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Oncogenic mutations of ALK in neuroblastoma
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Neuroblastoma is one of the most common solid cancers among
children. Prognosis of advanced neuroblastoma is still poor despite
the recent advances in chemo/radiotherapies. In view of improving
the clinical outcome of advanced neuroblastoma, it is important
to identify the key molecules responsible for the pathogenesis
of neuroblastoma and to develop effective drugs that target these
molecules. Anaplastic lymphoma kinase (ALK) is a receptor tyro-
sine kinase, initially identified through the analysis of a specific
translocation associated with a rare subtype of non-Hodgkin’s
lymphoma. Recently it was demonstrated that ALK is frequently
mutated in sporadic cases with advanced neuroblastoma. More-
over, germline mutations of ALK were shown to be responsible for
the majority of hereditary neuroblastoma. ALK mutants found in
neuroblastoma show constitutive active kinase activity and onco-
genic potentials. Inhibition of ALK in neuroblastoma cell lines
carrying amplified or mutated ALK alleles results in compromised
downstream signaling and cell growth, indicating potential roles
of small molecule ALK inhibitors in the therapeutics of neuro-
blastoma carrying mutated ALK kinases. (Cancer Sci 2011; 102:
302–308)

N euroblastoma is a malignant embryonal neoplasm arising
from developing neural crest tissues.(1) It commonly

affects younger children, where the median age of diagnosis is
17 months and approximately 90% of the patients are <4 years
old. In the United States, the incidence of neuroblastoma is esti-
mated to be one in 7000 births, although the incidence calcu-
lated from the mass screening program in Japan was as high as
29.80 cases per 100 000 births, which is significantly higher
than the estimation in the prescreening cohort (11.56 cases per
100 000 births).(2) It is the third most common cancer in child-
hood after leukemia and brain tumors, accounting for 7–11% of
all pediatric cancers.(3) The presentation and following clinical
courses of neuroblastoma are highly variable, ranging from a
solitary localized mass with no apparent clinical symptoms to
widely disseminated diseases presenting with severe systemic
illness.(1) While some tumors undergo spontaneous regression
without therapy, approximately 60–70% of high-risk neuroblas-
toma patients are resistant to any therapies currently available
and succumb to death,(4–6) even though a substantial improve-
ment in 5-year survival rates has been obtained for a subset of
advanced tumors through the development of multimodal
chemo ⁄ radiotherapies during the past several decades.(1) Thus,
one of the urgent problems in the current neuroblastoma treat-
ment would be to develop rational and effective therapeutic
strategies for the high-risk neuroblastoma cases based on their
molecular pathogenesis.

On the other hand, during the past three decades, little
advancement has been made in the understanding of neuroblas-
toma pathogenesis in terms of critical gene targets, except for
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the identification of frequent MYCN amplification.(7) Amplifica-
tion of the MYCN gene is found in approximately 20% of neuro-
blastoma, especially in advanced diseases, and has been
consistently associated with poor prognosis.(8,9) Although
MYCN amplification is a critical genetic event in neuroblastoma
development,(10) it encodes a transcription factor and thus may
not be a plausible pharmacological target for therapeutics.
Recently, several groups independently discovered activating
mutations of the ALK gene in the majority of familial neuroblas-
toma and also in a subset of sporadic neuroblastoma cases.(11–14)

Given that the mutated ALK kinases are well-tractable targets
for small-molecule kinase inhibitors, the discovery draws atten-
tion in the field of neuroblastoma research. In this review, we
provide a brief overview of the role of ALK mutations in neuro-
blastoma pathogenesis and their implication in future therapeu-
tics.

Genetic analysis of familial neuroblastoma

One of the first clues to identifying the novel genetic target of
neuroblastoma was obtained from a linkage study of neuroblas-
toma-prone families. It was recognized that approximately
1–2% of newly diagnosed neuroblastoma cases occur within
families (familial ⁄ hereditary neuroblastoma), indicating the
existence of dominantly acting neuroblastoma susceptibility
gene(s),(15–19) although previous linkage studies, in an attempt
to identify the susceptibility locus, failed to provide a reproduc-
ible result due to the insufficient power of the studies.(20–22)

