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Monoclonal antibodies (mAbs) against growth factors or their re-
ceptors have been revealed to be effective therapeutic agents for
solid tumors. Trastuzumab (humanized anti-HER2 mAb) is the first
mAb approved for the treatment of a solid tumor, metastatic
breast cancer. Large-scale phase III clinical trials are now ongoing
to further evaluate the additive effects on chemotherapy and the
efficacy as a maintenance monotherapy. Another anti-HER2 mAb
CH401 that we developed also seems to have good potential.
This chimeric mAb completely suppressed the growth of estab-
lished human tumor xenografts in SCID mice after a single injec-
tion. Furthermore, CH401 characteristically showed much
stronger induction of apoptosis in HER2-overexpressing gastric
cancer cells compared to trastuzumab. Additional targets now be-
ing intensively evaluated are epidermal growth factor receptor
(EGFR) and vascular endothelial growth factor (VEGF). Both cetux-
imab (chimeric anti-EGFR mAb) and bevacizumab (humanized
anti-VEGF mAb) have recently been shown to be of clinical value
for metastatic colorectal cancer. Anti-idiotype mAbs are unique as
active immunotherapeutic agents, and survival benefits have
been observed in clinical trials for solid tumors. (Cancer Sci 2004;
95: 621–625)

he development of a laboratory technique for making mon-
oclonal antibodies (mAbs) by Milstein and Köhler in

19751) allowed the massive production of mAbs against cancer
cells. Consequently, it was expected that highly specific and ef-
fective antibody therapy would be developed. However, the re-
sults obtained from several clinical trials in the early 1980s
revealed limited clinical responses and adverse effects mainly
due to the xenogenicity of the mAbs. Through numerous subse-
quent preclinical studies on a variety of mAbs, the efficacy of
shutting off receptor-mediated signaling as a means of blocking
cell growth and viability was noted. Remarkable objective re-
sponses were observed during clinical trials using rituximab
(chimeric anti-CD20 mAb)2) or trastuzumab (humanized anti-
HER2/neu/ErbB-2 mAb),3) resulting in a second wave of mAb
therapy. Various mAbs against human epidermal growth factor
receptor 2 (HER2),3–7) epidermal growth factor receptor
(EGFR),8–13) vascular endothelial growth factor (VEGF),14, 15)

and VEGF receptor (VEGFR)16) were then subjected to clinical
trials. In addition to this mAb group, anti-idiotype mAbs are
worthy of note, since they are uniquely used for active immu-
notherapy. This article reviews some of the recent remarkable
findings concerning cancer therapy with these mAbs, especially
against solid tumors.

Anti-HER2 mAbs 
Trastuzumab (Herceptin) is a humanized mAb, which was

approved by the United States Food and Drug Administration
in 1998 for the treatment of advanced breast cancer. This was

the first approval of a mAb for use in solid tumor therapy.
Three years later, it was approved in Japan. The approved use
of trastuzumab in HER2-positive metastatic diseases includes
as a first-line treatment in combination with paclitaxel and as a
monotherapy in patients who have received one or more che-
motherapeutic regimens. HER2 overexpression is observed in
15–30% of breast cancers.17, 18) There are currently four major
phase III multicenter trials that in total will randomize approxi-
mately 12,000 patients to chemotherapeutic regimens with or
without trastszumab.19) HER2 expression is examined using
validated fluorescence in situ hybridization or immunohis-
tochemistry assays. The duration of trastuzumab maintenance is
1 or 2 years after chemotherapy with or without trastuzumab. In
Japan, Sawaki et al.20) reported the clinical response of 27 met-
astatic breast cancer patients to trastuzumab as a single agent.
Complete response, partial response, no change, and progres-
sive disease were observed in 3, 3, 3 and 17 patients, respec-
tively, with one case being not evaluated, and the therapy was
well tolerated.

