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Epigenetic predictors of species maximum life span and 
other life-history traits in mammals
Caesar Z. Li1,2,3†, Amin Haghani3,4†, Qi Yan1,4, Ake T. Lu3,4, Joshua Zhang3,5, Zhe Fei1,6, Jason Ernst7, 
X. William Yang8,9, Vadim N. Gladyshev10, Todd R. Robeck11, Andreas S. Chavez12,13,  
Joseph A. Cook14, Jonathan L. Dunnum14, Ken Raj15, Andrei Seluanov16,  
Vera Gorbunova16, Steve Horvath1,3,4,15*

By analyzing 15,000 samples from 348 mammalian species, we derive DNA methylation (DNAm) predictors of 
maximum life span (R = 0.89), gestation time (R = 0.96), and age at sexual maturity (R = 0.85). Our maximum life-
span predictor indicates a potential innate longevity advantage for females over males in 17 mammalian species 
including humans. The DNAm maximum life-span predictions are not affected by caloric restriction or partial re-
programming. Genetic disruptions in the somatotropic axis such as growth hormone receptors have an impact on 
DNAm maximum life span only in select tissues. Cancer mortality rates show no correlation with our epigenetic 
estimates of life-history traits. The DNAm maximum life-span predictor does not detect variation in life span be-
tween individuals of the same species, such as between the breeds of dogs. Maximum life span is determined in 
part by an epigenetic signature that is an intrinsic species property and is distinct from the signatures that relate 
to individual mortality risk.

INTRODUCTION
Maximum life span varies markedly across mammalian species: The 
cinereus shrew lives less than 1.9 years, while bowhead whales can 
live for at least 211 years (1). The species appear to exhibit a maxi-
mum life span—an intrinsic characteristic of a biological species 
defined as the longest time an individual of a species has been re-
ported to survive. However, the molecular mechanisms that deter-
mine it remain poorly understood (2, 3), despite previous studies 
correlating maximum life span with specific molecular processes 
and life-history strategies (4–6). Many have suggested that epi-
genetic mechanisms play a role in determining life span (7–15). 
However, previous studies of cross-species variation in methylation 
patterns suffer from low sample size and heterogeneity in data ac-
quisition methods.

To facilitate rigorous methylation studies of life-history traits, 
the Mammalian Methylation Consortium generated an unprece-
dented and homogeneous dataset of DNA methylation (DNAm) at 

well conserved loci across 348 mammals using a tailor-made DNAm 
measurement platform (16). Other reports by the Consortium have 
described pan-mammalian age-related methylation changes, epi-
genetic aging clocks, phylo-epigenetic trees, and unsupervised ma-
chine learning approaches that were brought to bear on the analyses 
of this dataset (17, 18). In recent publications by the Mammalian 
Methylation Consortium, we released a DNAm dataset (n = 15,456 
tissue samples) (17, 18). These previous investigations uncovered 
individual cytosines and modules that correlate with maximum life 
span, gestation time, and age at sexual maturity.

Here, we pivot our analytical approach. Rather than seeking in-
dividual cytosine-phosphate-guanines (CpGs) tied to maximum life 
span and other life-history traits, we develop regularized multivari-
ate regression models that estimate maximum life span and other 
characteristic traits of species. Drawing on statistical terminology, 
our previous work focused on univariate analysis (specifically, the 
selection of CpGs) and CpG modules (18). In contrast, here we use 
multivariate regression models to predict maximum life span (the 
dependent variable), based on highly conserved cytosines (the inde-
pendent variables or covariates) simultaneously. Using this ap-
proach, we successfully developed methylation-based predictors of 
time-related life-history traits: maximum life span, gestation time, 
and age at sexual maturity across mammalian species. Next, we 
characterized these new epigenetic biomarkers with regard to a va-
riety of conditions ranging from demographic characteristics (age, 
sex, human mortality risk) to interventions that modulate murine 
life span.