Germline mutations of the paired-like homeobox 2B (PHOX2B)
gene at 4p12 was reported to be responsible for neuroblastoma
predisposition, but they were mostly related to a rare form of
familial neuroblastoma associated with congenital central hypo-
ventilation syndrome (CCHS) and ⁄ or Hirschsprung disease,
with rare somatic mutations.(23–26) Recently, researchers at the
Pennsylvania University analyzed 20 neuroblastoma pedigrees
for linkage using approximately 6000 genetic markers, and
mapped a candidate neuroblastoma susceptibility locus to the 2p
region between rs18621106 and rs2008535, which contains 104
genes including MYCN and ALK.(11) Through a resequencing
analysis of the ALK exons within the pedigrees they identified
germline mutations of the ALK gene in >90% of the pedigrees
that co-segregated with neuroblastoma development within the
families, clearly demonstrating that the germline ALK mutations
are responsible for the susceptibility to the development of
hereditary neuroblastoma in the majority of the cases.(11,12)

Moreover, the subsequent analysis of ALK mutations in sporadic
neuroblastoma cases identified a subset of sporadic neuroblas-
toma cases carrying acquired ⁄ germline mutations of ALK, which
was also reported independently by other groups.(12–14,27)
doi: 10.1111/j.1349-7006.2010.01825.x
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Genome-wide copy number scanning of neuroblastoma

These groups conducted genome-wide copy number analyses of
neuroblastoma using comparative genomic hybridization (CGH)
arrays(12) or single nucleotide polymorphism (SNP)
arrays.(11,14,27,28) With thousands to half-a-million genetic
probes, both platforms enabled high-throughput detection of
subtle genetic changes occurring in tumor genomes.(29,30) Neu-
roblastoma genomes show characteristic copy number changes
that involve large chromosomal segments, including gains of
17q, 1q, 2p and 11p, and losses of 1p, 3p and 11q, which, like
other human cancers, collectively comprise a unique genomic
profile of neuroblastoma.(11,12,14) High-level amplifications,
which usually involve discrete chromosomal regions <1 Mb in
length, occurred in approximately 30% of neuroblastoma cases.
Approximately 90% of the high-level amplifications in neuro-
blastoma were centered on the MYCN locus at 2p24, whereas
other amplicons rarely mutually overlapped, except for the
amplifications at 2p23, which exclusively involved the ALK
locus in common(12,14,28) (Fig. 1).

High-level amplification of the ALK gene and aberrantly acti-
vated ALK signaling in neuroblastoma was first described by
Osajima-Hakomori et al.(31) in two neuroblastoma-derived cell
lines and a single case of primary neuroblastoma. The genome-
wide copy number studies confirmed their finding, in which the
frequency of ALK amplifications is reported to occur in 3–5% of
primary neuroblastoma cases.(11,12,14) Subsequent resequencing
studies of ALK coding exons disclosed non-synonymous nucleo-
tide substitutions of ALK in a subset of sporadic neuroblastoma
cases and also of neuroblastoma-derived cell lines with mutation
rates of approximately 6–11% and approximately 30%, respec-
tively. Amplified ALK alleles, as a rule, did not harbor additional
mutations, although in rare cases mutated ALK alleles were
amplified.

Genetic abnormalities of the ALK gene in human cancers

ALK was initially isolated as a partner of the fusion gene gener-
ated by t(2;5)(q23;q35) translocation, which is characteristic of
Fig. 1. Copy number gains and high-level
amplifications in the short arm of chromosome 2 in
neuroblastoma. Each horizontal line indicates a
region showing a simple copy number (CN) gain
(CN < 5; thick red) and high-level amplification
(CN > 5; thin red) in each case. The majority of
high-level amplifications involved the MYCN locus
at 2p24, while the other group of amplicons is
found at 2p23, which exclusively contains the ALK
locus.
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anaplastic large cell lymphoma (ALCL), a rare subtype of non-
Hodgkin’s lymphoma.(32,33) ALK encodes an orphan receptor
tyrosine kinase with an apparent molecular mass of 220 kDa.
Jelly belly,(34) and pleiotrophin(35) and midkine(36) have been
postulated as putative ALK ligands in Drosophila and mamma-
lians, respectively, but a dispute about the authentic ligands of
ALK still remains. ALK has an extracellular domain that is
highly similar to LTK and, together with IGF-1R and c-Ros kin-
ases, belongs to the insulin family of proteins.(37) Expression of
ALK is largely restricted to neural tissues and is most abundant
in the neonatal brain and, to a lesser extent, in the adult
brain.(38–41) In the developing brain, the highest expression was
found in the thalamus, mid-brain, olfactory bulb and selected
parts of cranial and dorsal ganglia.(38,39) It is of particular note
that high frequencies of ALK expression were reported in pri-
mary neuroblastoma specimens (22 out of 24 samples) and in
other tumor cell lines derived from neuroectdermal tumors
including neuroblastoma (13 out of 29 cell lines).(42) These
expression patterns of ALK suggest its primary role in normal
neural development as well as the pathogenesis of neuroblas-
toma, although ALK-deficient mice seem to show apparently
normal develop.(37)

