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A fuzzy neural network (FNN) using gene expression profile data
can select combinations of genes from thousands of genes, and is
applicable to predict outcome for cancer patients after chemo-
therapy. However, wide clinical heterogeneity reduces the accu-
racy of prediction. To overcome this problem, we have proposed
an FNN system based on majoritarian decision using multiple
noninferior models. We used transcriptional profiling data, which
were obtained from “Lymphochip” DNA microarrays (http://
limpp.nih.gov/DLBCL), reported by Rosenwald (N Engl/ J Med
2002; 346: 1937-47). When the data were analyzed by our FNN
system, accuracy (73.4%) of outcome prediction using only 1 FNN
model with 4 genes was higher than that (68.5%) of the Cox
model using 17 genes. Higher accuracy (91%) was obtained when
an FNN system with 9 noninferior models, consisting of 35 inde-
pendent genes, was used. The genes selected by the system in-
cluded genes that are informative in the prognosis of Diffuse
large B-cell lymphoma (DLBCL), such as genes showing an expres-
sion pattern similar to that of CD10 and BCL-6 or similar to that of
IRF-4 and BCL-4. We classified 220 DLBCL patients into 5 groups
using the prediction results of 9 FNN models. These groups may
correspond to DLBCL subtypes. In group A containing half of the
220 patients, patients with poor outcome were found to satisfy 2
rules, i.e., high expression of MAX dimerization with high expres-
sion of unknown A (LC_26146), or high expression of MAX dimer-
ization with low expression of unknown B (LC_33144). The
present paper is the first to describe the multiple noninferior FNN
modeling system. This system is a powerful tool for predicting
outcome and classifying patients, and is applicable to other heter-
ogeneous diseases. (Cancer Sci 2003; 94: 906-913)

Diffuse large B-cell lymphoma (DLBCL) is the largest cate-
gory of lymphoid malignancy, accounting for 30 to 40% of
non-Hodgkin’s lymphomas.” From 35 to 40% of DLBCL pa-
tients can be cured by current chemotherapeutic regimens; the
remaining 60 to 65% eventually succumb to this disease.
Marked clinical heterogeneity of DLBCL has been reported by
many researchers.>> Some patients are not correctly diag-
nosed, and diagnostic categories have not been defined
molecularly.6-19

Molecular analyses of clinical heterogeneity in DLBCL have
been conducted using microarray technologies. Various compu-
tational analyses using small numbers of DLBCL patients have
been presented.!'-'¥ Previously, we used a fuzzy neural net-
work (FNN) model to identify several genes with which we
constructed noninferior prognostic models of DLBCL, and we
achieved accuracy greater than 90% using these models.!>!¥
The FNN model is a relatively advanced artificial neural net-
work (ANN) model. The FNN model has the advantages of ex-
tremely high prognostic accuracy and the ability to explicitly
describe causality between input and output variables as lin-
guistic IF-THEN rules.'> We extracted prognostic rules based
on the expression profiles of only 4 genes. In a study on the
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data of 40 patients reported by Alizadeh et al.,'V a rule based
on 2 prognostic genes (CDI10 and IRF-4) was able to identify
most of the patients who would later have a poor outcome. Re-
cently, Rosenwald et al. analyzed a large number of patients to
classify subtypes and predict outcome,'® but the predictive
value of their model was lower than that of models used for
small numbers of patients. This is partly because they only con-
structed 1 model, despite having analyzed heterogeneous groups.

In the present study, we constructed multiple noninferior
FNN models, taking advantage of quick gene selection, to im-
prove prediction accuracy. We then used these models to clas-
sify DLBCL patients.

Materials and Methods

Data preprocessing. Transcriptional profiling data obtained
from “Lymphochip” DNA microarrays (http://llmpp.nih.gov/
DLBCL)'® were used in the present study. A total of 7399 gene
expression data from 240 DLBCL patients with long-term clini-
cal follow-up were available. Twenty patients were censored,
because their follow-up ceased within 4 years from the begin-
ning of anthracycline-based chemotherapy. We divided the re-
maining 220 patients into 2 groups: those who were alive 4
years after the beginning of anthracycline-based chemotherapy
(group 1; n=102), and those who were dead within 4 years
from the beginning of anthracycline-based chemotherapy
(group 2; n=118). All gene expression data that were not avail-
able for more than 10% of these 220 patients were also cen-
sored. Thus, 7384 genes spotted on the microarray were used
for model construction. The expression ratio of each gene was
normalized to the range of 0.1 to 0.9. For outcome classifica-
tion, patients in group 1 were assigned a value of 0.1, and those
in group 2 were assigned a value of 0.9.