The most serious, but unexpected, toxicity observed during
the pivotal trials was cardiac dysfunctions, including clinically
manageable left ventricular systolic dysfunction, and occasion-
ally advanced congestive heart failure in a small percentage of
patients.21) The incidence and severity of cardiac dysfunction
was greatest in patients receiving concomitant trastsuzumab
and anthracycline plus cyclophosphamide.22) Although the
pathophysiological mechanisms of cardiac dysfunction associ-
ated with trastuzumab are not clearly understood, Crone et al.
demonstrated that mice with a ventricular-restricted deletion of
the HER2 gene developed dilated cardiomyopathy,23) indicating
that HER2 signaling in the cardiomyocytes is essential for the
prevention of this disorder.

HER2 expression is found in solid tumors other than breast
cancer. Some objective responses have been observed during
clinical trials for colorectal and non-small cell lung
cancers.24, 25) Pancreas,26) bile duct27) and stomach4, 28) cancers
that express HER2 with a relatively high frequency are ex-
pected to be new targets of anti-HER2 mAb therapy.

We developed several mAbs against HER24) and prepared a
mouse-human chimeric mAb CH401 using the mAb, E401,
which showed the most potent in vitro cytolytic activity, to re-
duce immunogenicity and enhance effector functions.29) Indeed,
CH401 was much more efficient than the mouse mAb E401 in
antibody-dependent cell-mediated cytotoxicity assay (ADCC)
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with human effector cells.29) The most striking finding was its
in vivo anti-tumor effect. The efficacy of CH401 therapy was
tested on the growth of gastric cancer JRST cells using a mouse
model with tumor xenografts. Antibodies were administered to
mice only once, when the tumor of JRST cells was established.
As shown in Fig. 1, they produced rapidly growing tumors with
a short latency treated with an irrelevant antibody, chimeric
anti-CD54 mAb,30) whereas they did not form tumors at all in
95% of mice treated with 200 µg of CH401 (to be published).
This therapeutic effect was not restricted to JRST cells. The in
vitro cytolytic activity of CH401 was demonstrated in all the
HER2-expressing human cultured cell lines tested (Fig. 2).31) In
these experiments, cells were incubated with CH401 for 48 h
and viable cells were simply determined by trypan blue stain-
ing, suggesting that the in vivo anti-tumor effect was at least
partly due to CH401 alone. It is also noteworthy that more than
50% of cells were killed irrespective of the HER2 expression
level.31)

We then found that the cytolytic action of CH401 was based
on programmed cell death. Morphological changes and DNA
fragmentation were recognized at least 12 h after treatment of
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Fig. 1. Anti-tumor activities of mAb CH401 against human gastric can-
cer JRST cells in SCID mice. Chimeric anti-CD54 mAb was used as a con-
trol antibody. 1×106 human gastric cancer JRST cells were s.c. injected
into the flanks of SCID mice. Antibodies were i.p. administered to mice
only once when the tumor volume reached 400 mm3. The size of the
s.c. tumor in each mouse was measured once a week.
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Fig. 2. Expression level of HER2 (left) and sensitivity to cytotoxic activ-
ity of mAb CH401 (right) in cultured tumor cells. Chimeric anti-CD54
mAb was used as a control antibody. Left, Cultured cells were incubated
for 2 h at 4°C with 125I-labeled mAbs, then washed, and bound radioac-
tivity of cells was counted in a γ-counter. Right, Cells were incubated
with mAbs. Aliquots of cells were removed at 48 h and viable cells were
determined by trypan blue staining. The percentage cell death was cal-
culated as (the dead cell number/non-treated cell number per
milliliter)×100. All the HER2-positive cells were susceptible to cytolytic
activity of mAb CH401, while the HER2-negative cells were not.

Control CH401

Fig. 3. Apoptosis in tumor tissues of gastric cancer JRST cells at 7 days
after treatment with mAb CH401 (H-E staining). Control tissues were
obtained from mice treated with an irrelevant mAb. Tumor formation
in SCID mice and antibody administration were as described in Fig. 1.

