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The sentinel lymph node (SLN) is defined as the lymph node(s) first
receiving lymphatic drainage from the site of the primary tumor.
The histopathological status of SLN is one of the most significant
predictors of recurrence and overall survival for most clinical stage
I/II solid tumors. Recent progress in molecular techniques has
demonstrated the presence of micrometastatic tumor cells in
SLN. There is now a growing body of data to support the clinical
relevance of SLN micrometastasis in a variety of solid tumors.
Increasing the sensitivity of occult tumor cell detection in the SLN,
using molecular-based analysis, should enable a more accurate
understanding of the clinical significance of various patterns of
micrometastatic nodal disease. The establishment of metastasis
to SLN might not be simply reflected by the flow dynamics of
lymphatic fluid that drains from the primary site to the SLN, and the
transportation of viable cancer cells. Recent studies have demonstrated
that primary tumors can actively induce lymphangiogenesis and
promote SLN metastasis. Moreover chemokine receptors in tumor
cells may facilitate organ-specific tumor metastasis in many human
cancers and some experimental models. In contrast, recent clinical
and preclinical studies regard SLN as the first lymphoid organ to
respond to tumor antigenic stimulation. SLN dramatically show
morphological, phenotypical and functional changes that indicate
immune suppression by tumor cells. The immune suppression in SLN
results in failure of prevention or eradication of tumor metastasis.
The mechanism of immunomodulation remains unclear; however,
several regulatory molecules produced by tumor cells and tumor-
associated macrophages or lymphocytes are likely to be responsible
for inducing the immune suppression in SLN. Further studies may
develop a novel immunotherapy that overcomes tumor-induced
immune suppression and can prevent or eradicate SLN metastasis.
(
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I

 

n the history of the surgical treatment of malignant tumors,
the standard procedure has been to perform complete dissection

of regional lymph nodes in addition to the primary tumor. This
has been believed to improve patients’ survival.

 

(1)

 

 However, the
clinical significance of prophylactic lymph node dissection for
patients without lymph node metastasis has been the subject of
controversy over the past 10 years.

 

(2–4)

 

Given this background, the concept of the sentinel lymph
node (SLN), intraoperative lymphatic mapping and sentinel
lymphadenectomy appeared attractive.

 

(5)

 

 The SLN is defined as
the lymph node(s) first receiving lymphatic drainage from the
site of a tumor (Fig. 1).

 

(5)

 

 The pathological status of the SLN is
thought to predict the status of all regional lymph nodes. If the SLN
is recognizable and negative for cancer metastasis, unnecessary
radical lymph node dissection could be avoided. The SLN
hypothesis was advanced to specifically address those patients at

high risk of having lymph node (LN) metastasis based on the
characteristics of their primary tumors, but who had no evidence
of clinically detectable regional metastatic disease.

The histopathological status of tumor-draining regional LN is
one of the most significant predictors of recurrence and overall
survival for most clinical stage I/II solid tumors, and is often
used to justify stratification of patients for adjuvant therapy.

 

(6,7)

 

More efficient and accurate diagnosis of LN metastasis and
prognostic information can be obtained from a small number
of LN, by intraoperative lymphatic mapping and sentinel
lymphadenectomy.

 

(5,8)

 

SLN mapping and biopsy was first applied to melanoma, and
was subsequently extended to breast cancer and, more recently, to
many other solid tumors including colorectal, gastric, esophageal,
gynecologic, head and neck, thyroid, urologic, and non-small
cell lung cancers.

 

(9–16)

 

 The SLN concept has revolutionized the
approach to the surgical staging of both melanoma and breast
cancer, and these techniques can yield patient benefit by avoiding
various complications due to unnecessary prophylactic com-
plete LN dissection in cases with negative SLN for cancer
metastasis.

Hematoxylin and eosin (H&E) and immunohistochemical
(IHC) staining have been commonly used, in combination with
thin serial sectioning of frozen and paraffin-embedded specimens,
for the detection of micrometastatic disease in the SLN/LN.

 

(17–19)

 

The application of IHC has markedly improved the sensitivity of
micrometastatic disease detection in the SLN/LN beyond the
capability of routine H&E staining alone.

 

(17–19)

 

 The antibodies
against tumor markers of interest must be highly specific and
sensitive for detection of tumor cells, and virtually non-reactive
to the adjacent non-tumor cells in the SLN/LN. The most
commonly used IHC target for epithelial carcinomas are the
cytokeratins (CK), which are ubiquitously expressed as inter-
mediate filaments in normal eukaryotic epithelial cells.

 

(18–20)

 

However, the risk of false positive results with the use of
individual anti-CK antibodies and antibody cocktails has been
described.

 

(21)

 

In comparison, the use of IHC to detect micrometastatic
deposits of melanoma has been less problematic due to the high
specificity of antibodies to HMB-45 and S-100 proteins.

 

(22)

 

Because these antibodies also have their limitations, new
antibodies such as melanoma antigens recognized by T-cells
(MART-1) and microphthalmia-associated transcription factor
(MITF) are being investigated.

 

(23)

 

 IHC staining for detection of
occult metastatic tumor cells in LN has been the gold standard.
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More recently, molecular techniques have provided new approaches
and demonstrated undetected metastatic tumor cells.

 

(24)

 

To date, SLN have been thought to be a preferential site of
initial micrometastasis of solid tumors. In contrast, recent
clinical and preclinical studies regard SLN as the first lymphoid
organ to respond to tumor antigenic stimulation. However,
immunologic roles of SLN in the development of tumor metastasis
have not been elucidated yet. Tumor-induced immune modulation
of SLN may facilitate LN metastasis by inhibiting immune cell
activities. This review also focuses on the immunoresponse in
the SLN against tumor metastasis.

 

Molecular Diagnosis for Micrometastasis of SLN

 

The molecular detection of tumor cells using RNA or DNA
markers with various polymerase chain reaction (PCR) techniques
has evolved exponentially in the last decade. The primary
approach of molecular detection of tumor cells has been focused
on the mRNA of tumor markers using reverse transcription
(RT)-PCR assay. Detection of metastatic tumor cells has been
clearly demonstrated in LN, organs, and body fluids. Using
RT-PCR, it is now possible to reliably detect 1–10 tumor cells
within a background of 10

 

6

 

–10

 

7

 

 normal cells.

