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Cancer epigenetics is rapidly moving into a translational phase, and
knowledge on how aberrant DNA methylation is induced is becoming
important. Aging, chronic inflammation, and viral infections are
known to promote methylation of non-core regions of promoter CpG
islands (CGI). The non-core methylation and ‘seeds of methylation’,
scattered methylation in a CGI, are considered to serve as triggers for
dense methylation of a promoter CGI, which permanently represses
expression of its downstream gene. Decreased gene transcription is
an important factor that promotes induction of dense methylation.
The presence of the CGI methylator phenotype (CIMP), in which
methylation of multiple CGI was observed, is under dispute. Some
gastric cancer cell lines have increased rates of de novo methylation,
and neuroblastoma cases with CIMP show qualitatively different
prognosis from those without. This strongly supports the presence of
CIMP, but it seems to contain multiple entities. Limited knowledge
is available for epimutagens, the chemicals that induce DNA
demethylation or methylation. We have developed an assay system
to detect demethylating agents, and an assay system for methylating
agents is necessary. Efforts in the field on how aberrant methylation
is induced will lead to new cancer prevention, diagnostics, and
therapeutics. (Cancer Sci 2005; 96: 206–211)

DNA methylation of a CpG island (CGI) in the promoter
region of a tumor-suppressor gene represses its trans-

cription.(1) The first example was identified for the RB gene in
sporadic retinoblastomas in 1993(2,3) followed by VHL,(4) CDKN2A
(p16 ),(5,6) CDH1 (E-cadherin),(7,8) and hMLH1.(9) Now, many tumor-
suppressor genes are known to be inactivated by methylation of
their promoter CGI in a wide variety of cancers.(1) Methylation of
a promoter CGI excludes some methylation-sensitive transcription
factors, such as CTCF, and recruits methyl-CpG binding proteins,
such as MeCP2 and MBD1-MBD3.(10) These methyl-CpG
binding proteins further recruit histone deacetylases, histone
methyltransferases, and heterochromatin proteins.(11) It is believed
that changes in chromatin structure will block the access of
transcription complex to DNA, and repress transcription.

In parallel with the mechanistic studies on how DNA methyl-
ation leads to gene silencing, the search for genomic regions
aberrantly methylated in cancers has also made a lot of progress.(12)

In the late 1990s, before the human genome sequence was avail-
able, several genome-wide screening methods were developed,
such as restriction landmark genomic scanning-methylation,
methylation-sensitive-representational difference analysis
(MS-RDA), methylation-sensitive-arbitrarily primed PCR,
and methylated CpG island amplification-RDA.(13–17) These
methods revealed that cancers harbor many aberrantly methyl-
ated genomic regions. Now, owing to completion of the
sequencing of the human genome, it has become evident that,
even if limited to CGI in promoter regions or putative promoter
regions (5′ regions) of genes, most cancers have multiple
aberrant methylations.(18–21) These aberrant methylations are

considered to provide a good source of tumor markers,(22) and
targets for chemotherapeutics.(23,24)

In contrast with these rapidly progressing areas of epigenetics,
the etiology of aberrant DNA methylation needs more attention.
What induces DNA methylation and how? As there are many
excellent reviews on epigenetics and cancer,(1,3,10,22) here, we would
like to focus on recent advancements on how aberrant DNA
methylation is induced, based on our recent findings.(19–21,25–29)

Factors known to be associated with DNA methylation. Factors that
are known to be associated with methylation of CGI include
aging, chronic inflammation, and viral infections.(30–35)

It was first reported that a NotI restriction site in exon 1 of
estrogen receptor (ESR) was methylated in normal colon mucosa
in association with aging.(30) Further, the N33 transcription start site
and MYOD exon 1 were methylated in normal colon mucosa in
association with aging, while p16, THBS1, HIC-1 and CALCA
were not.(31) These findings led to the establishment of a concept
that some regions of CGI are methylated in association with aging
in normal tissues, which has been confirmed by many subsequent
studies using human samples and also in rats.(36,37) However, it is
noteworthy that age-related methylation of tumor-suppressor
genes applies mostly to exonic or far upstream regions within
a promoter CGI, and that, even within the same promoter CGI,
a small region covering the transcription start site is kept
unmethylated.(33,36,38)

Chronic inflammation is also known to be associated with
increased methylation. Normal-appearing colon mucosa of cases
with ulcerative colitis are associated with increased methylation
of p16 exon 1, MYOD far upstream region, and CSPG2 exon
1.(32,33) As in the case of age-related methylation, a region covering
the p16 transcription start site was spared from methylation.(33)

Tobacco smoke, which contains various carcinogens and also
induces inflammation, is also known to be associated with meth-
ylation of p16 exon 1.(39) Along with the inflammation induced
by viral infections as described below, chronic inflammation is
considered as one of the factors that induce DNA methylation.