Fig. 4. Schematic presentation of the possible mechanism of growth-
suppressing activity of CH401 or trastuzumab. CH401 inhibits ERK and
Akt, while it activates p38 MAPK and JNK, resulting in the suppression
of cell growth and the induction of apoptosis. Only the inhibition of
Akt activation has been shown for trastuzumab.
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Fig. 5. Comparison of inducibility of apoptosis in SV22 cells between
CH401 and trastuzumab. SV22 cells (HER2 transfectants of NIH3T3 cells)
were incubated with antibodies (50 µg/ml) for up to 18 h at 37°C and
apoptosis (%) was measured with an apo-percentage kit. CH401 in-
duced apoptosis in more than 70% of SV22 cells at 18 h, whereas tras-
tuzumab did so in only 10–20% of them.
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cultured cells with CH401.31) Apoptotic changes of tumor cells
were also observed in vivo after administration of CH401 (Fig.
3) (unpublished data). Although the entire picture of the molec-
ular mechanism for induction of apoptosis with CH401 remains
to be established, we have found that CH401 suppresses the
cell growth by inhibiting the activation of ERK and Akt, while
it induces apoptosis through the activation of p38 mitogen-acti-
vated protein kinase (MAPK) and c-Jun N-terminal kinase
(JNK), as shown in Fig. 4 (to be published). It was reported that
trastuzumab inhibited Akt activation, but it remains unclear if it
affects the activity of p38 MAPK and/or JNK. We compared
the apoptosis induction between trastuzumab and CH401 after
incubating SV22 cells (HER2-transfectants of NIH3T3) with
each mAb. As shown in Fig. 5, the percentage of apoptotic cells
was more than 70% in CH401 treatment, whereas it was only
10–20% in the case of trastuzumab (unpublished data). A pre-
vious study also showed that the extent of apoptosis (Apo-
BrdU analysis) induced by trastuzumab alone in breast cancer
SKBR-3 cells was 10.5%.32) When trastuzumab was incubated
with breast cancer BT474 cells together with pertuzumab, an-
other anti-HER2 mAb, the percentage of cells staining positive
for annexin V-PE and/or 7-AAD was 20–25%.33) These data
suggest that apoptosis induction by CH401 may be remarkably
high among anti-HER2 mAbs so far developed. A comparison
of the in vivo anti-tumor effect between CH401 and trastu-
zumab is now under way in our laboratory. It was recently
shown that trastuzumab-mediated ADCC was impaired in pe-
ripheral blood mononuclear cells from patients with advanced
gastric cancer, which correlated with the down-regulation of
CD16zeta expression in NK cells.34) Although it will be neces-
sary to see whether this phenomenon generally occurs in ad-
vanced cancer patients, CH401 might be more potent under
these conditions than trastuzumab.

Anti-EGFR or VEGF mAbs 
EGFR and VEGF/VEGFR are additional possible targets of

mAb therapy. EGFR is expressed at a high frequency in a vari-
ety of tumors.35) Clinical trials have therefore been performed in
a number of cancers including head and neck, breast, lung,
colorectal, pancreatic, kidney, bladder, ovarian and brain can-
cers. Although there are a number of mAbs being subjected to
clinical trials, a murine-human chimeric mAb, cetuximab
(C225), has been extensively evaluated and is the subject of
most of the currently available clinical data.8) In a recent clini-
cal trial for colorectal cancer,36) 329 patients with irinotecan-re-
fractory metastatic colorectal cancer were randomized into two
trial arms (arm A, cetuximab plus irinotecan; arm B, cetuximab
alone). The median times of progression of arms A and B were
4.1 and 1.5 months, respectively, indicating a significant addi-
tional effect of cetuximab. The adverse characteristic of anti-
EGFR-targeted therapy is an acne-like skin rash, which was ob-
served in 77% of 813 patients treated in 21 trials.37) Very re-
cently, cetuximab has been approved in the United States and
Europe for the treatment of irinotecan-refractory metastatic
colorectal cancer.