RESULTS
DNAm data from 348 mammalian species
Leveraging our publicly accessible data from the Mammalian Meth-
ylation Consortium, we focused on highly conserved cytosine 
methylation profiles from n = 15,000 DNA samples (18). These 
samples spanned 59 unique tissue types and originated from 348 
distinct mammalian species across 25 taxonomic orders. In total, 
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the Mammalian Consortium profiled 25 of the 26 mammalian taxo-
nomic orders as catalogued in the Mammal Diversity Database (ver-
sion 1.8, 2022), with marsupial moles being the only exception.

These methylation profiles were obtained using the mammalian 
methylation array, a tailor-made DNA array developed for the con-
sortium’s objectives (16). This array efficiently gauges the methyla-
tion levels of roughly 36,000 highly conserved CpG sites. These 
CpGs are flanked by 50–base pair DNA sequences that are remark-
ably conserved across various mammalian species.

Universal predictors of sex and tissue type
The mammalian array–generated DNAm data prove highly effective 
in accurately classifying sample species, sex, and tissue. This is sup-
ported by our random forest predictors, which boast an out-of-bag 
accuracy rate of over 98% (Table 1). We present universal sex pre-
dictors grounded in CpG methylation levels that are applicable to all 
mammalian species, barring marmosets (Table 1). It is widely 
recognized that mosaicism in marmosets hinders the creation of 
methylation-based sex predictors for them (19). We previously pos-
tulated that the inability to build methylation-based predictors of 
sex in marmosets is due to their nature as hematopoietic chimeras. 
Specifically, littermates in marmosets exchange stem cells through 
placental anastomoses during development, as discussed in (19).

Our universal tissue predictors, based on methylation, are likely 
influenced by species variations. While we offer these tissue predic-
tors to the community as tools for identifying human platemap er-
rors, we advise users to be aware of the potential species-related 
confounding factors associated with these predictors.

Multivariate predictors of life-history traits
Since we aimed to focus on species traits, we first reduced the con-
founding effect of sex and tissue type by averaging across these vari-
ables. Specifically, we calculated the mean methylation value for 
each CpG within each species, producing a summarized dataset in 
which each data point corresponds to a species’ average methylation 
level per CpG (table S1). In addition to this overarching dataset, we 
curated two more specialized datasets: one stratified by both species 
and tissue type and another that exclusively focuses on younger 
samples that were derived from animals that are both not yet sexu-
ally mature and under 5 years of age.

We used three distinct penalized regression models to predict 
the log-transformed values of maximum life span, gestation time, 
and age at sexual maturity for each species. The trait values for these 
species were derived from the latest version of the anAge database 
(2, 18). For the convenience of our readers, we have included these 
values in tables S1 and S2. The resultant epigenetic predictors show-
cased high accuracy as evidenced by the leave-one-species-out 
(LOSO) or a modified leave-one-clade-out (LOCO) cross-validation. 
For instance, the predicted log maximum life spans aligned closely 
with those recorded in anAge, exhibiting a Pearson’s correlation of 
R = 0.89 (see Fig. 1, A and B). An alternative method for assessing 
predictive precision entails dividing the data into training and test 
subsets. Using our 70%-30% training-test random partitioning of 
species, we observed comparably robust correlations for the log 
maximum life span in both subsets (training set, R = 0.98, Fig. 2A; 
test set, R = 0.88, Fig. 2, A and B).

Shifting our focus to other life-history traits, the actual log gesta-
tion time—which is inherently more straightforward to determine 
than maximum life span—manifested an even higher correlation 
with its predicted counterpart (R = 0.96, Fig. 1C). The epigenetic 
prediction of (log-transformed) age at sexual maturity presented a 
somewhat lower correlation of R = 0.85 with recorded data (Fig. 1D). 
This discrepancy might stem from the fact that the age at sexual 
maturity is considerably more variable than gestation time, being 
influenced by factors like food availability and varying ecological 
conditions.

We will refer to the predicted maximum life span, expressed in 
log years, as either the epigenetic maximum life span or DNAm 
maximum life span. Analogous naming conventions will apply to 
other DNAm-derived estimates of life-history traits. The final life-
history predictor coefficients, which were trained on all available 
samples, and the corresponding CpG annotations are summarized 
in tables S5 to S7 (also available on Zenodo, https://doi.org/10.5281/ze-
nodo.10783145, supplemented by the R package on Github: https://
github.com/caeseriousli/MammalianMethylationPredictors).