It is well established that viral DNA is methylated upon infec-
tion into mammalian cells.(40) It is becoming recognized that not
only the viral DNA but also cellular DNA can be methylated as
a consequence of viral infection.(41) Stomach cancers positive for
Epstein-Barn (EB) virus are known to have more methylated CGI
than those without.(34,35) As with age-related and inflammation-
induced methylation, methylation of p16 was present in its exon
1. In hepatocellular carcinomas, for which a precise comparison
between virus-positive cancers and negative ones is very difficult,
aberrant methylation was detected even in non-cancerous liver
tissues showing chronic hepatitis or liver cirrhosis.(42) Detailed
analysis of MGMT and hMLH1 promoter CGI showed that weak
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methylation was present in far upstream regions.(43) Also, in the
disease course of adult T-cell leukemia, endogenous genes,
including p16, were shown to be methylated.(44) These points
indicate that infection by EB virus, hepatitis viruses, and pos-
sibly other viruses triggers cellular machineries to methylate
these viruses, which erroneously methylate endogenous genes.

As for p16 and hMLH1 genes, the above described factors do
not induce methylation in critical regions for gene transcription
(core regions), small regions covering their transcription start
sites (Figs 1d, e),(12,45–47) but in other regions (non-core regions),
such as exon 1 and far upstream regions (Fig. 1b). This shows
that the core regions in promoter CGI are protected from de novo
methylation. This leads to a hypothesis that the influence of the
above factors can be more readily analyzed using non-core regions
within promoter CGI or CGI outside promoter regions.

Dietary factors, such as folate deficiency and choline deficiency,
are known to induce genomic hypomethylation, through induction
of deficiency of methyl donors, such as S-adenosylmethionine.(48)

Molecular mechanisms for methylation induction. When a gene
is silenced by methylation of its promoter CGI, the CGI is
usually densely methylated (Fig. 1e), as is known for CDH1,
VHL, p16, hMLH1, and many other genes.(19,25,38,45–47) Before this
dense methylation is formed, two types of precursor methylation
are considered to be present. One is methylation of non-core
regions within a CGI (Fig. 1b), and the other is ‘seeds of
methylation’, scattered methylation (Fig. 1c). The above-mentioned
factors, aging, chronic inflammation, and viral infection, are
involved in induction of non-core methylation and possibly
‘seeds of methylation’.

Non-core methylation is frequently observed for various
genes, including p16, and hMLH1, and does not block gene
transcription.(45–47) Although a direct demonstration that non-
core methylation leads to dense methylation with a significant

frequency is not yet available, this model is widely believed.
This is because methylation of core regions is almost always
associated with methylation of non-core regions in cancer and
normal cells, and because dense methylation in a cancer is often
associated with methylation of non-core regions in its surround-
ing tissues. However, a quantitative correlation between the degree
of non-core methylation and the chance of dense methylation
needs to be carefully examined.

‘Seeds of methylation’ is emerging as an important precur-
sor.(28,49,50) Stirzaker et al. introduced GSTP1 with diminished
promoter activity into LNCaP prostate cancer cells. When the
construct was not methylated initially, little methylation was
induced after 22 days. In contrast, when the construct was
initially sparsely methylated with HpaII methylase, a high
degree of methylation all over the CGI was induced after 22 days.
Also, we found that some gastric cancer cell lines tend to have
scattered methylation, and that the scattered methylation leads
to dense methylation with a low frequency.(28) These observa-
tions demonstrated that ‘seeds of methylation’ is an important
precursor to dense methylation of a CGI.

Diminished transcription is also considered as a factor that
promotes induction of dense methylation. Clark and colleagues
demonstrated that even if ‘seeds of methylation’ are present,
introduced GSTP1 with active promoter was not methyl-
ated.(49,50) De Smet et al. demonstrated that impaired promoter
activity or lack of cellular capacity for transcription promote re-
methylation of demethylated MAGE-A1.(51) As circumstantial
evidence, when we made genome-wide screenings for genes
methylated in pancreatic and breast cancers, most of the genes
whose 5′-CGI were methylated had low or no expression in
normal counterpart cells.(20,21)

Antisense RNA to HBA2 was shown to induce methylation of
its promoter CGI.(52) Short interfering RNA targeted to CDH1
and EF1A promoter CGI was shown to induce methylation of
these CGI.(53,54) These mechanisms are very interesting since
even transient expression of these RNA could lead to permanent
inactivation of respective genes, and these CGI-specific mecha-
nisms for methylation induction could be involved in physiological
processes to induce tissue-specific methylation patterns. Also, a
leukemia protein, PML-RAR fusion protein, has been shown to
induce methylation of its target sequence by recruiting DNA
methyltransferases.(55) A great deal of research is necessary on
how sequence-specific methylation is induced in physiological
processes, such as embryonic development.