Construction of FNN model. A Type-I FNN!'? was used to es-
tablish the relationship between gene expression and clinical
outcome. The SWEEP operator method'® was used in associa-
tion with simplified FNN modeling, in which gene selection
can be performed quickly. The procedure for modeling using
the SWEEP operator method is described briefly below.

In the first step, we predicted the outcome of each patient us-
ing the FNN model with expression of only 1 gene, with model
parameters optimized using the SWEEP operator method. The
prediction model for all 7384 genes was constructed in series,
and each gene was ordered according to the accuracy of the
constructed model. The 9 genes with the highest accuracy lev-
els were used for the following step to construct 9 noninferior
models.

In the second step, we constructed a 2-input model, in which
a ranked gene was designated as input and a partner gene was
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used to predict outcome using the SWEEP operator method and
parameter increasing method (PIM). Repeating this step, we
identified a combination of 6 candidate genes for use in model
construction, with respect to the input gene. Then, we repeated
this procedure for other genes ranked in the first step.

In the final step, we assessed multiple combinations of 6
genes, i.e., from the first-selected to sixth-selected genes. We
constructed 6 FNN models, from 1 input using only the first-se-
lected gene to 6 inputs using all 6 genes. The FNN models were
strictly constructed using a back-propagation algorithm. Perfor-
mance of the FNN model was assessed by cross-validation.!”
The learning ratio and learning time were set at 0.1 and 5000 it-
erations, respectively. In each model, 146 or 147 (=2/3) data
were used for learning, and 74 or 73 (=1/3) data were used for
evaluation. Output was transferred to the predicted outcome us-
ing a threshold value of 0.5: group 2 for values greater than 0.5,
and group 1 for less than 0.5. FNN models were assessed ac-
cording to the accuracy of evaluation data in cross-validation.
Accuracy of the model was defined as the ratio of patients that
received the correct output. The model with the highest accu-
racy among the 6 models was selected as the best model and it
is a noninferior model.

The discrimination ratio of the model was defined as the ratio
of patients within the range of discrimination described by the
equation

10,-T|<0.3 i=1 to 220

where O; and T; are the output signal of patient i and the teacher
signal (0.1 or 0.9) of patient i, respectively.

Majoritarian decision using multiple noninferior modeling system.
At the model construction step, 9 noninferior models corre-
sponding to 9 genes with the highest accuracy levels were con-
structed. The prediction results of each noninferior model were
used to improve accuracy. We predicted survival versus death
using each model, and determined that a patient would survive
if the majority of models predicted they would survive. If a pa-
tient had equal numbers of predictions of survival and death,
that patient was designated as not discriminable.

Clustering analysis. We classified DLBCL patients based on
the accuracy of the prediction of each FNN model. We classi-
fied the genes according to expression ratio in DLBCL patients.
Hierarchical clustering was applied to this analysis, and the re-
sults are shown as a TreeView.?"

Statistical analysis. The P values of genes were calculated us-
ing the ¢ test. The P values for significance of differences be-
tween subgroups were calculated using the > test. The Kaplan-
Meier survival analysis plots were calculated using WinSTAT
Statistics for Windows Version 3.1 (LightStone Co., Tokyo).

The significance of differences in survival rates was analyzed
using a log-rank test (Mantel-Cox method).

Results

Ranking of causal genes. Using the SWEEP operator method,
we calculated the prediction accuracy of a 1-input FNN model,
and ranked 7384 genes using microarray data. The top 15 genes
are listed in Table 1. The P values of these genes indicated sig-
nificance. Some of these genes have previously been reported
to be prognostic factors in DLBCL outcome. The genes EST,
AA805575 and CD9 show a correlation with outcome!®2V, and
are overexpressed in cured DLBCL patients. Protein kinase C
B1 also shows a correlation with outcome,' and is overex-
pressed in fatal cases of DLBCL. The presence of known prog-
nostic factors among our highest ranked genes indicates that the
present method is as suitable for selection of causal genes as a
conventional statistical method.