Chronological age versus epigenetic maximum life span
We carried out two analyses to study the relationship between the 
life-history traits and chronological age of the individuals of spe-
cies sampled. First, we built a separate maximum life-span predictor 

Table 1. Sex and pan-tissue predictor performance. The table summarizes test set prediction results for regularized regression-based predictors and 
out-of-bag prediction results for random forest (RF)–based predictors. For the sex elastic net linear predictor, test sets are randomly partitioned into equal 10 
folds of the entire dataset. At each iteration, within the 90% training set, 10-fold validation was used to select the penalization parameter for the regularized 
regression. For random forest predictors, we specified 100 trees in the forest. To counteract the imbalance in tissue and species category sample sizes, we limited 
the bootstrap resampling to 200 per category, restricting large sample sizes from certain categories, such as blood samples, overly influencing the predictor 
performance in smaller categories.

Predicted outcome
Predictor framework Method Test set/out-of-bag prediction 

accuracy

Sex (female = yes/no) Elastic net 10-fold validation 98.53%

Species RF predictor *100 trees 99.94%

Tissue RF predictor 100 trees 98.22%

Taxonomic order RF predictor 100 trees 99.97%

*100: each random forest was calibrated to use this many decision trees with a reasonable run time; random forest unbiased prediction accuracy estimate is 
calculated as follows: first, summarize by calculating the mean of each category’s out-of-bag prediction errors, subtracted by unity, across the 100 trees; second, 
use these category mean accuracies to find the overall median-of-means accuracy. Marmosets were removed from the sex prediction analysis.

https://doi.org/10.5281/zenodo.10783145
https://doi.org/10.5281/zenodo.10783145
https://github.com/caeseriousli/MammalianMethylationPredictors
https://github.com/caeseriousli/MammalianMethylationPredictors
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(referred to as young animal predictor) using only samples obtained 
from animals that were younger than their species’ average age of 
sexual maturity and younger than 5 years, and this had a consider-
able correlation with predicted maximum life span (R  =  0.68, 
fig.  S1), although the restriction of age resulted in fewer species 
(n = 122) being available for this analysis. The young animal predictor’s 

remarkable accuracy in long-lived species (for instance, those with a 
maximum life span exceeding 20 years) indicates that the determi-
nants of maximum life span can be discerned from DNA samples 
obtained even from relatively young individuals.

Second, we used the finalized life-span predictor model on indi-
vidual animal samples. While the predictor was designed to estimate 
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Fig. 1. Multivariate analysis of life-history traits using epigenetic predictors. This figure summarizes the leave-one-species-out (LOSO) cross-validation analysis of 
epigenetic predictors. All estimates are log-transformed (base e) for various life-history traits, including (A and B) maximum life span (in log years), (C) gestation time (in 
log days), and (D) age at sexual maturity (in log years). Each species in the scatterplot panels is symbolized by a specific number. The whole number (integer) part of this 
numeric representation corresponds to its taxonomic order. These numbers, color-coded by their respective taxonomic orders, link to distinct species. For detailed nu-
meric values, refer to table S4 and fig. S8. The title atop each panel provides Pearson correlation coefficient (R), median absolute error (MAE), and a two-sided unadjusted 
P value (P). Consistency in color representation for taxonomic orders is maintained throughout this and other related figures. A dotted line within the scatterplots repre-
sents the line of perfect prediction, while the solid red line is the fitted linear regression. Animal silhouettes featured are sourced from the Phylopic database (https://www.
phylopic.org/) or Wikimedia, which are under public domains or the CC BY 3.0 license (https://creativecommons.org/licenses/by/3.0/).
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Fig. 2. Comparison of DNAm life-span predictor, phylogeny-based predictor, and sex-related differences in predicted life span. (A and B) Evaluation of the multi-
variate predictor of maximum life span based on cytosine methylation in training data (A) and test data (B), encompassing 70% and 30% of species, respectively. In (A) and 
(B), each data point symbolizes a unique species, differentiated by its taxonomic order color coding. The dotted red line indicates the fitted linear regression. (C and D) 
Leave-one-clade-out (LOCO) cross-validation analyses concentrate on the log-transformed (base e) maximum life-span predictions. Given that several species’ missing 
life-span observations were filled using neighboring species, life-span estimates naturally favor k-NN. To mitigate this bias, this analysis only includes 250 species from the 
original anAge database (2) with actual maximum life-span records. This analysis provides an unbiased assessment of the performance of the DNAm elastic net predictors 
(C) compared to the k-nearest neighbor (k-NN with K = 1) predictor (D), which uses distances from the mammalian phylogenetic TimeTree (55). (E) Bar plot reports the 
differences in life-span predictions between females and males by tissues, specifically highlighting species that exhibits uniformity across tissues with statistically signifi-
cant (two-sided unadjusted Wilcoxon rank sum test, P ≤ 0.01) female-male differences. This means that in all statistically significant tissue groups, females are consis-
tently predicted to have longer DNAm life span. Error bars outline the 95% confidence interval (CI) of these differences. Bars throughout the figure are colored by tissue 
type, as detailed in the accompanying legend.
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species-level life span on a logarithmic scale, we used the coeffi-
cients to predict the life span of individual samples. Our findings 
indicate that the predicted maximum life spans for individual sam-
ples can vary and, in certain species such as the naked mole rat skin, 
human blood, sheep ear, and cat blood, correlate significantly (Pear-
son correlation test P < 0.05) with chronological age (fig. S2). In a 
similar vein, gestation duration and age of sexual maturity correlate 
significantly with age (P < 0.05) in select species-tissue strata 
(figs. S3 and S4). Overall, our analysis (figs. S2, S3, and S4) reveals 
that epigenetic indicators of life-history traits, when confined to a 
specific species and tissue, do not have a consistent correlation 
with age.