 

(20)

 

 The high
sensitivity of the RT-PCR assay, compared with H&E and
IHC, allows the detection of the occult tumor cells among the
lymphoid cells in SLN/LN. However, molecular-based techniques
require the stringent optimization of sample processing, reagents,
molecular targets, RT and PCR reactions, and PCR cDNA
product detection assays. Meticulous attention to techniques
must be adhered to, throughout all stages of the assay, in order
to ensure accurate results. One of the keys to the most efficient
RT-PCR assay is the quality of the detection marker. Finding a
good marker is of the utmost importance in molecular detection.

Quantitative RT-PCR assay is now being used more extensively
to not only identify the presence of target mRNA but also to
quantify the number of mRNA copies from tumor-associated
genes. Quantitative RT-PCR analysis permits the rapid molecular
analysis of multiple mRNA targets expressed in tumor cells, and
these results can then be correlated to clinical outcomes in order
to study the relationship between gene expression levels and

outcome.

 

(25)

 

 Real-time PCR assay, which enables rapid analysis,
is currently being attempted for intraoperative molecular diagnosis.
LN along the recurrent laryngeal nerves obtained from patients
with esophageal cancer were assessed prospectively using intra-
operative histopathologic examination and real-time RT-PCR
assay using multiple markers (carcinoembryonic antigen [CEA],
squamous cell carcinoma [SCC] antigen, and MAGE-A3).

 

(26)

 

The whole procedure takes only 2.5 h from the time of tissue
sampling to completion of the real-time RT-PCR assay. Genetic
diagnosis by intraoperative real-time PCR assay can predict
cervical LN metastasis and may be used to indicate subsequent
cervical lymphadenectomy. Further improvements of the assay
may allow the PCR-based intraoperative diagnosis to be applicable
to other cancer surgeries. Taniyama 

 

et al

 

. reported that the newly
developed one-step nucleic acid amplification (OSNA) assay
may allow rapid assessment for intraoperative diagnosis of LN
metastasis.

 

(27)

 

 At the present time, however, the techniques still
need further validation.

The current definition of SLN/LN micrometastasis is a deposit
of tumor cells measuring 

 

≤

 

2 mm. However, this definition has
become somewhat arbitrary due to the high degree of sensitivity
of IHC and RT-PCR. With the advent of increasingly more
sensitive detection assays for occult metastasis, the actual definition
of micrometastasis may need to be reconsidered. It has been
demonstrated that the metastatic potential of individual tumor
cells varies and that not all embolic tumor cells are capable of
progressing to functional metastatic tumors.

 

(28)

 

 There is also
evidence to suggest that the number of tumor cells in the LN/
SLN, as well as the location of nodal micrometastasis (i.e.
single or a few occult tumor cells 

 

vs

 

 clumps of cells, and cells
located within the subcapsular sinus 

 

vs

 

 the nodal parenchyma),
may be pathologically relevant factors.

 

(23,29)

 

 Historically, the
clinicopathological relevance of micrometastatic SLN/LN
disease has been unclear and controversial. There is, however,
growing evidence that LN/SLN micrometastasis may indeed
mean a worse prognosis in many solid cancers, including breast,
melanoma, colorectal, esophageal, gastric, lung, head and neck,
gynecologic, and urologic cancers.

 

Breast cancer.

 

A number of mRNA targets have been studied
in breast cancer, including CEA, mammaglobin 1 and 2, MAGE-A,
MUC-1, C-MET, 

 

β

 

1

 

→

 

4-N-acetylgalactosaminyltransferase
(

 

β

 

1

 

→

 

4-GalNAc-T), 

 

β

 

-hCG, prostate specific antigen (PSA), c-
myc, prolactin inducible protein (PIP), and various CK family
markers.

 

(30–37)

 

 However, the specificity of several of these
markers for breast cancer, including CEA, MUC-1, and CK-19
appears to be poor, because they sometimes show positive
results for RT-PCR performed on LN and blood in healthy
volunteers without breast cancer.

 

(38–40)

 

 MAGE-A3 may be a
promising breast cancer molecular marker, although as it
appears to be expressed by approximately 50% of breast
cancers, but is not expressed in normal mammary epithelium, or
in the LN or blood of healthy volunteer donors.

 

(31)

 

Although not as extensive as the studies that were performed
on melanoma, there is compelling evidence to suggest a clini-
cally relevant impact of SLN/LN micrometastasis detected
using molecular assays in breast cancer (Table 1). Bostick 

 

et al

 

.
reported significant correlation between the presence of positive
RT-PCR markers 

 

β

 

1

 

→

 

4-GalNAc-T, C-MET, and P97) in the
SLN and primary tumor estrogen receptor status and Bloom–
Richardson histopathological grade, both of which are known
prognostic factors.

 

(30)

 

Wascher 

 

et al

 

. assessed MAGE-A3 mRNA as a molecular
marker for the detection of occult tumor cells in the SLN of
breast cancer patients.

 

(41)

 

 Serial frozen sections of SLN (

 

n

 

 

 

=

 

 121)
obtained from 77 American Joint Committee on Cancer (AJCC)
stage I–IIIA breast cancer patients were assessed using RT-PCR
and Southern blot analysis. Forty-one of 77 (53%) patients
were positive for MAGE-A3. Interestingly, MAGE-A3 mRNA

Fig. 1. Primary tumor and sentinel lymph node (SLN). The SLN is defined
as one or more lymph nodes that first receive lymphatic drainage from
the site of the primary tumor. For intraoperative lymphatic mapping
and sentinel lymphadenectomy, blue dye and/or radioisotope-labeled
colloid are injected intradermally (or submucosally) around the primary
tumor site before surgery. Subsequently, the tracers pass through the
afferent lymphatics, and blue-stained or radioactive nodes are regarded
as the SLN.
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expression in the SLN occurred more frequently with infiltrating
lobular carcinoma than with infiltrating ductal carcinoma.