The FNN model using the first-ranked gene. The partner genes of
the first-ranked gene, AA805575, were selected in order to ob-
tain the best combinations with this gene. The FNN model with
4 genes achieved the highest prediction accuracy. This model is
one of the noninferior models. In this model, the genes for
sentrin/ SUMO-specific protease 3, butyrophilin (subfamily 3,
member A2) and tumor necrosis factor (ligand) superfamily
(member 10) were selected as partner genes. The earlier the
genes were selected, the more effective they were as input for
outcome prediction. The accuracy of the FNN model with 4
genes was 73.4%, whereas that of a Cox proportional-hazards
model with 17 genes was 68.5%.!9 Hierarchical clustering of
those 4 genes based on expression ratios of DLBCL patients
was performed. The genes selected by FNN were classified into
clusters containing germinal-center B-cell markers (AA805575),
lymph-node markers (sentrin/SUMO-specific protease 3) and
proliferation signatures (butyrophilin). Those types of markers
have been reported as prognostic factors. These results indicate
that FNN can extract a combination of genes related to outcome
from a very large number of genes without prior
knowledge.'!: '©

Optimal number of gene combinations. In the previous study,'®
we constructed an FNN model consisting of 4 genes (CDI10,
AA807551, AA805611 and IRF-4) for outcome prediction of 40
DLBCL patients, and this model predicted prognosis with 93%
accuracy. For the 58 DLBCL patient data reported by Shipp et
al.,' we constructed FNN models with combinations of 10
genes. Accuracy greater than 80% was achieved with most of
these models, and one of these models predicted patient out-
come with 93% accuracy.'” In the present paper, 73.4% accu-

Table 1. Fifteen highest-ranked genes for predicting outcome using SWEEP operator method

Rank Gene Accession No. P value
1 ESTs, weakly similar to A47224 thyroxine-binding globulin precursor AA805575 <0.0001
2 protein tyrosine phosphatase, non-receptor type 2 AA477822 <0.0001
3 ESTs, weakly similar to neuronal thread protein AA279391 0.0006
4 protein tyrosine phosphatase, non-receptor type 2 AA193262 <0.0001
5 NADH dehydrogenase (ubiquinone) flavoprotein 2 (24 kD) AA809629 0.0089
6 ESTs AA714020 0.0482
7 MAD, mothers against decapentaplegic homolog 4 AA441842 0.0058
8 ribosomal protein L13 Al479066 0.0286
9 unknown A 0.0175
10 glutathione synthetase AA284323 0.0354
11 ESTs, weakly similar to VAMP-5 (MYOBREVIN) (HSPC191) Al436418 0.0029
12 protein kinase C, 1 AA262174 0.0235
13 regulator of G-protein signalling 16 AA292532 0.0003
14 ribosomal protein S3A M84711 0.0011

15 CD9 antigen (p24) AA412053 0.001
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racy was obtained using one FNN model. The accuracy of
73.4% was relatively low compared with the accuracy de-
scribed in the previous papers, although it was higher than that
of the Cox proportional-hazards model described above.

100% i

95%

90%

85%

80% Accuracy -

Discrimination ratio
75% 1 1 1 1 1 1 1
34567 8 9101112131415

Number of combination

Fig. 1. Accuracy and discrimination ratio by majoritarian decision us-
ing multiple noninferior modeling system. Accuracy (bottom line with
circle) and discrimination ratio (top line with square) are plotted
against the number of combinations of genes.

This lower accuracy than that described in the previous pa-
pers may be due to the greater number of patients analyzed in
the present study, and the molecular heterogeneity of DLBCL
patients. It is unlikely that 1 FNN model with a combination of
genes can perfectly predict patient outcome. Assuming that an
FNN model can predict outcome of a part of DLBCL patients,
integration of various models may help improve prediction ac-
curacy. Accordingly, we selected not only partner genes for the
first-ranked gene (AA805575), but also partner genes for the
lower-ranked genes, i.e., 9 genes with the highest accuracy lev-
els. Multiple noninferior FNN models were constructed using
these combinations of genes. From majoritarian decision using
the multiple noninferior modeling system, prediction accuracy
increased as the number of genes used in the combinations in-
creased (Fig. 1). Majoritarian decision using 9 models produced
accuracy greater than 90% and a discrimination ratio greater than
95%. When the system consisting of more than 9 models were
employed for prediction, there were no marked increases in ac-
curacy or discrimination ratio. Therefore, we concluded that the
present system with 9 models is optimal.