Effect of tissue type
In the preceding section, we introduce epigenetic predictors for life-
history traits, derived from mean methylation levels averaged across 
species and encompassing all available tissue types. As these pre-
dictors disregarded specific tissue types, we term these as tissue-
agnostic life-history predictors.

To delve deeper into the influence of tissue type on life-span pre-
dictions, we applied these tissue agnostic epigenetic predictors—
specifically for maximum life span, gestation duration, and age of 
sexual maturity—to selected species for which multiple tissue types 
were available (figs. S5 to S7).

The epigenetic maximum life-span estimates do reveal dispari-
ties between certain tissues. For instance, in human samples, dis-
tinct epigenetic life-span predictions emerge (table S3): Blood and 
epidermis yield elevated life-span predictions of 98.1 and 94.6 years, 
respectively, while skin and cerebral cortex produce estimates of 
79.1 and 51.1 years, respectively. In contrast, embryonic stem cells 
(34.4 years), induced pluripotent stem cells (iPSCs) (25.6 years), en-
dothelial cells (23.9 years), and skeletal muscle (35.4 years) present 
lower life-span predictions (table S3).

The trend of blood samples reflecting the highest epigenetic 
maximum life span is consistent across various species (fig. S5). For 
instance, in species ranging from humans to brown rats, blood sam-
ples consistently indicate elevated epigenetic maximum life-span 
predictions.

In horses, we have observed that blood results in elevated life-
span predictions, whereas the ovaries and adrenal cortex yield lower 
estimates (fig. S5). In mice, blood, Lin(−)Sca-1(+)c-Kit(−) [LSK(−); 
which are cell surface markers to characterize a subset of cells with-
in the bone marrow that is capable of self-renewal and differentia-
tion into all types of blood cells] progenitor hematopoietic stem 
cells, and bone marrow macrophages stand out with elevated pre-
dictions, whereas other tissues align closely. Both beluga whales and 
rhesus macaques show elevated life-span estimates in blood (fig. S5). 
In summary, blood samples consistently yield higher epigenetic 
maximum life-span predictions across a variety of species. A de-
tailed overview is available in table S3. The biological significance of 
these disparities warrants further investigation. While the preceding 
analysis focused on maximum life span, we also conducted evalua-
tions of tissue disparities in the predicted gestation time (fig. S6) and 
the age at which sexual maturity is reached (fig. S7).