In Neurospora, mutation of histone methyltransferase abol-
ished DNA methylation, showing that histone methylation is
indispensable for DNA methylation.(56) In mammalian cells, DNA
methylation is known to induce histone modification such as
histone deacetylation.(10) At the same time, recruitment of histone
H3-Lys9 methyltransferase, SETDB1, along with heterochromatin
protein 1 (HP1) to a euchromatic silenced gene-induced DNA
methylation.(57) Also, temporal observation of DNA-demethylated
cancer cells revealed that histone H3-Lys9 methylation preceded
DNA re-methylation.(58) Although no reports have shown that
histone modification is indispensable for DNA methylation in
mammalian cells, histone methylation at H3-Lys9 seems to
promote DNA methylation also in mammalian cells. The rela-
tionship among ‘seeds of DNA methylation’, induction of histone
H3-Lys9 methylation, and dense DNA methylation needs to be
clarified.

CpG island methylator phenotype (CIMP). Multiple CGI are
methylated in some cancers. In 1999, Toyota et al. found that a
subset of colon cancers had methylation of multiple CGI using
‘Methylated in tumors (MINT)’ clones they originally isolated.(59)

They found a biological meaning in this subset, that is, this subset
had a significantly higher incidence of hMLH1 methylation than
the others, and designated this phenotype as CIMP. CIMP was
also observed in stomach and pancreatic cancers.(60,61) However,

Fig. 1. Various types of methylation in a promoter CGI. When the core
region (shown by brackets)* is methylated, transcription of the downstream
gene is blocked (d, e). However, even if non-core regions are methylated,
transcription is not blocked (b). ‘Seeds of methylation’ (c) is drawing
attention as a precursor for dense methylation (e). Open lollipops show
unmethylated CpG sites, and closed lollipops show methylated CpG
sites.
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after a detailed analysis using 35 non-biased loci, most of
which are derived from CGI, in 207 colorectal cancer samples,
Yamashita et al. concluded that the number of cancers with specific
numbers of methylated loci obeyed a normal distribution of random
events, and qualitative distinction between CIMP(+) and CIMP(–)
is impossible.(62)

We would like to note that several factors should be con-
sidered to solve this distortion. First, to honor the connotation
of the word ‘methylator’, the rate of occurrence of methylation
events in a defined number of cell divisions should be analyzed
(Fig. 2a). If a cancer had originated from a precursor cell with
many aberrantly methylated loci and high fidelity in its replicat-
ing methylated status, this is still observed as ‘CIMP’ (Fig. 2b).
Second, the loci used are different. Different CGI show different
susceptibility to methylation, and, even within a CGI, different
regions show different susceptibility.(12,26,63) Third, CGI methyla-
tion that can affect cellular growth should be avoided, which
was carefully done by Yamashita et al.(62)

To address the first point, whether or not some cancer cells
have increased rates of occurrence of methylation events, we
analyzed occurrence of de novo methylation in a defined gener-
ation of culture in four gastric cancer cell lines, two of which
had multiple CGI methylated and the other two had few.(28) The
former two cell lines showed increased rates of de novo methyl-
ation, which was measured as decreased fidelity in replicating
CpG methylation patterns, and the increased rates resulted in
the rare appearance of fully methylated molecules (Fig. 3). The
latter two cell lines showed limited numbers of de novo methyl-
ation, and did not show appearance of fully methylated molecules
at all. Interestingly, the increase of de novo methylation was
observed in only limited CGI. This finding clearly demonstrated
that at least some gastric cancer cell lines have intrinsic defects
that manifest as increased de novo methylation that can lead
to appearance of densely methylated CGI. The molecular

mechanism for the increased rate of de novo methylation needs
to be clarified.