Comparison of selected genes and known prognostic factors. The
9 combinations of genes selected as inputs of FNN are listed in
Table 2; the number of independent genes used in these combi-
nations was 35. We compared the expression profiles of se-
lected genes with those of known prognostic factors. The genes
for CD10, BCL-2 and BCL-6,2>% were selected as established

Table 2. Nine combinations of genes selected by SWEEP operator method

Gene Accession No. P value

1 1 ESTs, weakly similar to A47224 thyroxine-binding globulin precursor AA805575 <0.001
2 sentrin/SUMO-specific protease 3 AA742330 0.015

3 butyrophilin, subfamily 3, member A2 u90143 0.738

4 tumor necrosis factor (ligand) superfamily, member 10 H54629 0.794

2 1 protein tyrosine phosphatase, non-receptor type 2 AA477822 <0.001
2 CD81 antigen (target of antiproliferative antibody 1) H69729 0.018

3 oxysterol binding protein-like 3 AB014604 0.113

3 1 ESTs, weakly similar to neuronal thread protein AA279391 <0.001
2 mastermind-like 1 (Drosophila) AA252661 0.079

3 ESTs AA278908 0.621

4 ESTs, highly similar to EFHU1 translation elongation factor AA261967 0.852

4 1 protein tyrosine phosphatase, non-receptor type 2 AA193262 <0.001
2 CD81 antigen (target of antiproliferative antibody 1) H69729 0.018

3 MHC class Il transactivator AA287083 0.707

4 interferon consensus sequence binding protein 1 N62269 0.949

5 1 NADH dehydrogenase (ubiquinone) flavoprotein 2 (24 kD) AA809629 0.009
2 E74-like factor 2 (ets domain transcription factor) AA426604 0.333

3 ADP-ribosyltransferase (NAD+; poly (ADP-ribose) polymerase) AA281973 0.152

4 hypothetical protein AA243466 0.183

5 protein phosphatase 1, regulatory (inhibitor) subunit 1A AA460827 0.041

6 1 ESTs AA714020 0.048
2 protein tyrosine phosphatase, receptor type, N polypeptide 2 AA464590 0.364

3 von Hippel-Lindau syndrome AA909708 0.690

4 early B-cell factor AA279473 0.151

7 1 MAD, mothers against decapentaplegic homolog 4 AA441842 0.006
2 nuclear receptor coactivator 1 AA180462 0.064

3 putative chemokine receptor; GTP-binding protein AA631849 0.804

4 unknown C 0.011

8 1 ribosomal protein L13 Al479066 0.029
2 hypothetical protein MGC14859 AI056455 0.048

3 SH2 domain-containing phosphatase anchor protein 1 AA287337 0.479

4 CD97 antigen AA678757 0.575

5 MAD, mothers against decapentaplegic homolog 4 AA441842 0.022

9 1 unknown A 0.017
2 nuclear receptor subfamily 3, group C, member 1 AA252235 0.005

3 MAX dimerization protein H86558 0.005

4 unknown B 0.111

908
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Fig. 2. Gene expression cluster of known prognostic
factors defined by hierarchical clustering. Panel A
shows the CD10 and BCL-6 cluster including 4 genes
found in combinations 1, 3, 5 and 7. Panel B shows the
BCL-2 cluster including IRF-4 and 2 genes found in com-
binations 2, 4, 7 and 8. Each column and row is a pa-
tient and a gene, respectively. Expression profiles of
220 patients are shown. These ratios are measures of
relative gene expression in each experiment sample,
and are depicted according to the color scale shown at
the bottom. As indicated, the scale extends from fluo-
rescence ratios of 0.25 to 4 (-2 to +2 log base 2 units).
Gray indicates missing or excluded data.

duced the largest number of accurate predictions, and combina-
tion 6 was the best for prediction with patient groups that
showed relatively low accuracy when the known signatures
were used for prediction.