In t(2;5)(q23;q35) translocation, the carbonyl terminal of
ALK that contains a kinase domain is fused with nucleophosmin
(NPM), generating NPM ⁄ ALK fusion protein. ALK was also
shown to participate in the generation of different fusion genes
with a variety of partner genes in ALCL,(43–47) inflammatory
fibroblastic tumor,(43,48–52) squamous cell carcinoma of the
esophagus(53) and non-small-cell lung cancers (NSCLC).(54,55)

In NSCLC, ALK was reported to be fused with EML4 to gener-
ate EML4–ALK fusion protein as a result of inv(2)(p21p23),
which is found in 6% of the NSCLC cases(55) (Fig. 2).

These ALK-containing fusion proteins invariably show con-
stitutive kinase activity and transform NIH3T3 cells and ⁄ or con-
fer growth factor independence to 32D and ⁄ or Ba ⁄ F3 cells.(56–58)

When bone marrow cells were retrovirally transduced with
NPM–ALK and transplanted into mice, they developed B-cell
lymphoma within 4 months.(58) The critical role of ALK fusion
proteins in neoplastic evolution has been further demonstrated
Cancer Sci | February 2011 | vol. 102 | no. 2 | 303
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Fig. 2. Aberrant activation of ALK in human cancers. (a) Ligand-dependent physiological activation of wild-type ALK. (b) Fusion ALK kinases
found in anaplastic large cell lymphoma (ALCL) and non-small-cell lung cancer (Lung Ca), such as NPM–ALK and EML4–ALK, self-dimerize
through their N-terminal domains derived from fusion partners, leading to their transphosphorylation and constitutive activation of the kinase.
In a subset of neuroblastoma, aberrant activation of ALK occurs by gene amplification (c) or somatic ⁄ germline mutations (d). Activated ALK
transmits constitutive signals through downstream pathways, which is thought to be important for tumorigenesis. IMT indicates inflammatory
myofibroblastic tumor.
using transgenic mouse models with ALK fusion genes; mice
carrying NPM–ALK or EML4–ALK transgenes under Vav or
CD4, or surfactant protein C promoter develop aggressive
lymphoma or adenocarcinoma of the lung, respectively.(59–61)

The aberrant kinase activity of these ALK-fusion proteins is
thought to be caused by transphosphorylation upon self-dimer-
ization through their N-terminal domain derived from the
fusion partners. Mutations or deletions of the dimerization
domain of NPM–ALK and EML4–ALK result in loss of the
transforming capacity of the fusion kinases.(55,57) The constitu-
tive active fusion kinases transmit signals through activation of
a variety of signal transducers, including PLCc, PI3K ⁄ AKT,
STAT3 and RAS.(62–67)

In neuroblastoma, on the other hand, aberrant activation of
ALK kinase is caused by gene amplification(31) or muta-
tions.(11–14) Thus, ALK represents a unique type of oncogenic
kinase, in that it is deregulated either by gene fusions, or
by gene amplification or mutations, depending on the tumor
type.

Biological consequences of ALK mutations

Most reported ALK mutations occurred within the kinase
domain, in which three highly conserved amino acid positions,
F1174, F1245 and R1275, were predominantly affected, sug-
gesting their functional importance for the regulation of kinase
activity(11–14) (Figs 3,4). The F1174 residue is located at the
end of the Ca1 helix and corresponds to equivalent positions
mutated in EGFR (V769) and ERBB2 (V769), while the
F1245 lies in the catalytic domain and corresponds to the
L833 residue of EGFR, a mutation of which is reported to be
associated with gefitinib resistance in lung cancer (Fig. 5).(13)

The R1275 position lies within the activation loop and is
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invariably changed to glutamine, and amino acid substitution
at this position to a positively charged one would displace the
loop to positions that permit autophosphorylation and autoacti-
vation of the kinase (Fig. 5).(68,69) However, the distributions
of these mutations were different between sporadic cases and
familial cases; R1275 mutations are commonly found in both
sporadic and familial cases, while no germline mutations involv-
ing the F1174 or F1245 position have been reported.(11–14)

