-47 mice were cocultured with
purified NKT cells (2 x 10°) from wt mice or IL-47 mice in the
presence of 200 ng/mL o-GalCer in 96-well U-bottomed plates
(Corning Costar Co. Ltd, Tokyo, Japan). After incubation for
36 h, the culture supernatants were harvested to detect cytokine
levels. IL-2 and IFN-y activity in culture supernatants were
determined using the OptEIA mouse IL-2 or IFN-y enzyme-
linked immunosorbent assay (ELISA) systems (PharMingen,
San Diego, CA, USA). Serum samples were obtained from wt
mice or IL-47" mice after injection of o-GalCer (2 ug/mouse)
and IFN-y, or IL-4 levels were measured using ELISA Kkits
(PharMingen).

Reverse transcription-polymerase chain reaction. Total RNA was
extracted using Isogen reagent (Nippon Gene, Tokyo, Japan)
and was reverse transcribed to cDNA using Superscript II RNaseH
Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA). Subse-
quently, cDNA was amplified using Tag DNA polymerase
(Promega, Madison, WI, USA) and specific primer pairs for IFN-y
(forward, 5-CGA CTC CTT TTC CGC TTC CTG AG-3’; and
reverse, 5-TGA ACG CTA CAA CTG CAT CTT GG-3"). The

expression of IFN-y mRNA was investigated 24 h after culture of
purified DC and NKT cells with or without o-GalCer. In the
time-course study of gene expression, polymerase chain reaction
products were separated on an ethidium bromide-containing agarose
gel, and were visualized using an ultraviolet transilluminator.

Results

IFN-y production by NKT cells was not detected after o-GalCer
administration in IL-4-deficient mice in vivo. To investigate the role
of IL-4 in the production of IFN-y from NKT cells, we evaluated
the serum levels of IFN-y and IL-4 within 4 h of o-GalCer
administration in wt and IL-47~ mice (Fig. 1a). In wt mice, the
serum levels of IL-4 peaked 2 h after oi-GalCer administration
and the IFN-y level was elevated until the 4-h time point.
Interestingly, however, the level of IFN-y was not detectable
at any point before 4 h in IL-47 mice. Because both wt and
IL-47- mice possessed almost the same numbers of NKT cells
(Fig. 1b), the defect in IFN-y production in IL-47 mice was not
due to a decreased number of NKT cells in IL-47 mice.

To examine the early events in IFN-y and IL-4 production
from NKT cells, we next evaluated the kinetics of cytokine pro-
duction from NKT cells at single-cell level by intracellular
cytokine staining (Fig. 2). Consistent with our previous paper,?
NKT cells in wt mice differentiated into IL-4 single-producing
cells or IL-4 and IFN-y double-producing cells 1 h after o-
GalCer injection (Fig. 2a). Then, NKT cells shifted into IL-4 and
IFN-y double-producing cells from IL-4 single-producing cells
(Fig. 2b), and finally became IFN-y single-producing cells
(Fig. 2¢). However, in IL-47~ mice IFN-y-producing cells were
not detected at any point before 4 h compared with wt mice
(Fig. 2d—f). These results indicate that IL-4 is a critical cytokine
for inducing IFN-y production from NKT cells during activation
with o-GalCer.

IL-4 is prerequested for IFN-y production of NKT cells by stimulation
with o-GalCer. As shown in Table 1, the spleen cells from wt
mice, which were administrated with o-GalCer 2 h before
sacrifice, spontaneously produced IFN-y within 24 h by in vitro
primary culture without restimulation with o-GalCer. In
contrast, no spontaneous IFN-y production was detected in
the primary culture of spleen cells derived from o-GalCer-
administered IL-47~ mice. However, a significant level of IFN-y
production was demonstrated in secondary in vitro culture of
spleen cells from a-GalCer-administered IL-4~~ mice when they
were restimulated with a-GalCer for 72 h. These results indicate
that IL-4 was prerequested for the primary early IFN-y production
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Fig. 1.

Interferon (IFN)-y production was not detected in interleukin (IL)-47~ mice by injection of a-galactosylceramide (o-GalCer). (a) C57BL/6-

background wild-type (wt) mice and IL-47- mice were intravenously administrated with 2 ug a-GalCer. Serum levels of IFN-y (O, [J) and IL-4 (@, A)
in wt mice (O, ®) and IL-47 mice (OJ, A) were determined by enzyme-linked immunosorbent assay 1, 2 and 4 h after the injection. The bars
represent mean + SE of three mice in each group. (b) Hepatic lymphocytes prepared from wt mice and IL-47- mice were stained with APC-Anti-
NK1.1 and PerCp-anti-CD3 monoclonal antibodies (mAb). NK1.1* CD3* natural killer (NK) T cells were gated. The numbers mean the percentage

of NKT cells among whole hepatic lymphocytes.
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Fig. 2. o-Galactosylceramide (o-GalCer)-induced interferon (IFN)-y was
not detected in natural killer (NK) T cells in interleukin (IL)-47 mice
even at single-cell level. The IFN-y- and IL-4-producing abilities of
hepatic NK1.1* CD3* NKT cells from wild-type (wt) or IL-47- mice
were examined by flow cytometry (a,d) 1, (b,e) 2 and (c,f) 4 h after
intravenous administration of 2 ug o-GalCer. The experiment shown is
representative of three independent experiments.