Others have studied non-SLN axillary LN in breast cancer
patients and have reported similar findings. Lockett 

 

et al

 

. assessed
61 consecutive breast cancer patients with H&E/IHC and a
multiple marker RT-PCR assay (CK-19, c-myc, and PIP).

 

(37)

 

 A
total of 15 of 37 (40%) patients with H&E/IHC-negative LN
were positive by RT-PCR. An increasing number of positive RT-
PCR markers significantly correlated with both increased primary
tumor size and decreased predicted 5-year survival.

Masuda 

 

et al

 

. evaluated 149 breast cancer patients with negative
LN using both H&E and IHC evaluation.

 

(32)

 

 RT-PCR was per-
formed using CEA as a marker, and 40 of 129 (31%) patients
were found to have RT-PCR positive LN. Patients with RT-PCR
negative LN had a 10-year disease-free survival rate of 88%
versus 66% for RT-PCR positive patients (

 

P

 

 

 

=

 

 0.0008) and an
overall 10-year survival rate of 94% versus 68%, respectively
(

 

P

 

 

 

=

 

 0.0024). On multivariate analysis, patients with RT-PCR-
positive LN micrometastasis were found to have a hazard ratio
of 3.99 for relapse and 4.29 for death due to cancer. In view of
the definition of the SLN, these compelling findings in the study
of axillary LN would be expected to be highly applicable with
regard to the molecular status of the SLN as well.

In 2004, Gillanders 

 

et al

 

. reported on the clinical relevance of
molecular detection of micrometastasis in axillary LN in the
results of a prospective multi-institutional cohort study for 489
patients with breast cancer.

 

(42)

 

 Seven markers were used for
real-time RT-PCR assay: CEA, mammaglobin, mammaglobin B,
PIP, CK-19, muc1, and prostate-derived Ets transcription factor
(PDEF). Patients who were histopathologically negative but
PCR positive were significantly associated with traditional indi-
cators of prognosis, including histologic grade and St Gallen risk
category. They concluded that molecular markers could serve as
valid surrogates for the detection of occult micrometastasis in
axillary LN.

In general, the prognosis for breast cancer patients with early
intervention is relatively more favorable than for other carcinomas.
Therefore the prognostic significance of molecular detection
of micrometastasis in SLN for breast cancer patients remains
unclear. One major problem in evaluating the prognostic value
of micrometastasis detection in SLN is that patients who had
undergone sentinel lymphadenectomy are often treated with
postoperative adjuvant therapy. At least 8 years are required

for the follow up of a large number of patients to evaluate a
significant number of events. Detection of occult tumor cells in
the SLN has not shown clinical significance for patients with
breast cancer to date.

 

Melanoma.

 

The molecular detection of melanoma, using RT-
PCR, is facilitated by the expression of melanogenesis-specific
genes by melanoma tumors cells, including tyrosinase, MART-1,
gp-100/pmel-17, MITF, and tyrosinase-related proteins 1 and 2
(TRP-1, TRP-2).

 

(43–51)

 

 The expression of various mRNA transcripts
of the human melanoma-associated antigen (MAGE-A) family
have also been demonstrated in a variety of tumors, including
melanoma and cancers of the breast and gastrointestinal tract.

 

(31,46)

 

Several studies have reported the use of RT-PCR to detect
micrometastatic melanoma in the SLN, and have shown that RT-
PCR can significantly upstage patients with SLN that are negative
by H&E and IHC (Table 2). In addition to the accurate detection
of micrometastatic melanoma cells in the SLN using molecular
assays, there is persuasive evidence that the detection of such
micrometastases has prognostic significance. Regarding the SLN
in particular, Shivers 

 

et al

 

. followed 114 patients with melanoma
for a mean duration of 28 months.

 

(44)

 

 Patients with SLN that
were histopathologically and RT-PCR negative had a recurrence
rate of 2%, while patients with histopathologically negative but
RT-PCR positive SLN had a 13% recurrence rate (

 

P

 

 

 

=

 

 0.02).
Bostick 

 

et al

 

. reported on their study of the SLN of 72 patients
with early stage melanoma, using a multiple marker RT-PCR
assay (tyrosinase, MART-1, and MAGE-3).

 

(46)

 

 Bisection and
serial sectioning of SLN, prior to H&E/IHC and molecular
analysis, was performed to reduce the false negative rate associated
with random or limited sampling of the SLN. Twenty of 55
patients (36%) with SLN negative by H&E and IHC stains were
positive for at least two of the three markers in the panel (44%
of these 55 patients expressed MAGE-3, 36% expressed MART-
1, and 29% expressed tyrosinase). By multivariate analysis, the
presence of two or more RT-PCR markers in the SLN correlated
with a significantly increased risk of recurrence.

Blaheta 

 

et al

 

. evaluated 214 SLN from 116 patients with
melanoma using IHC and single marker (tyrosinase) RT-PCR.

 

(47)

 

Using H&E and IHC alone, 15 of 116 (13%) patients were
confirmed to have SLN micrometastasis. Of the remaining 101
patients with histopathologically negative SLN, 36 (36%) SLN
were positive by RT-PCR for tyrosinase. Of the 15 patients with
histopathologically detected SLN micrometastases, 10 (67%)

Table 1. Representative SLN/LN RT-PCR studies for breast cancer

Author
No. of 

patients
Lymph
node

RT-PCR marker(s)
H&E/IHC
positive 

(%)

RT-PCR 
positive

(%)