We briefly describe a strategy for building epigenetic predictors 
of life-history traits that mitigate the confounding influence of tissue 
types. A predictor for maximum life span can be built based on 
mean methylation levels in strata formed by species and tissue type, 
termed tissue-aware life-history predictors. In this setup, every species 

is represented through multiple data points corresponding to differ-
ent tissues collected from the same species. Notably, these predic-
tors, rooted in species-tissue aggregated data, are highly accurate 
(fig. S8). In addition, maximum life span, gestation time, and age at 
sexual maturity predictors produce similar tissue-stratified results 
(figs. S9 to S11). The predictor coefficients and corresponding CpG 
annotations are summarized in tables S8 to S10 (also available on 
Zenodo, https://doi.org/10.5281/zenodo.10783145, supplemented 
by the R package on Github: https://github.com/caeseriousli/Mam-
malianMethylationPredictors). In our subsequent discussions and 
the remainder of the article, we will focus on tissue-agnostic predic-
tors for life-history traits.

Superior performance of DNAm-based predictors
While DNAm levels are influenced by genetics, our DNAm-based 
life-span predictor seems to transcend DNA sequence variation in-
fluenced by phylogenetic relationships. This assertion is supported 
by two distinct analyses.

First, we used elastic net regression models to predict maximum 
life span using both CpG methylation data and taxonomic order in-
dicators. The model exclusively selected CpGs, indicating their su-
perior explanatory power over taxonomic variables in life-span 
variation.

Second, we compared the accuracy of the epigenetic life-span 
predictor against k-nearest neighbor (k-NN) regression models, 
which base predictions on phylogenetic tree branch lengths. At its 
simplest, with K = 1, the k-NN model predicts a species’ life span 
based on its closest taxonomic neighbor. Upon evaluating the cor-
relation between predicted and actual values, the phylogeny-driven 
k-NN model slightly trails the DNAm predictor, especially under a 
LOSO evaluation. This is primarily because many mammalian spe-
cies in our dataset exhibit life spans akin to their taxonomic neigh-
bors (fig. S12, A and B, and table S1). This trend is also pronounced 
at the taxonomic family level (fig. S12, C and D). However, the k-
NN model’s performance diminishes under a more rigorous LOCO 
evaluation, which tests the model’s ability to predict life span of 
taxonomically diverse species. While k-NN models (with K  =  1) 
achieved a moderate correlation of R = 0.62 (Fig. 2D and fig. S13), 
they lag behind the methylation-based predictor, which boasts a 
correlation of R = 0.73 (Fig. 2C and fig. S12). k-NN models with 
K  =  2 and K =  3 neighbors yielded correlations of R =  0.62 and 
R = 0.57, respectively. A detailed examination of the residuals high-
lights the k-NN model’s tendency to make generalized predictions 
for larger taxonomic orders, often deviating notably from actual val-
ues (fig. S13).

In conclusion, when assessed through LOCO cross-validation, 
DNAm-based predictors improve upon their phylogeny-based 
counterparts. The DNAm predictor’s capability to accurately esti-
mate life span across diverse taxonomic orders underscores its po-
tential to capture aspects of mammalian life span that transcend 
phylogenetic relationships.

Sex differences in predicted life span
We aimed to investigate any potential disparities in maximum life-
span predictions across sexes. Using our final regression model, 
based on average methylation data per species and designed to pre-
dict species-level life span on a logarithmic scale, we predicted indi-
vidual sample life spans. Predictions from female tissues showed 
a striking alignment with those from male tissues, with a strong 