Because not all mutant ALK carriers develop neuroblastoma
(i.e. incomplete penetrance), a germline ALK mutation is not
fully oncogenic and additional genetic events are thought to
be required for neuroblastoma development. ALK mutations
tend to be associated with advanced diseases and also with
MYCN amplification in sporadic neuroblastoma cases,
although the trend was not clear for germline ALK muta-
tions.(11–14)

When expressed in NIH3T3 cells, the predominant kinase
domain mutant (F1174L) and a juxtamembrane mutant
(K1062M) are shown to have transforming capacity; mutant-
transduced cells display increased colony formation in soft
agar and tumor generation in nude mice, whereas the mutant
kinases show increased autophosphorylation and in vitro
kinase activity compared with wild-type ALK.(14) In addition,
when introduced into an IL-3-dependent cell line, BaF3, the
two major kinase domain mutants (F1174L and R1275Q), ren-
der the cell line independent of IL-3.(13) Expression of the
F1174L mutant in NIH3T3 and Ba ⁄ F3 cells leads to constitu-
tive activation of the downstream signaling pathways of the
ALK kinase, as demonstrated by increased levels of phosphor-
ylated ERK1 ⁄ 2, STAT3 and AKT.(13,14) These functional and
biochemical studies together indicate that these ALK mutants
are actually oncogenic and could be responsible for the patho-
genesis of neuroblastoma.
doi: 10.1111/j.1349-7006.2010.01825.x
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Fig. 3. Frequency and distribution of ALK mutations reported in familial and sporadic cases of neuroblastoma.(11–14,27) Locations of somatic and
germline mutations of ALK in each case or family are depicted by filled and open arrows, respectively. The exact positions and amino acids
involved are indicated on the top, where the number of reported mutations is indicated in parenthesis.

Fig. 5. A 3-D structure of the kinase domain of ALK kinase predicted
from that solved for IGF-1R, where the positions of three major
mutations are indicated by light blue spheres. Activation and catalytic
loops are depicted by red and pink wires.

Fig. 4. Alignment of amino acids of ALK among different species.
Conserved amino-acids among different insulin receptor family
kinases are shown by gray boxes and the mutated positions are
shown in red.
Effects of ALK inhibition on ALK fusion kinases

The critical role of ALK mutations in neuroblastoma develop-
ment is further supported by the experiments using inhibition of
mutant ALK. Tumor suppressive effects of ALK inhibition have
been well documented in NPM–ALK-positive ALCL and
EML4–ALK-positive NSCLC. NVP–TAE684 is a highly potent
and selective small molecule ALK inhibitor, which blocks the
growth of ALCL-derived cell lines with very low IC50 values
between 2 and 10 nM.(70) NVP–TAE684 treatment of ALCL-
derived cell lines induces rapid and sustained inhibition of
phosphorylation of NPM–ALK and its downstream signaling,
leading to cell cycle arrest and apoptosis.(70) NVP–TAE684 also
induces varying degrees of growth suppression in EML4–ALK-
bearing lung cancer cell lines, including NCI-H3112, NCI-
H2228 and DFCI032.(67,71) PF-2341066 was another compound,
which was initially identified as an orally available c-Met inhibi-
tor in biochemical enzymatic screens, but was subsequently
found to show selective inhibition of ALK.(72,73) It is highly
selective for both ALK and c-Met kinases, being almost 20-fold
Ogawa et al.
selective for ALK and c-Met compared with 120 other kina-
ses.(73) PF-2341066 inhibited cell growth of NPM–ALK-posi-
tive ALCL-derived cell lines, as well as EML4–ALK-positive
NSCLC-derived cell lines with decreased downstream signaling
pathways, although their IC50 values were significantly higher
than those of NVP–TAE684.(71,72) Recently, Soda et al. gener-
ated transgenic mice, in which the EML4–ALK-transgene was
selectively expressed in the developing lung under the surfac-
tant protein C promoter.(61) All mice developed multiple lung
adenocarcinomas soon after birth, which were successfully
treated with a 2,4-pyrimidinediamine derivative that specifically
inhibits ALK kinase.(61) These observations strongly support
that aberrant ALK activity of ALK-fusion proteins is central to
the development of ALCL and NSCLC.
Cancer Sci | February 2011 | vol. 102 | no. 2 | 305
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Effects of ALK inhibition on ALK-mutated neuroblastoma
cell lines