Clinical correlation of micrometastasis 
detected using RT-PCR

Lockett (1998)(37) 35 RLN CK-19, c-myc, PIP 0 40 Primary tumor size, decreased 5-year survival
Bostick (1998)(30) 41 SLN β1→4-GalNAc-T, C-MET, p97 30† 95† Estrogen receptor status, histopathological grade
Masuda (2001)(32) 129 RLN CEA 0 31 Decreased 10-year survival
Wascher (2001)(41) 77 SLN MAGE-A3 45 53 Infiltrating lobular carcinoma
Manzotti (2001)(33) 123 SLN Maspin, CK-19, CEA, MUC-1, 

mammaglobin
33 53† Progesterone receptor status, peritumoral 

vascular invasion
Sakaguchi (2003)(34) 108 SLN CK-19, epithelial glycoprotein 2 26 30 No correlation with disease-free survival
Ouellette (2004)(35) 42 SLN Mammaglobin B1, mammaglobin B2 40 52 ND
Gillanders (2004)(42) 489 RLN CEA, mammaglobin, mammaglobin B,

PIP, CK-19, MUC-1, PDEF
30 49 Histologic grade, St. Gallen risk category

Nissan (2006)(36) 28 SLN CK-19, NY-BR-1, mammaglobin B 27† 50† ND

†Percentage of total number of SLN found to be positive. β1→4-GalNAc-T, β1→4-N-acetylgalactosaminyltransferase; CEA, carcinoembryonic 
antigen; CK-19, cytokeratin-19; H&E, hematoxylin and eosin; IHC, immunohistochemistry; LN, lymph node; ND, not determined; PDEF, 
prostate-derived Ets transcription factor; PIP, prolactin inducible protein; RLN, regional lymph node; RT-PCR, reverse transcription-polymerase 
chain reaction; SLN, sentinel lymph node.
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had recurrence, compared with an overall recurrence rate of
20% among all 116 patients. During a 19-month median follow-
up period, the recurrence rate for patients with RT-PCR-positive
SLN was 25%, and the recurrence rate in patients with negative
SLN using H&E, IHC and RT-PCR was only 6% (

 

P

 

 

 

=

 

 0.01). By
multivariate analysis, histopathological and RT-PCR SLN tumor
status were the only significant predictors of disease-free survival.

Goydos 

 

et al

 

. studied 175 patients with stage I or II melanoma
using single marker (tyrosinase) RT-PCR.

 

(49)

 

 At a median follow
up of 34 months, 17 of 34 (50%) patients with histologically
positive SLN had a recurrence. Of the 141 patients with histo-
logically negative SLN, 73 patients were negative for tyrosinase
using RT-PCR, and none of these patients had a recurrence. Of
the 68 patients with histologically negative but RT-PCR-positive
SLN, 14 patients (21%) had a recurrence.

Morton 

 

et al

 

. assessed the paraffin-embedded SLN of 215
patients with AJCC stage I/II melanoma using a multiple marker
quantitative real-time PCR assay.

 

(51)

 

 Tyrosinase, MART-1, TRP-
2 and MITF were used as specific mRNA markers. Among 162
patients with histopathologically negative SLN, 49 (30%) patients
showed PCR-positive and were upstaged. These patients had a
significantly increased risk of disease recurrence and death
compared with both histopathology and PCR-marker-negative
patients using multivariate analysis. These studies demonstrated
the clinicopathological utility of detecting micrometastatic
melanoma in SLN.

The 5-year survival rate approaches 90% for patients with AJCC
stage I malignant melanoma, and 70% for stage II melanoma,
but decreases significantly to 25–50% for stage III melanoma.
Therefore, accurate staging is highly important for optimal
management of early stage disease. The clinicopathological
relevance of micrometastatic melanoma in SLN detected using
RT-PCR assay is still controversial, because melanoma mRNA
markers for RT-PCR assay are often expressed in melanocytes or
nevus cells. A recently reported large-scale multicenter study
failed to prove the clinical relevance of molecular upstaging
using RT-PCR in patients with melanoma.

 

(52)

 

 A series of previous
studies that reported prognostic significance of micrometastatic
melanoma in SLN detected using RT-PCR, however, may show
the clinical significance of molecular detection of micrometastasis
in SLN.

 

(53)

 

 Future investigations will validate the clinicopathological
importance of micrometastatic melanoma in SLN.

 

Colorectal cancer.

 

The application of molecular analysis to the
SLN in colorectal cancer (CRC) is currently at an early stage
(Table 3). However, with the recent and successful application
of the SLN concept to this disease, preliminary data from
molecular-based assays is now being generated. Molecular
markers for SLN/LN analysis in CRC studied so far include
CK, CEA, MAGE-A, C-MET, 

 

β

 

-hCG, MUC-2, and matrix
metalloproteinases.

 

(11,31,54–58)

 

CRC is being studied to evaluate the prognostic impact of
micrometastatic SLN/LN disease. Liefers 

 

et al

 

. evaluated 192

Table 2. Representative SLN/LN RT-PCR studies for melanoma

Author
No. of 

patients
Lymph 
node

RT-PCR marker(s)
H&E/IHC 

positive (%)
RT-PCR 

positive (%)
Clinical correlation of micrometastasis 

detected by RT-PCR

Goydos (1998)(43) 45 SLN Tyrosinase, MART-1 22 29 ND
Shivers (1998)(44) 114 SLN Tyrosinase 20 61 Decreased disease-free and overall survival
Blaheta (1999)(45) 73 SLN Tyrosinase 18 49 Primary tumor thickness
Bostick (1999)(46) 72 SLN Tyrosinase, MART-1, MAGE-A3 24 50† Increased risk of recurrence
Blaheta (2000)(47) 101 SLN Tyrosinase 0 36 Increased risk of recurrence
Ribuffo (2003)(48) 134 SLN Tyrosinase, MART-1 11 63 Decreased disease-free survival
Goydos (2003)(49) 175 SLN Tyrosinase 19 58 Increased risk of recurrence
Kuo (2003)(50) 77 SLN Tyrosinase, MART-1, TRP-1, TRP-2 48 55† Decreased disease-free and overall survival
Morton (2003)(51) 215 SLN Tyrosinase, MART-1, TRP-2, MITF 25 47 Decreased disease-free and overall survival

†Percentage of two or more markers positive. H&E, hematoxylin and eosin; IHC, immunohistochemistry; LN, lymph node; MART, melanoma 
antigens recognized by T-cells; MITF, microphthalmia-associated transcription factor; ND, not determined; RT-PCR, reverse transcription-polymerase 
chain reaction; SLN, sentinel lymph nodes; TRP, tyrosinase-related proteins.