Table 1. Spleen cells were prepared from wild-type or interleukin
(IL)-47- mice treated with a-galactosylceramide (o-GalCer) (2 pg/head)
or saline 2 h before death

o-GalCer IFN-v (pg/mL)
Mouse In vivo In vitro
@ug/head) (00ngmy) 2P 24h 48h 72h
Wild type - - - ND ND ND
- + - 785 +9 >2000 >2000
+ - 299 + 15 >2000 >2000 >2000
+ + - >2000 >2000 >2000
IL-47- - - - ND ND ND
- + - ND ND >2000
+ - ND ND ND ND
+ + - ND ND >2000

The cells were cultured with or without a-GalCer (200 ng/mL) for 4, 24,
48 or 72 h. Interferon (IFN)-y levels in supernatants were decided by
enzyme-linked immunosorbent assay. The values represent mean + SE
of duplicated samples. The experiment shown is representative of
three independent experiments ND, not detectable.

of o-GalCer-activated NKT cells but not for the secondary
late-phase IFN-y production by a-GalCer-activated NKT cells.
These results also demonstrate that NKT cells of IL-47 mice
are not completely genetically defective in the production of
IFN-y.

NKT cells, not DC, were responsible for the deficiency in IFN-y
production in IL-47~ mice in response to o-GalCer. Because =~ NKT
cells were activated by o-GalCer present on DC,*'V we
analyzed which cells, DC or NKT cells, were responsible for the
deficiency in IFN-y production in IL-47~ mice. For this purpose,
we tried to reconstitute the defective IFN-y production of IL-47
mice in vitro by add-back experiments using purified NKT
cells and DC derived from wt mice or IL-47 mice in the
presence of o-GalCer. As shown in Fig. 3a, IFN-y was produced
when NKT cells from wt mice were cocultured with DC from
either wt or IL-47 mice, whereas no significant level of IFN-y
was detected when NKT cells from IL-47 mice were cocultured
with DC from wt mice or IL-47" mice. Interestingly, IL-2 was
detected even in the culture supernatants of IL-47~ NKT cells
(Fig. 3a), indicating that IL-47~ NKT cells were activated in this
add-back system. This was further confirmed by the finding that
o-GalCer stimulation caused the induction of IFN-y mRNA in
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IL-47- NKT cells, as its elevation level was lower than that of wt
NKT cells (Fig. 3b). These results demonstrated that the deficiency
in IFN-y production observed in IL-47" mice following stimula-
tion with o-GalCer is due to NKT cells, not DC.

Discussion

In the present paper, we demonstrated that IL-47~ mice were
defective in the early production of IFN-y by NKT cells
activated with o-GalCer. It has been reported that NKT cells
play a critical role in the regulation of Th1-dependent and Th2-
dependent immune diseases through production of both IL-4
and IFN-v.17 Consistent with previous results, NKT cells
produced both IFN-y and IL-4 at an early stage after o-GalCer
administration (Figs 1,2). Unexpectedly, however, IL-47" mice
produced no significant level of IFN-y after o-GalCer
administration. The defect in IFN-y production in o-GalCer-
administered IL-47~ mice was confirmed at both the serum and
single-cell levels. These data indicate that the defective IFN-y
production was derived from a lack of induction of IFN-y-
producing NKT cells by a-GalCer in IL-47~ mice. The number
of NKT cells in IL-47 mice was the same as that of wt mice,
but there appeared to be a functional defect in NKT cells
derived from IL-47 mice. We proposed this hypothesis from the
following results. NKT cells derived from IL-47- mice produced
no significant levels of IFN-y when they were cocultured with
DC obtained from wt or IL-47~ mice in the presence of o-
GalCer. In contrast, NKT cells from wt mice produced IFN-y
when they were cocultured with either DC from wt or IL-47~
mice (Fig.3a). We confirmed that IL-47~ NKT cells were
activated in this system because IL-2 production and the
elevation of IFN-y mRNA was induced even in IL-47~ NKT
cells by stimulation with o-GalCer (Fig.3ab). We also
concluded that NKT cells from IL-47- mice were not completely
genetically defective in terms of IFN-y production because NKT
cells from «-GalCer-administered mice exhibited IFN-y
production when they were restimulated in vitro with o-GalCer
for 72 h (Table 1), and IFN-y mRNA was induced in IL-47-
mice by o-GalCer stimulation at an early time (Fig. 3b). From
these results, we concluded that IL-4 is prerequested for primary
early IFN-y production by NKT cells, but not for secondary late
IFEN-y production by NKT cells during activation with o-
GalCer. We should further examine whether IFN-y production
by IL-47- NKT cells could be recovered with stimulation using
an alternative substance, such as IL-12 or combined stimulation
with TCR and some other cytokines.

Others groups have reported that under some conditions IL-4-
primed DC produce IL-12, which induce NKT cells to produce
IFN-v.632 Another group reported that IL-4 enhances the
response of NKT cells to IL-2 and IL-12, leading to the production
of IFN-y.® Therefore, to examine whether IL-4 from NKT cells
is involved in IFN-y production through such mechanisms, we
added exogenous recombinant (r)IL-4 to a cross-cocultivation
system or injected rIL-4 directly into IL-47~ mice. However,
IFN-y production was not recovered in either system (data not
shown), indicating that other unknown mechanisms are involved
in the IFN-y-deficient property of IL-47~ mice, which could not
be recovered by later addition of rIL-4. We proposed that IL-4
might play an unknown but critical role in the functional devel-
opment of NKT cells in vivo for the production of IFN-y. We are
now planning our next experiment using chimeric IL-47 and
IFN-y7~ mice to unveil the critical role of IL-4 in the functional
development of NKT cells.
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