In neuroblastoma, the predominant mechanism of ALK activa-
tion should be some conformational change caused by a point
mutation typically involving the kinase domain, which poten-
tially affects the kinetics of ALK inhibitors on the mutated
kinase. However, as long as major ALK mutants are concerned,
their kinase activity seems to be successfully inhibited by the
currently available ALK inhibitors. Ba ⁄ F3 cells transduced with
the F1174L or R1275Q ALK mutant were effectively killed by
NVP–TAE684 or PF-2341066, whereas the cells transduced
with a constitutive active FLT3 mutant or wild-type ALK were
not.(13) Thus, both compounds specifically inhibit the kinase
activity of these ALK mutants, although the inhibition is more
efficient for F1174F than for R1275Q. In fact, many, if not all,
neuroblastoma cell lines carrying mutated or amplified ALK
alleles are shown to be sensitive to these ALK inhibitors.(12,13,71)

Interestingly, the sensitivity of some neuroblastoma cell lines to
small molecule ALK inhibitors was recognized prior to the dis-
covery of ALK mutations in neuroblastoma. McDermott et al.
tested more than 600 cancer cell lines for their sensitivity to
NVP-TAE684 and ⁄ or PF-2341066 and found that neuroblas-
toma cell lines, as well as cell lines derived from ALCL and
lung cancer, frequently show sensitivity to these inhibitors.(71)

The dependence of ALK-mutated neuroblastoma to ALK inhibi-
tion is further confirmed by ALK knockdown experiments;
shRNA-mediated knockdown of ALK in ALK-mutated neuro-
blastoma cell lines results in the suppression of cell growth,
indicating that the major effect of ALK inhibitors on ALK-
mutated neuroblastoma cell lines are mediated by their activity
on ALK rather than off-target effects on other kinases.

As mentioned above, the sensitivity of ALK-mutated neuro-
blastoma cell lines to ALK inhibitors seems to substantially
differ among cell lines, depending on the type of ALK muta-
tions. The F1174L mutant seems to be more sensitive to
NVP–TAE684 than the R1275Q mutant.(13) Some ALK-
mutated cell lines were resistant to ALK inhibition; SMS–
KCNR harbors the R1275Q mutation, but was not killed by
NVP–TAE684 or shRNA, indicating that this cell line acquired
some additional mutations, escaping from its dependence on
ALK signaling.

Concluding remarks

Genetic analyses of neuroblastoma have revealed that aberrant
activation of ALK kinase in human cancer is not only caused by
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gene fusions but also by gene amplification or germline ⁄ somatic
mutations. However, probably the most significant impact of the
discovery of ALK mutations in neuroblastoma would be the pos-
sibility of successful treatment of ALK-mutated neuroblastoma
with small molecule ALK-inhibitors, which are now under
development in several pharmaceutical companies. Because
ALK expression is restricted to developing neural tissues and
ALK-deficient mice develop normally,(37) mutated ALK is likely
to be a plausible therapeutic target. Although the enthusiasm for
ALK-targeted therapy for advanced neuroblastoma seems to be
too early at this moment, an encouraging result was reported
from a clinical trial of crizotinib (PF-2341066) for NSCLC car-
rying the EML4–ALK fusion gene. A total of 50 patients were
evaluable for response, where 64% of the overall response rate
and 90% of the disease control rate were obtained(74) with mini-
mum adverse reactions. Nevertheless, the result in NSCLC is
not easily translated into neuroblastoma cases. For example,
while some ALK mutants are shown to be inhibited by the avail-
able ALK inhibitors in vitro, the impact of different mutation
types on the action of inhibitors should be further evaluated. The
effect of frequent co-existence of MYCN amplification with
ALK mutations on sensitivity to ALK inhibitors is still elusive,
although a cell line, KELLY, which carries both the F1174L
mutation and MYCN amplification, was reported to be sensitive
to NVP–TAE684.(13,71) Finally, the role of ALK inhibitors in
ALK-non-mutated neuroblastoma is another interest. Some neu-
roblastoma cell lines (NBEBC1 and NB1771) were shown to be
sensitive to shRNA-mediated ALK knockdown, even though
they were reported to have no mutated ALK alleles.(11) Interest-
ingly, ALK is phosphorylated in these cell lines at lower levels.
Considering the frequent expression of ALK in neuroblastoma
cells, it may be postulated that regardless of its mutation status,
ALK play a positive role during the initiation and promotion of
neuroblastoma, even though established tumors may or may not
depend on the ALK activity. Clearly, much more work is
required before the clinical role of ALK inhibitors in the treat-
ment of advanced neuroblastoma is established.
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