Table 3. Representative SLN/LN RT-PCR studies for gastrointestinal cancers

Author Tumor
No. of 

patients
Lymph
node

RT-PCR marker(s)
H&E/IHC positive 

(%)
RT-PCR positive 

(%)

Clinical correlation of 
micrometastasis 

detected by RT-PCR

Noguchi (1996)(63) Gastric 12 RLN CK-19 7 21 ND
Ichikawa (1998)(55) Colon 15 RLN MMP-7 19 26 ND
Kijima (2000)(64) Esophagus 21 RLN CEA 52 86 ND
Bernini (2000)(57) Colorectal 43 RLN MUC-2 0 28 Advanced T-factor
Bilchik (2001)(11) Colorectal 40 SLN β-hCG, C-MET, MAGE-A 35 60 Advanced T-factor
Yoshioka (2002)(26) Esophagus 50 RLN CEA, SCC, MAGE-A3 20 (intraoperative

diagnosis)
48 (intraoperative

diagnosis)
Predict cervical LN metastasis

Noura (2002)(58) Colorectal 64 RLN CEA 55 30 Decreased disease-free and 
overall survival

Matsuda (2004)(66) GI cancers 51 SLN CK-19 25 45 ND
Arigami (2006)(65) Gastric 53 SLN CEA 0 25 ND

CEA, carcinoembryonic antigen; CK-19, cytokeratin-19; H&E, hematoxylin and eosin; IHC, immunohistochemistry; LN, lymph node; MMP, matrix 
metalloproteinase; ND, not determined; RLN, regional lymph node; RT-PCR, reverse transcription-polymerase chain reaction; SCC, squamous cell 
carcinoma antigen; SLN, sentinel lymph node.
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LN from 26 stage II CRC patients using nested RT-PCR and
CEA as a molecular marker.

 

(56)

 

 In this study, 14 of 26 (54%)
patients had LN that were RT-PCR positive. The 5-year survival
rate for these 14 patients was 50%, while the survival rate
among the remaining 12 patients was 91% (

 

P

 

 

 

= 0.03).
Bernini et al. recently studied the LN of 43 CRC patients,

using MUC-2 as a molecular target for RT-PCR.(57) They found
a correlation between RT-PCR LN positivity and the size of the
primary tumor. None of the 10 Tis/T1 tumors and one of six
(17%) T2 tumors were shown to be LN positive using RT-PCR,
while 10 of 25 (40%) T3 tumors and one of two (50%) T4
tumors were positive using RT-PCR. These results are of clinical
significance, because primary tumor T-stage is a known prognostic
factor for CRC.

Interim results from the first multicenter phase II trial evaluat-
ing the molecular staging of the SLN in early colon cancer
(clinical stage I/II) were recently reported by Bilchik et al.(11)

Forty patients with histopathologically negative (by H&E) SLN
were assessed using IHC for CK, and using a multiple-marker
RT-PCR panel (β-hCG, C-MET, and MAGE-A3). In 10 (25%)
cases, the SLN was positive by H&E. In four (10%) cases,
the SLN were positive by IHC and negative by H&E. Of the
remaining 26 patients with negative SLN by H&E and IHC, 12
(46%) were positive for at least two RT-PCR markers. This
study also demonstrated a correlation between the number of
markers detected and the tumor T-stage, which is, by itself, a
significant prognostic factor for colon cancer. These results
suggest that molecular staging can be successfully and meaning-
fully applied to the SLN in CRC, in addition to melanoma and
breast cancer.

Noura et al. recently reported a comparative study of detection
of micrometastasis using IHC and RT-PCR assay in H&E-
negative LN of 64 AJCC stage II CRC patients.(58) CEA was
used for RT-PCR assay and compared to an IHC study with
anti-CK antibody. Micrometastases were detected in 19 of 64
(30%) patients using RT-PCR and in 35 of 64 (55%) patients
using IHC. Patients who were PCR-positive in LN showed
significantly worse disease-free and overall survival than PCR-
negative patients. However, micrometastasis in LN using IHC
did not correlate with prognosis. Although a larger prospective
study may be required for the validation of the assay, the results
suggested the prognostic utility of molecular detection of
micrometastasis in LN/SLN of CRC patients.

Other carcinomas. Gastric, esophageal, prostate, biliary, head
and neck, lung and gynecologic cancers have also been upstaged
following RT-PCR analysis of LN/SLN and, in many cases,
these results have correlated with known prognostic factors
(Table 3).(14,59–66) Arigami et al. reported that 13 of 53 (25%)
gastric cancer patients with histopathology-negative SLN were
upstaged using RT-PCR assay.(65) They concluded that the SLN
concept is applicable to patients with cT1 and cN0 gastric cancer,

even when including the molecular diagnosis of micrometastasis.
Other groups also suggested that nodal micrometastasis detected
using RT-PCR assay has some clinical significance in
gastrointestinal cancers.(66) Molecular assessment of the SLN
may be a variable tool to complement histological examination
for gastrointestinal cancers.

Immunoresponses in the SLN against Tumor Metastasis

The SLN are also known to be the first lymphoid organ to
respond to tumor antigenic stimulation. The SLN is the site
where immunoreactive lymphocytes initially encounter tumor-
specific antigens and develop antitumor immunity. The SLN
may have critical roles in the development of local immunity
that could reject and eradicate metastatic cancer cells. Immune
dysfunction in the SLN does not directly reflect generalized
immune suppression against cancer. However, there are many
possible mechanisms that may explain the reasons why the SLN
has limited capability to prevent cancer metastasis.