Anti-angiogenesis therapy is unique in targeting tumor vas-
culature, but not tumor cells themselves, and therefore it is
broadly applicable for most solid tumors.38) Although numerous
growth factors are involved in angiogenesis, VEGF is hypothe-
sized to play a pivotal role in tumor angiogenesis.14) Bevaci-
zumab is a humanized anti-VEGF mAb, which has been most
extensively investigated in a variety of tumors, including non-
small cell lung, breast, prostate, renal and colorectal cancers.14)

The latest notable finding was a result of a phase III trial of be-
vacizumab in combination with bolus IFL (irinotecan, 5-fluo-
rouracil (5-FU), leucovorin (LV)) as the first-line therapy of

925 patients with metastatic colorectal cancer.39) The median
survival times of the IFL/placebo and IFL/bevacizumab groups
were 15.6 and 20.3 months, respectively. Serious adverse ef-
fects such as hemorrhaging and thrombosis were reported in a
clinical trial of bevacizumab with or without 5-FU/LV for met-
astatic colorectal cancer. Gastrointestinal bleeding, epistaxis
and thrombotic events were seen in 10.3, ~50 and 19.1% of the
patients receiving bevacizumab alone, respectively.14)

Anti-idiotype mAbs 
According to the idiotype network theory,40) immunization

with a given antigen will produce antibodies against this anti-
gen termed Ab1. The Ab1 might generate a series of anti-idio-
type antibodies against Ab1 termed Ab2. Some of these Ab2
molecules can effectively mimic the three-dimensional struc-
tures of external antigens. These particular anti-idiotypes
(Ab2β) can induce specific immune responses similar to those
induced by the nominal antigens. Ab2β has the internal image
of the antigen recognized by Ab1. We previously revealed that
an anti-idiotypic mAb (Ab2β) against an anti-carcinoembryonic
antigen (CEA) mAb MA208 can induce an antibody response
specific for CEA,41) and that the CDR2 in VH and CDR3 in VL

of the Ab2β M7-625 have amino acid sequences similar to the
domain III of CEA.42) To examine whether Ab2β can induce
Ab1-like Ab3, we then prepared anti-anti-idiotype mAbs using
an Ab2β M315 against anti-synthetic CEA peptide mAb P1-
356. A resultant mAb, 11B2, reacted directly with CEA and
competed with mAb P1-356, suggesting that the mAb is Ab1-
like Ab3.43) Furthermore, the in vivo administration of an Ab2β
D704, which was raised against a mAb M2590 recognizing a
sialic acid residue of GM3 ganglioside, could induce the activ-
ity of anti-anti-idiotype antibodies (Ab3) that specifically re-
acted with GM3.44)

Clinical trials with Ab2βs to mAbs that recognize tumor-as-
sociated antigens have been performed in solid tumors.45–47) Al-
though no apparent objective responses were seen in colorectal
and ovarian cancer patients,45, 46) some survival benefits were
observed in both studies. In a study of advanced melanoma pa-
tients with an Ab2β that mimics GD2,47) one patient had a com-
plete response and 12 patients were stable from 14 to 37
months. A favorable effect of anti-idiotype antibody response
on patients’ survival was observed in several clinical trials with
mAbs against solid tumors,48–50) and this may support the valid-
ity of anti-idiotype mAb therapy.

Conclusions 
The treatment of solid tumors with mAbs, especially against

growth factors or their receptors has changed from an ineffec-
tive therapeutic modality into an effective one. A wide variety
of those mAbs is now being developed and evaluated in pre-
clinical and clinical settings. Since they target self/tumor anti-
gens, it is not unexpected that adverse effects such as cardiac
dysfunction of trastuzumab and thrombotic events in the case
of bevacizumab have been found in clinical studies. Careful at-
tention will have to be paid to adverse effects in mAb therapy,
as is the case in conventional anti-cancer therapies. In contrast,
the clinical effect of anti-idiotype mAbs on solid tumors except
for malignant melanoma seems to be still modest. Altering the
amino acid sequence of the internal image, as has been at-
tempted in class I peptides, may be a possible strategy for en-
hancing the immunogenicity of those mAbs.
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