https://doi.org/10.5281/zenodo.10783145
https://github.com/caeseriousli/MammalianMethylationPredictors
https://github.com/caeseriousli/MammalianMethylationPredictors
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correlation of R = 0.99 on a log scale. Most species showed consis-
tent epigenetic estimates of maximum life span in female and male 
samples (tables  S3 and S4, column “Female–Male Significant Tis-
sues,” where “+” denotes female minus male mean predicted DNAm 
life span is positive with an unadjusted P value of ≤0.01, “-” vice 
versa, and “.” denotes a P value of >0.01). Stratifying by tissue type, 
we observed statistically significant consistent sex difference in epi-
genetic maximum life span (a more conservative two-sided unad-
justed Wilcoxon rank sum test, P < 0.01) (20) in only 18 species 
(Fig. 2E). This means that we only consider it statistically significant 
when (i) at least one tissue group within the species exhibits statisti-
cally significant (two-sided unadjusted Wilcoxon rank sum test, P ≤ 
0.01) female-male differences and (ii) these female-male differences 
must be in the same direction, for example, the female mean DNAm 
life span being consistently greater than that of the males. In other 
words, we look for species for which one sex is consistently predict-
ed to have longer DNAm life span than the other. Females were pre-
dicted to have a longer maximum life span than males in 17 of the 
18 species, including humans (Fig. 2E and table S3). The one excep-
tion was blood from harbor seals. In a comparison across species, 
females exhibit an average of 1% longer predicted epigenetic maxi-
mum life span than their male counterparts, with an SD of 11.9% 
(details in table S3).

Minor effect of adult weight in prediction accuracy
Across species, there is a notable positive correlation between maxi-
mum life span and average adult weight (body mass), as depicted in 
fig. S14A. This correlation has been well documented in previous 
studies (2). Given this, we evaluated whether the high accuracy of 
epigenetic life-span predictors could be influenced by the average 
adult weight. Our findings from two distinct analyses suggest otherwise.

In the first analysis, we focused on small animals, specifically 
those with an average adult weight of less than 150 g. Despite a neg-
ative correlation between adult weight and maximum life span in 
these species (R  =  −0.29, fig.  S14C), the epigenetic predictor of 
maximum life span still showed a strong correlation with observed 
values (R = 0.53, P = 1.6 × 10–10, fig. S14B). In the second analysis, 
encompassing all animals, a multivariate regression model (with the 
dependent variable being the log of maximum life span) indicated 
that (log-transformed) adult weight (Wald test, P = 1.3 × 10–6) is a 
less significant covariate than (log-transformed) epigenetic maxi-
mum life span (P < 2 × 10–16). This shows that adult weight only 
weakly mediates the effect of epigenetic maximum life span on ac-
tual maximum life span. This observation is reinforced by a correla-
tion value (R) of 0.54 between our model’s predictions, after weight 
adjustments, and the actual maximum life span (fig. S14D). In con-
clusion, both analyses consistently show that the epigenetic maxi-
mum life span provides predictive information that extends beyond 
adult weight.

Cancer mortality risk across mammals
Distinct variations in cancer mortality rates across major mamma-
lian orders have been documented (21). Notably, there exists a pro-
nounced negative correlation between mammalian cancer risk and 
observed gestation time (Pearson r = −0.37, P = 0.0031, fig. S15). 
Considering the notable correlation among gestation time, maxi-
mum life span, and age at sexual maturity on a logarithmic scale 
(fig. S15, A and B), one might theorize that one or more of these 
life-history traits could predict cancer mortality risk in mammals. 

However, this theory is challenged by the data: Neither maximum 
life span (fig. S15D) nor average age at sexual maturity (fig. S15E) 
exhibits this anticipated relationship. The only significant correla-
tion with cancer mortality risk is observed for gestation time and its 
epigenetic counterpart (r = −0.41, P = 0.00092, fig. S15I). Further, 
upon adjusting for observed life history traits, no significant correla-
tion was found between epigenetic predictions of life-history traits 
and mammalian cancer risk (fig. S15, K to M). Collectively, these 
findings indicate that the epigenetic markers predicting life-history 
traits, such as gestation time, do not inherently offer predictive in-
formation into mammalian cancer risk beyond the observed life-
history values. This result is consistent with the concept of Peto’s 
paradox where there is no correlation between cancer rates and ei-
ther maximum life span or body mass (21).

Weak effect of mutations in the somatotropic axis
The somatotropic axis, encompassing growth hormone, insulin-like 
growth factor–1 (IGF-1) levels, and their respective receptors, is a 
focal point in aging and longevity research (22). Growth hormone 
receptor knockout (GHRKO) mice (dwarf mice) typically exhibit an 
extended maximum life span (23, 24). A full-body GHRKO mouse 
holds the record of nearly reaching a life span of 5 years (22). In our 
study, we sought to determine if decreased GH/IGF-1 pathway ac-
tivity influences the epigenetic estimates of maximum life span 
across three distinct mouse models. It should be noted that Snell 
dwarf mice and full-body GHRKO mice show extended maximum 
life spans (25–27). On the other hand, liver-specific GHRKO mice, 
despite exhibiting reduced serum IGF-1 levels, do not show a cor-
responding increase in maximum life span (28, 29).