Nagata et al. have made a metastasis model in the rat
mesenteric LN, and visualized the migration of cancer cells
in vivo.(67) Migrant cancer cells were initially arrested in the
marginal sinus in the tumor-draining LN; therefore the marginal
sinus was supposed to constitute a mechanical barrier against
cancer cell passage (Fig. 2). The cancer cells filled the marginal
sinus, and no cancer nests were found in the cortex, paracortex,
or medulla before the marginal sinus was filled. Cancer cells
subsequently invaded to the cortex and paracortex over the inner
linings of the marginal sinus. Cytokines such as tumor necrosis
factor-α, interleukin (IL)-1β and IL-2 secreted by macrophages
markedly increased at the early stages of metastasis, but gradually
decreased according to the tumor proliferation in the LN. They
suggested that parasinus macrophages may play a crucial role in
the transient antimetastatic capability of the nodes, and deteriora-
tion of cytokine induction may be responsible for subsequent
cancer proliferation.

Individual LN show the heterogeneous reactivity, frequency,
and density of T-cells, dendritic cells (DC), and other lymphocytes
in the paracortical area. Cytokine generation and cytotoxicity
against tumor cells might vary among individual nodes.
Cochran et al. have extended a series of studies to compare the
cellular phenotype and physiology of metastasis-susceptible
SLN with non-SLN from the same patient in melanoma and
breast cancer.(68) They demonstrated that the immunoreactivity
of SLN is entirely or segmentally down-regulated compared
with non-SLN, that is to say that SLN are likely to be immune-
modulated by tumor cells. Tumor-induced down-regulation of
SLN immunity is certainly related to the survival of tumor cells
and the development of clinically significant metastasis in SLN.

The cancer cells in the primary site produce immunomodulators
that can lead to immunosuppression of the SLN affected via the
direct lymphatic drainage pathway from the primary tumor
(Table 4). In contrast, non-SLN in the regional basin are
regarded to be less affected by the immunomodulators from the
primary tumor site. The down-regulation of immunoreactivity in
SLN is particularly obvious in the density and maturity of
paracortical DC (PDC) and T-cells.(51) Huang et al. reported a
significant reduction in the aggregate area of the paracortex
occupied by PDC, and less frequency, density and maturity of
PDC in the SLN compared with non-SLN in studies of various
solid tumors, in particular breast cancer and melanoma.(69) DC
with long dendrites are considered to be more effective at antigen
presentation; however, SLN show dendritic cells with short or
no dendrites that are likely to reflect the down-regulation of
antigen presentation. Cochran et al. also found that the forma-
tion of dendritic meshworks that are related to the interaction
between mature DC and T-cells was markedly reduced in SLN
compared with non-SLN.(68)

Fig. 2. Schema of lymph node. B, B-cell area; T, T-cell area.
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Huang et al. showed that T-cell density and activation markers
for T-cells are markedly reduced within the paracortical area in
the SLN compared with the non-SLN.(70) Naïve T-cells, which
arrive to the paracortical area through the endothelium of high
endothelial venules (HEV), are known to encounter antigen-
presenting DC in the paracortex. Recent studies have demon-
strated that HEV in SLN are fewer than in non-SLN, and also
transendothelial migration of naïve T-cells is markedly reduced
in SLN.(71)

Other studies also supported the concept that primary tumors
enable suppression of the immune functions in the SLN and
facilitate the development of LN metastasis. In SLN an increased
level of IL-10, which is secreted from the primary tumor,
markedly inhibits DC maturation, migration and translocation of
major histocompatibility complex (MHC)-class II peptide complex
into the plasma membrane of DC.(72) This result is consistent
with other reports that IL-10 concentrations in SLN are
significantly higher that those in non-SLN.(73–76)

Torisu-Itakura et al. investigated the nodal profile of immu-
noregulatory cytokines using cDNA microarray to confirm the
identity of the SLN and non-SLN.(76) As a result, 57 genes were
expressed at significantly different levels in SLN and non-SLN.
The expression levels of IL-13, leptin, lymphotoxin β receptor,
and macrophage inflammatory protein 1b were significantly higher
for tumor-positive SLN and compared with tumor-negative SLN,
and the expression of IL-11Ra was significantly lower for
tumor-positive SLN. They concluded that SLN show a different
immunoregulatory cytokine profile from non-SLN. Further
investigations will be needed to clarify immunomodulation by
the tumor cells for the development of nodal metastasis.

New Insights into the Mechanism of SLN Metastasis

Recent advances in molecular oncology have shown that various
factors such as oncogenes, tumor suppressor genes, growth
factors, apoptotic factors, adhesion molecules, angiogenic factors,
and cytokines are related to the development of tumor metastasis.
The SLN is directly situated in the lymphatic drainage pathway
from the primary tumor site. Therefore the establishment of
metastasis to SLN may be simply reflected by the flow dynamics
of lymphatic fluid that drains from the primary site to the SLN,
and the transportation of viable cancer cells.

However, recent studies have demonstrated that primary
tumors can actively induce the formation of lymphatic vessels
from host vessels, and that lymphangiogenesis is correlated with
enhanced (sentinel) LN metastasis in various human carcinomas
and some experimental models.(77–81) Moreover, tumor cells can
induce peritumoral lymphangiogenesis and lymphatic vessel
growth within SLN before and after they metastasize to the SLN,
likely promoting further development of cancer metastasis.(82,83)

The functionality of intratumoral and peritumoral lymphatic
vessels for cancer metastasis has been discussed in recent years.

Intratumoral lymphatic vessels might not be functional with
regard to lymphatic fluid transport and cancer metastasis.(81,84,85)

However, several studies have shown that peritumoral lymphatic
vessels are more functional and important for promoting
lymphatic metastasis.(83,84,86) LYVE-1, podoplanin, and PROX-1
are useful markers for identifying lymphatic epithelial cells.(87–89)

The expression of these specific lymphatic markers in intratumoral
and peritumoral lymphatic vessels has been known to vary
heterogeneously, according to the maturity of lymphatic vessels
and tumor progression.