Kaplan-Meier plot of overall survival of DLBCL patients grouped
on the basis of majoritarian decision using multiple noninferior mod-
eling system. Kaplan-Meier survival analysis was performed based
on the majoritarian decision of 9 FNN models. The results
clearly divided the patients into 2 groups (P<0.001, Fig. 3).
Patients predicted to survive by the FNN models had significant-
ly longer survival time (4-year overall survival [OS], 91%) than
those predicted not to survive (4-year OS, 10%). Furthermore,
Kaplan-Meier plots of overall survival showed that the groups
based on the FNN model were independent of the groups
classified by the International Prognostic Index (IPI).? Among
the patients whose IPI classified them in the low-risk group,
FNN predicted that 24 patients would have a poor outcome

CD10
corr > 0.61
B protein tyrosine phosphatase,
non-receptor type 2
IRF-4
MAD, mothers against
decapentaplegic homolog 4
S . BCL-2
BCL'2 Cluster corr > 050
-2 -1 0 1 2
0.250 0.500 1.000 2.000 4.000
All patients
1.0 : : :
©
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c
@ o6 FNN score < 0.5 (n = 94)|
« .
o
£ 04
=
8 o2
o 2] FNNiO.S(n=117) ]
o n H—t—t+ —
0.04 P < 0.0014
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Years
Fig. 3. Kaplan-Meier plot of 4-year overall survival for all patients

grouped on the basis of the FNN. The patients predicted to survive on
the basis of the FNN models had a 4-year overall survival of 91%. The
patients predicted not to survive had a 4-year overall survival of 10%.
The tick marks represent censored data.

prognostic factors of DLBCL. We applied a hierarchical-clus-
tering algorithm to the original set of 7384 genes, to check for
clusters containing these 3 factors. The factors CD10, BCL-2
and BCL-6 occurred in 2 clusters: a cluster containing CD10
and BCL-2, and a cluster containing BCL-6. Together, these 2
clusters contained 6 genes among 35 genes listed in Table 2.
Based on the results of analysis, the 9 combinations of genes
selected were divided into 3 groups. The first group included
the genes with the same expression pattern as those of CDI10
and BCL-6, and consisted of combinations 1, 3, 5 and 7. The
second group included genes with the same expression pattern
as that of BCL-2, and consisted of combinations 2, 4, 7 and 8
(Fig. 2). Combination 7 included 2 genes that occurred in the 2
clusters containing the 3 prognostic factors. The third group
consisted of combinations 6 and 9; these combinations did not
include genes with the same expression pattern as those of the
prognostic factors. As discussed below, combination 7 pro-
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(Fig. 4A), and 17 of these 24 died during the 4-year observa-
tion period. Among the patients whose IPI classified them in the
intermediate-risk group, FNN predicted that 62 patients would
have a poor outcome (Fig. 4B), and 59 of these 62 died during
the 4-year observation period. Of the 29 patients classified in
the high-risk group by IPI, 23 were predicted not to survive by
FNN, and all but 2 of these 23 died during the 4-year observa-
tion period (Fig. 4C), and 20 died within 2 years of the predic-
tion. The patients predicted to have poor outcome by both IPI
and FNN were found to have significantly high clinical risk.
Subgroup analysis of DLBCL. We subdivided 220 DLBCL pa-
tients based on the accuracy of predictions by each FNN model.
Hierarchical-clustering was performed using the results of pre-
dictions by 8 FNN models. Model 4 was excluded from this
clustering analysis, because models 2 and 4 included the same
2 genes, and these 2 FNN models showed similar discrimina-
tion for almost the same group of patients. DLBCL patients
were subdivided into 5 subgroups (Fig. 5). The largest sub-
group, group A, consisted of about half the patients. In group
A, 6 of the 8 FNN models had a prediction accuracy greater
than 80%, and model 9 had a prediction accuracy of 96.7%.
The prediction accuracy of the FNN models was relatively low
for the other groups. Consequently, at least one of 8 indepen-
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dent FNN models had prediction accuracy greater than 90% in The subgroups we proposed did not correlate with survival
each group. The group with the lowest prediction accuracy was  time or risk groups defined on the basis of IPI (Fig. 5). For ex-
group D. Only model 7 could predict outcome of patients in  ample, in groups C and D, 4-year survival was relatively low,

group D with accuracy greater than 90%. but a relatively low number of high-risk patients was identified
A low clinical risk patients B intermediate clinical risk patients
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B A B C D E  total
(N=92) (N=34) (N=21) (N=15) (N=58) (N=220)

FNN model with the highest accuracy No.9 No.6 No.3 No.7 No.2 No.7

Accuracy by FNN model shown above  97% 97% 100% 93% 97% 78%

P Value

. 2-year 83%  76%  75%  86%  72%  79% 0987
survival rate 4-year 58%  62%  38% 47%  50%  54% 0752
Low 28%  45%  50%  64%  30%  35% 0.157
1Pl Intermediate 54%  42%  44%  29%  55%  50%
High 18%  13% 6% 7%  15%  15%
GCB 45%  59%  48%  53%  45%  48%  0.147
cell origin Type3 18%  12%  43%  20%  22%  21%
ABC 37%  29%  10%  27%  33%  31%