Another piece of support for the presence of CIMP came
from identification of a prognostic marker for neuroblastomas,
one of the most common pediatric solid tumors. We made a
genome-wide screening for differences in DNA methylation
between neuroblastomas with a good prognosis and those with
a poor prognosis by MS-RDA, and found that multiple CGI
were methylated in the latter.(29) The multiple methylation was a
very strong prognostic factor, surpassing the currently most
reliable prognostic marker, N-myc amplification. This showed
that methylation of multiple CGI, CIMP, was underlined by an
important biological mechanism(s). Importantly, specific CGI
were useful to sensitively detect CIMP in neuroblastomas; and
MINT clones, which are good markers for CIMP in colon cancers,
were not methylated in neuroblastomas with CIMP.

In contrast with the findings that support the presence of CIMP,
we could not classify breast cancers into CIMP(+) and (–) groups
using 13 CGI (Miyamoto et al. manuscript in preparation). Many
different entities seem to be included in the current concept of
‘CIMP’, and careful description on how ‘CIMP’ was analyzed
is requisite in future studies.

Chemicals that cause epigenetic alterations: Epimutagens. Some
chemicals are reported to induce methylation or demethylation
of CpG sites and CGI, in some cases, and are designated as
epimutagens (Table 1).(64) Only a limited number of chemicals
are known to induce methylation, including nickel, butyrate, and
arsenic.(65–67) However, the meaning of these methylation changes,
especially whether or not they can induce permanent changes in
gene expression, needs to be carefully interpreted. It is possible
that exposure to chemicals first induce gene expression changes,
and then the altered gene expression induce DNA methylation
(or demethylation) at limited number of CpG sites.

In contrast, the action of a group of demethylating agents,
5-aza-2′-deoxycytidine (5-aza-dC) and its derivatives,(24,68) is
well documented. These chemicals are incorporated into DNA
strands, and will trap DNA methyltransferase 1 (DNMT1). The
trapped DNMT1 is degraded, and demethylation of cellular DNA
is induced. (–)-Epigallocatechin-3-gallate (EGCG), a polyphenol
in green tea, was recently shown to inhibit DNMT1 and induce
demethylation of multiple CGI, and demethylation is proposed
as one of its cancer-preventive mechanisms.(69) However, for

Fig. 2. CGI methylator phenotype (CIMP) and ‘pseudoCIMP.’ Open re-
ctangles show unmethylated CGI, and closed rectangles show
methylated CGI. In cancer cells (shown in pink or red) with intrinsic
defects (a), aberrant methylation keeps occurring. After several clonal
selections during multistep carcinogenesis, all cancer cells come to have
methylation of multiple CGI. In contrast, if a cancer cell is derived from
a precursor cell with methylation of multiple CGI (b), cancer cells
derived from it will also display methylation of multiple CGI.

Fig. 3. Decreased fidelity in replicating methylation patterns and
induction of dense methylation.(28) Two gastric cancer cell lines positive
for CGI methylator phenotype (CIMP) displayed scattered methylation
after 22–23 generations (a). This led to appearance of densely methylated
DNA molecules, although the frequency was rare. In contrast, two
different gastric cancer cell lines without CIMP did not display scattered
methylation (b).
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other chemicals with ‘demethylating activities’, again, their sig-
nificance needs careful interpretation.

In spite of the potential influence on human health, the number
of known epimutagens is very small, possibly because there are
no efficient assay systems for them. Taking this into account, we
developed a detection system for demethylating agents using an
endogenous promoter CGI (Fig. 4a).(27) We first searched for a
CGI that is silenced in a cancer cell line, but can drive ample
gene expression. Then, we inserted a HygR-EGFP marker gene
downstream of the CGI by homologous recombination. When
the CGI was demethylated by 5-aza-dC, expression of the HygR-
EGFP marker gene was detected. To detect methylating agents
(Fig. 4b), we need a promoter CGI that can be readily methylated,
and a repression system of gene expression. The construction is
also under way.

Future directions. No single mechanism will be able to explain
how methylation of CGI is induced. It is mostly unknown which
proteins regulate the frequency of de novo methylation and where
it takes place. A particularly interesting issue is how ‘seeds of
methylation’ lead to dense methylation of a CGI. A mechanism
that unifies the methylation status of multiple CpG sites within
a CGI is likely to exist.

Distinction between aberrant methylation and physiological
methylation is very difficult, considering the presence of age-related

methylation. In addition to the essentially confusing nature of
methylation, inadequate description or analysis of methylation
makes the situation worse. Does a study analyze the methylation
status collectively of CGI or of a CpG site? Is the CGI located
in the promoter region or not? Is methylation of the analyzed
region critical for transcription repression? Precise analysis
will open up new paths to cancer prevention, diagnostics, and
treatment.
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