Vascular endothelial growth factor (VEGF)-C and VEGF-D
are, among the VEGF family, known as the first specific
lymphangiogenetic factors.(90,91) Many studies have shown that
VEGF-C or VEGF-D produced by tumor cells enable not only
to induce lymphangiogenesis but also to enhance lymphatic
metastasis to SLN.(77,78,84,92,93) VEGF receptor (VEGFR)-3 is a
lymphatic growth factor receptor of four VEGF receptors, and
specifically binds to VEGF-C and VEGF-D, but not to VEGF-A.(94)

VEGFR-3 expression is restricted to the lymphatic epithelium in
normal tissues; however, some tumor blood vessels also express
VEGFR-3.(89,95) Activation of VEGFR-3 is known to promote
lymphatic endothelial cell proliferation, migration, and cell
survival through several signal pathways such as the phosphati-
dylinositol 3-kinase/AKT.(96) Recent studies have reported that
VEGFR-3 is expressed in some types of cancer cells, and that
generation of a paracrine loop involving VEGF-C and VEGFR-
3 may promote cancer cell survival, lymphangiogenesis and
LN metastasis.(97)

Several studies have revealed that lymphangiogenesis and
lymphatic metastasis promoted by VEGF-C or VEGF-D are
significantly suppressed by blocking the VEGF-R3 signaling
pathway.(78,79,98) Skobe et al. reported that the human breast
carcinoma cell line transfected with VEGF-C significantly pro-
moted peritumoral and intratumoral lymphangiogenesis (but had
no effect on angiogenesis) and lymphatic metastasis.(78) Other
groups have also showed that another human breast carcinoma
cell line, MCF-7 transfected with VEGF-C cDNA, was sig-
nificantly correlated with lymphangiogenesis and lymphatic
metastasis in SCID mice models.(93) Moreover the tumor-
associated lymphangiogenesis promoted by VEGF-C significantly
inhibited VEGFR-3 fusion protein,(92) suggesting that the VEGF-
C (or VEGF-D) and VEGFR-3 pathway may be the therapeutic
target of inhibiting tumor lymphangiogenesis.

Recent studies also suggest that binding of VEGF-C and
VEGF-D to VEGFR-2 may stimulate lymphangiogenesis, and
VEGF-A, which binds to VEGFR-2, markedly promotes tumor
lymphangiogenesis.(83,98) These results suggest that VEGF-A
and/or VEGFR-2 may be another therapeutic target of inhibiting
tumor lymphangiogenesis. Other molecular markers including
hepatocyte growth factor, fibroblast growth factor-2, platelet-
derived growth factor (PDGF), angiopoietin-1, and insulin-like
growth factors 1/2, were recently identified as potent lymphang-
iogenetic factors.(94) However, it is still unknown whether these
newly identified lymphangiogenetic factors markedly induce
cancer metastasis to the SLN.

There is significant evidence that tumors of specific histology
preferentially metastasize to LN.(99,100) This preferential metastasis
cannot be explained simply by the lymphatic drainage pattern
from the tumor. The observation of an orderly, systematic targeting
of organs by metastatic breast cancer led Paget to hypothesize
the ‘seed and soil’ theory of cancer metastasis.(101) In this model,
organs that provide suitable environmental conditions for cancer
growth are the preferential sites of cancer metastasis. Since
Paget’s original report more than one century ago, others have
attempted to test, challenge, or supplement this theory. Recently,
a novel mechanism for cancer metastasis has emerged that
highlights the role of chemokines. There is evidence that antigen-
presenting cells such as DC, T-cells, Langerhans cells, and

Table 4. Representative factors that relate to sentinel lymph node
metastasis produced by tumor cells

Factors Molecules

Cytokines IL-6, IL-8, IL-10, TGF-α, TGF-β
Growth factors VEGF-A, VEGF-C, VEGF-D, basic fibroblast 

growth factor, platelet-derived growth factor, 
placental growth factor, hepatocyte-growth factor

Chemokine 
receptors

CCR7, CCR10, CXCR4

IL, interleukin; TGF, transforming growth factor; VEGF, vascular 
endothelial growth factor.



Takeuchi et al. Cancer Sci | March 2008 | vol. 99 | no. 3 | 447
© 2007 Japanese Cancer Association

natural killer (NK) cells bearing chemokine receptors migrate
from skin to the draining LN in response to specific chemotactic
factors referred to as chemokines.(102–107) In this signaling ‘homing’
mechanism, SLN produce and release specific chemokines that
attract cancer cells bearing specific corresponding receptors in
primary sites. The recent demonstration of specific chemokine
receptors on tumor cells and respective chemokines has
provided some insight into how tumor cells may home to SLN.
Chemokine receptors have been suggested to play a pivotal
role in regulating the recruitment of solid tumor cells to
SLN.(108)

Chemokines, grouped into CXC and CC subfamilies based on
the arrangement of the two NH2-terminal cysteine residues, are
small secreted proteins that regulate the chemotactic response
for a variety of cells.(106) These ligands and receptors have been
predominantly investigated on lymphoid cells. Of particular
interest is CCL21/SLC, also referred to as 6Ckine or exodus,
which is involved in recruiting CCR7(+) naïve T-cells, NK,
memory T-cells, and DC.(102–107) CCL21/SLC is constitutively
expressed in the HEV of LN and lymphatic endothelial cells,
Peyer’s patches, thymus, spleen and mucosal tissue.(105,109) It has
a high affinity for CCR7, a member of the seven transmembrane-
spanning G protein coupled receptor family.(110–112) CCR7 is
prevalent in various subsets of T-cells and DC.(103,110–112) The
release of CCL21/SLC by HEV cells recruits CCR7(+) cells to
draining LN.(103,107,109)

The concept that chemokine receptors promote organ-specific
tumor metastasis was first experimentally addressed by Muller
et al.(113) They demonstrated that the chemokine receptor
CXCR4 was highly expressed in human breast cancer, and its
specific ligand CXCL12/SDF-1 was expressed in a variety of
tissues such as bone marrow, lung, and LN where breast cancer
cells preferentially metastasize. Moreover, breast cancer cell
lines enabled to show chemotactic migration to CXCL12 in vitro,
and a SCID mouse model showed that experimental metastasis
of a breast cancer cell line to LN is significantly inhibited by
neutralizing antibodies against CXCR4.