Fig. 5. Subgroups of DLBCL by hierarchical clustering with the predictions of FNN models. Panel A shows 220 patients grouped by hierarchical
clustering. The dendrogram indicates relatedness of gene expression in each sample, and is color-coded according to sample category. Each col-
umn represents a patient, and each row represents a prediction by an FNN model. Red indicates that the prediction is true; green indicates false,
and gray indicates missing or excluded. Panel B shows the optimal model, accuracy of the model, and patients’ characteristics.
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by IPI in those groups. There were no significant characteristics  did not include these 4 signatures, whereas the other models in-
that could be used to designate cell-of-organ groups. The pa- cluded genes belonging the same clusters as all 4 signatures
tients predicted correctly by the Cox proportional-hazards  mentioned above.

model were compared with those predicted correctly by the Relationships among the selected genes and clinical outcome. Us-
FNN models. We found that FNN model 6 predicted patient ing the FNN models, relationships between input genes and
outcome of group B with high accuracy, whereas the Cox clinical outcome were investigated in each group. One of the
model did not (Fig. 6). The Cox model was constructed by attractive features of FNN models is that causal relationships
Rosenwald ef al. using 4 signatures: germinal-center B-cell, can be described explicitly as IF-THEN rules.!*!5 Firstly, in
MHC class II, lymph-node and proliferation.!® FNN model 6  the constructed FNN model, the connection weights have been

Cox proportional-hazards model FNN model
1.9 ' 1 10 ; ;
g 0.8 1 0.8
B 06 Quartiles 1and2 (n=19) | og FNN score < 0.5 (n = 11)
© ——t—
% 0.4 0.4
g 0.2 0.2 FNN Z 0.5 (n=21)
i} 00 P=008 Quartles3and4(n=15) ggl P < 0.001
0 2 4 6 8 10 0 2 4 6 8 10

Years Years

Fig. 6. Kaplan-Meier plot of patients in group B based on Cox proportional-hazards model and the FNN model. The overall survival for patients
grouped by the Cox proportional-hazards model'® (left) and by the FNN model (right) is shown. The tick marks represent censored data.
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Fig. 7. Relationship between expression of 4 genes selected for model 9 and clinical outcome in group A. Because the expression level of each
gene can be classified as high or low based on fuzzy reasoning, this model comprised 16 (=24) fuzzy rules. Light gray areas represent predicted
poor prognosis by the FNN. Dark gray areas represent the poorest prognosis. The numbers in each matrix are the patient serial numbers previously
described by Rosenwald et al.’® Bold-type underlined numbers indicate the patients who died during the 4-year observation period, and light
faced numbers indicate those who survived for at least 4 years. Patient numbers were assigned to cells according to expression levels of each patient.
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described in a table consisting of cells with combinations of
gene expression levels, e.g. high expression of gene A and low
expression of gene B. Next, from comparison of the connection
weights, the IF-THEN rules can be defined explicitly as a
cause-and-effect chain without any biological or functional ex-
periments. For example, in the previous paper,'? a poor out-
come was predicted when CD10 expression was low and IRF-4
expression was high. Fourteen of the patients were identified as
having a poor prognosis on the basis of these two factors, and
this corresponds to 67% of all patients with poor prognosis.

Relationships in group A, which contained half of the 220
patients, are shown in Fig. 7. From this matrix, simple and pre-
cise rules were obtained. Patients who satisfied any 2 rules
(e.g., high expression of MAX dimerization with high expres-
sion of unknown A, or high expression of MAX dimerization
with low expression of unknown B) were predicted to have a
poor outcome in the FNN model. One-third of all non-surviving
patients (41/118) and 80.4% (41/51) of non-surviving patients
in group A satisfied any 2 rules. Detailed analysis of survival
time revealed a rule concerning short survival time. High ex-
pression of unknown A, nuclear receptor subfamily 3 and MAX
dimerization, with low expression of unknown B, was observed
in 24 patients. This is a result of intersection between the above
2 rules. Of these 24 patients, 23 died within 2 years, and the re-
maining patient died at 2 years and 4 months. Therefore, pa-
tients who satisfy this rule have significantly high clinical risk;
moreover, they included patients with a low IPI score. This
shows that these rules (which were defined in terms of gene ex-
pression) were independent of IPI.