Our observations indicate that both the full-body GHRKO and 
liver-specific dwarf mice show a notably extended epigenetic maxi-
mum life span, particularly in samples from liver and kidney (Fig. 3). 
However, such association was not observed in samples from blood, 
cerebral cortex, hippocampus, spleen, or tail. Similarly, we did not 
detect any significant association across tissues in Snell dwarf mice. 
Given these observations, two potential inferences emerge. Either 
manipulation within the somatotropic axis (comprising growth hor-
mone, IGF-1 levels, and their associated receptors) has at best a 
weak effect on epigenetic life-span estimators in select tissues, or the 
epigenetic predictor of maximum life span is insufficiently precise 
when used in mouse studies.

Equivocal effect of caloric restriction and high-fat diet on 
epigenetic life span
Caloric restriction has been documented to extend the maximum 
life span in approximately one-third of all mouse strains. We aimed 
to gauge the influence of caloric restriction on the epigenetic esti-
mates of maximum life span from mouse liver samples. In four of 
the five studies, no significant (when assessed with a relaxed, unad-
justed type I error rate control of 5%) impact on epigenetic maxi-
mum life span in murine liver was observed (Fig. 3). Only one study 
presented the expected association between caloric restriction and a 
prolonged maximum life span (Fig. 3).

On the other hand, high-fat diets have been identified as factors 
that both shorten murine life span and accelerate epigenetic aging 
(30). Consistent with this, our observations did confirm the antici-
pated link between a high-fat diet and a reduction in epigenetic 
maximum life span (Fig. 3). In sum, the outcomes from the 
application of epigenetic maximum life-span indicators to mouse 
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interventions, which inherently influence mouse longevity, are some-
what equivocal.

Cellular reprogramming based on the Yamanaka factors
The Yamanaka factors, comprising Oct4, Sox2, Klf4, and Myc 
(OSKM), are known for their role in full reprogramming (resulting 
in iPSCs) as well as in partial reprogramming of somatic cells (31–
36). We tested whether reprogramming affects epigenetic maximum 
life span using publicly accessible data from both complete and par-
tial reprogramming studies conducted on human and mouse cells.

Our findings (Fig. 4) show the maximum life-span predictor out-
comes for various cellular reprogramming treatment groups. Nota-
bly, human dermal fibroblasts subjected to a full reprogramming 
course based on OSKM transduction exhibited a slightly increased 
(and statistically significant P < 0.05) epigenetic maximum life span 
after 20 days (see Fig. 4A). Meanwhile, in a partial reprogramming 
experiment (GSE165179) (37), the treatment group displayed a 
marginally reduced mean predicted maximum life span. However, 
the disparity between the groups did not reach a statistically signifi-
cant level (Fig. 4B).

We note that our examination of tissue and cell types did not 
yield conclusive evidence indicating a substantial divergence in the 
epigenetic maximum life span between embryonic stem cells or 
iPSCs and primary cells (see fig. S5). Our findings are somewhat 
inconclusive. Although full reprogramming in human dermal fibro-
blasts hints at an increase in epigenetic maximum life span after 20 

days of OSKM administration, transient reprogramming experi-
ments in humans and mice were unable to confirm this effect (Fig. 4, 
B to D). We discuss caveats surrounding the measurement plat-
form below.

Human epidemiological cohort studies
We used methylation-based estimators to assess the maximum life 
span in blood samples sourced from participants of the Framing-
ham Heart Study (FHS) (n = 2544) (38) and the Women’s Health 
Initiative (WHI) (n = 2107) (39, 40). Given that these samples were 
processed using a different methylation platform (the human Infin-
ium 450K array), we used the Array Converter software to convert 
values from the mammalian methylation probes (18). We observed 
no significant correlations between the predicted maximum life 
span and the actual age of participants across three distinct racial/
ethnic groups (Fig. 5, A to D). It is important to highlight that this 
finding contrasts with our previous analysis, where we identified a 
correlation between age and epigenetic maximum life span in hu-
man blood (R = 0.51, fig. S2N). These discrepancies likely arise from 
variations in measurement platforms. Our earlier analyses used the 
mammalian methylation array, whereas the epidemiological cohort 
studies used the human Illumina 450K array.