Human melanoma cells have been shown to express the
chemokine receptors CCR7 and CXCR4.(114,115) The expression
of these receptors is variable among melanomas, as shown by
molecular analysis, both in cell lines and in microdissected
tumor tissues.(114,115) Both chemokine receptors were shown to
be functional to their specific ligands, CCL21 and CXCL12/
SDF-1, respectively. To further examine the role of these chemokine
receptor-ligands in metastasis, SLN were assessed because
metastasis often occurs initially at these proximal tumor-draining
LN.(114) LN are known to produce the chemokines CXCL12
and CCL21. Activation of these chemokines attracts antigen-
presenting cells, such as DC and T-cells, to help orchestrate
an immune response in the nodes.(115,116) We hypothesized that
metastatic tumor cells may take advantage of chemokines
activated in LN. To determine this, we examined SLN in melanoma
patients with micrometastasis and those without it. Our studies
demonstrated that CXCL12 and CCL21 production by SLN
correlated with metastasis involvement. Interestingly, as the
tumor burden increased in the SLN, chemokines were more
suppressed.(114) The results suggested that metastatic tumor cells
or factors may suppress chemokine production through direct or
indirect mechanisms. These mechanisms may be similar to
inflammatory responses in LN in that, after initial activation, the
nodes do not continually expand by recruiting immune cells.
There appears to be a physiological mechanism of cells populating
LN that regulate chemokine production.

Wiley et al. showed that the functional expression of CCR7
enhances the metastasis of B16 murine melanoma to SLN
compared with control, and that the metastasis is inhibited by
neutralizing antibodies against CCL21.(117) Other groups have
demonstrated that CCR7-positive cancer cells significantly

correlated with a high incidence of LN metastasis in gastric(118)

and esophageal carcinomas.(119)

Therapeutic Implications for SLN Metastasis

Malignant melanoma is one of the candidates for the investig-
ation of immunotherapy because it is clinically resistant to
chemotherapy and radiotherapy, and expresses many kinds of
immunogenic molecules. To date, Mycobacterium bovis Bacillus
Calmette-Guérin, IL-2, type II interferon (IFN), and granulocyte–
macrophage colony-stimulating factor (GM-CSF) have been
reported to have antitumor effects for melanoma after intratumoral
injection.(120–123) GM-CSF has been supposed to provide an
antitumor effect by acting on DC, T-cells, and macrophages.
GM-CSF is known to cause mature DC to migrate to regional
LN and increase their resistance to apoptosis,(124) and also to
induce T-cell mediated antitumor immunity by activated DC.
Vuylsteke et al. reported that preoperative peritumoral injections
of GM-CSF resulted in enlargement of DC and T-cell areas in
the SLN.(125) These results suggest that GM-CSF may have the
potential to prevent or eradicate tumor metastasis in the SLN.
Many other molecules, including IL-13 and IFN-α, have
been reported to be candidates for immunomodulation in the
SLN.(126,127) Further studies will prove the clinical significance of
these immunomodulators for the treatment of SLN metastasis.

Several studies have shown that the VEGFR-3 and/or VEGFR-
2 pathway might be the therapeutic target of inhibiting tumor
lymphangiogenesis and cancer metastasis to SLN. To date,
several antibodies and molecules including anti-VEGFR-3
antibody, anti-VEGF-C antibody, anti-VEGF-D antibody, soluble
VEGFR-3 fusion protein, small interfering RNA to reduce
VEGF-C mRNA expression, and a number of small molecule
kinase inhibitors of VEGFR-2 have been investigated in animal
models.(79,92,94,98,128) Most of the studies using these antibodies
or molecules have demonstrated that specific inhibition of the
VEGFR-3 and/or the VEGFR-2 pathway markedly reduces
lymphangiogenesis and lymphatic cancer metastasis, and likely
also reduces the incidence of distant organ metastasis.

Chemokine receptors will be also as a target of therapeutic
intervention using antibodies or small molecule inhibitors.
Anti-CXCR4 monoclonal antibody significantly inhibits the
metastasis of human breast carcinoma cells to the LN of SCID
mice.(92) Systemic administration of the CXCR4 antagonist
AMD3100, a potent blocker of HIV cell entry, inhibited the
growth of intracranial glioblastoma and medulloblastoma
xenografts by inducing tumor cell apoptosis.(129) However,
systemic inhibition of CXCL12-CXCR4 signaling may have
adverse effects on the hematopoietic stem cells, primitive germ
cells and neural precursors.(130)

Conclusion

The development of the SLN concept has radically altered the
field of diagnosis and treatment of many solid tumors. As this
paradigm shift receives validation from melanoma studies,
greater attention on the histopathological microstaging of the
SLN formalized the concept of LN/SLN micrometastasis. The
use of serial sectioning and IHC analysis, and more recently,
the use of RT-PCR, has enabled investigators to further study
the potential clinical significance of micrometastatic LN/SLN
disease. There is now a growing body of data to support the
clinical relevance of LN/SLN micrometastasis in a variety of
solid tumors. Increasing the sensitivity of occult tumor cell
detection in the SLN, using molecular-based analysis, should
enable a more accurate understanding of the clinical significance
of various patterns of micrometastatic nodal disease. In the
future, molecular staging of SLN should benefit and improve
patient management.
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Lymphangiogenesis and the ‘chemokine-chemokine receptor
network’ are responsible for promoting lymphatic cancer
metastasis. Metastasis to SLN might not be simply reflected
only by the flow dynamics of lymphatic fluid that drains from
the primary site to the SLN, but also by the diplomatic and
active behavior of cancer cells. SLN dramatically show morpho-
logical, phenotypical and functional changes that indicate immune
suppression by tumor cells. The immune suppression in SLN
results in failure of prevention or eradication of tumor metastasis.
The mechanism of immunomodulation remains unclear; however,
several regulatory molecules produced by tumor cells and

tumor-associated macrophages or lymphocytes are likely to be
responsible for inducing immune suppression in the SLN.
Further preclinical and clinical studies may achieve the reversal
of tumor-induced immune suppression that can prevent or
eradicate LN metastasis.
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