Next, we investigated gene expression relationships in group
E, the second largest group (Fig. 8). High expression of protein
tyrosine phosphatase, non-receptor type 2, was observed in 23
patients. Among them, the 18 patients with high expression of
oxysterol binding protein-like 3 died during the 4-year observa-
tion period. This gene expression rule identifies a tendency to-
ward poor outcome. The activated B-like DLBCL signature
includes high expression of protein tyrosine phoshatase, non-re-
ceptor type 2, and has poor prognosis.':'® The rule described
above, obtained from the FNN model, agrees with this result
from prior knowledge. Also, the FNN model identified a rule
for favorable outcome, i.e., if expression of oxysterol binding
protein-like 3 is low and expression of CD81 is low, the patient
will survive. This rule was applied to cases that could not be
predicted using well-known prior knowledge.

Discussion

We have developed FNN modeling for prognostic prediction of
the heterogeneous cancer DLBCL. Using only 35 genes, a high
discrimination ratio (95.9%) and a high prediction accuracy
(90.5%) were achieved (Fig. 1). The 4-year survival rate was
91% for patients predicted to survive by the FNN model, and
only 10% for those predicted not to survive (Fig. 3). Conve-
nient, high throughput diagnosis may become available in the
future if assay systems such as multiplexed quantitative re-
verse-transcriptase polymerase chain reaction or customized
DNA microarrays are established based on expression of the 35
genes we selected. The present method, which uses the expres-
sion ratios of these 35 genes and the 9 prediction models, can
accurately identify DLBCL patients who are unlikely to be
cured by conventional therapy.

The 35 genes selected by the SWEEP operator method in-
cluded genes that are informative in prognosis of DLBCL.
ESTs (AA805575) was selected as the first-ranked gene by the
SWEEP operator method (Table 1), and the expression pattern
of this gene coincided with those of CDI0 and BCL-6 (Fig. 2).
ESTs is the germinal-center B-cell signature, and is associated
with favorable outcome.!® Furthermore, 7 of the 9 gene combi-
nations we used include genes that correlate with known prog-
nostic factors (Fig. 2). These results indicate that the FNN
method can select single genes that significantly affect progno-
sis. However, the FNN method can do more than simply select
single genes. It can also construct gene combinations that are
likely to produce accurate predictions. Actually, the FNN
model with the first-ranked gene selected combinations con-
taining germinal-center B-cell marker and lymph-node marker
and proliferation signatures, without prior knowledge.!!!®
Moreover, by analyzing the connection weight of the FNN
model, we can describe causal relationships between gene ex-
pression and patient outcome. This ability to select genes and to
describe causal relationships may help elucidate DLBCL tum-
origenesis.

The notable fact about the present selected combinations of
genes is that there is a combination not including genes corre-
lated with the known prognostic factors. This indicates that
there are a considerable numbers of prognosis-related genes in
addition to the known factors, and that clinical risk of DLBCL
patients cannot be predicted using only the known factors.

In our previous study of outcome prediction for 40 DLBCL
patients,' the gene combination of CD10 and IRF-4 was useful
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Fig. 8. Relationship between expression of 3 genes selected for model 2 and clinical outcome in group E. The matrices were constructed in the
same way as in Fig. 7. Light gray areas correspond to rules from prior knowledge. Dark gray areas represent new findings.
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for outcome prediction. The expression pattern of /IRF-4 corre-
lated with that of BCL-2. In the present study, FNN model 7
contained the CD10-like gene and /RF-4-like gene. It should be
noted that model 7 achieved the highest overall accuracy: 78%
(Fig. 5). In the other noninferior prediction models constructed
in the present paper, about 70% prediction accuracy has been
obtained. It is also important that about 22% of patients who
were not predicted correctly by model 7 were predicted cor-
rectly by other FNN models, which consisted of different genes
(Fig. 5). This suggests that DLBCL patients can be divided into
subtypes in which prognostic factors distinctly differ from each
other and causal relationships also differ, based on the predic-
tion results of FNN models.

In the present study, we classified DLBCL patients based on
prediction accuracy of FNN models. The patients in group B
could not be predicted successfully with the known gene-ex-
pression signatures. However, model 6, which included genes
other than the known signatures, produced accurate predictions
for group B (Fig. 5B). As shown in Fig. 5, outcome can be ac-
curately predicted for the 5 subgroups using FNN models 9
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