Our analysis reveals no significant associations with other demo-
graphic variables in blood samples, the DNAm-based maximum life 
span does not show a significant association with sex (P  =  0.55, 
Fig. 5E), racial/ethnic group (P = 0.087, Fig. 5F), human mortality 

Blood Cortex Heart Hippocampus Kidney Liver Muscle Spleen Tail

−6 −3 0 3 6 −6 −3 0 3 6 −6 −3 0 3 6 −6 −3 0 3 6 −6 −3 0 3 6 −6 −3 0 3 6 −6 −3 0 3 6 −6 −3 0 3 6 −6 −3 0 3 6

N41 CR

N39 CR

N25 CR

N08 CR

N02 CR

N08 HighFatDiet

N02 GHRKO

P31 GHRKO in liver

P30 Snell

Z statistic of association

Treated group predicted to have less life span Treated group predicted to have more life span Not signifcant

Life-span predictions

Fig. 3. Predicted life span across murine experimental treatment groups. Predicted life span from the final model fitted to individual samples in murine perturbation 
experiments. Each row corresponds to a specific experiment, and columns stratify these results by tissue types. The experimental treatment groups, from top to bottom, 
are as follows: Snell dwarf mice, liver-specific growth hormone receptor knockout (GHRKO) mice, full-body growth hormone knockout mice, high-fat diet, and five sepa-
rate caloric restriction (CR) experiments. The prefixes in the rows, such as P30 for “project 30” and N08 for “number 8,” denote distinct datasets. Empty cells denote the 
absence of samples for the corresponding tissue in the experiment. Gray dots represent associations that are not statistically significant. Red and blue markers highlight 
significant associations (P < 0.05) that align with our expectations. We found no significant associations that deviated from our expectations. The x axis reports Wald test 
statistics that follow a standard normal distribution under the null hypothesis. Dashed lines represent the critical Z statistic values when assessing a two-sided t test with 
type I error controlled at α = 0.05.
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risk (P = 0.97, Fig. 5G), body mass index (P = 0.069), smoking pack 
years (Fig. 5I), or age at female menopause (P = 0.38, Fig. 5J). The 
Mini-Mental State Examination (MMSE) is a diagnostic tool for 
cognitive impairment and dementia. The MMSE evaluates various 
cognitive domains. A higher score on the MMSE indicates better 
cognitive functioning. We noted a marginally significant negative 
correlation (P = 0.025, Fig. 5K) between MMSE and age-adjusted 
DNAm life span. However, this significance disappears after ac-
counting for multiple comparisons.

We delved into the relationship between our methylation-based 
life-span estimators and several dietary and health-related biomarkers 

(fig. S16). This comprehensive assessment covered 59 variables: 27 
from self-reported dietary inputs, 9 from blood-based dietary mea-
surements (including mean carotenoid levels, indicative of vegetable 
and fruit consumption), and 17 clinical indicators (including meta-
bolic characteristics, central adiposity, inflammatory markers, leu-
kocyte telomere length, cognitive performance, and lung function). 
We also analyzed lifestyle and demographic variables (diet, exercise, 
education, and income). Upon analysis, neither the epigenetic esti-
mate of maximum life span nor its age-adjusted counterparts 
showed any significant association with the biomarkers after ad-
justing the analysis for multiple comparisons (fig. S16). The results 
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Fig. 4. Partial or full OSKM reprogramming versus epigenetic maximum life span. (A) Predicted maximum life span in a 49-day full reprogramming time course of 
human dermal fibroblasts (HDFs) resulting in iPSCs (Kruskal Wallis test, P = 0.0086) (56). Y axis: log(maximum life span) calculated from DNAm arrays from the following 
cell populations: day 0 (HDFs), day 3 [OSKM expressing enhanced green fluorescent protein (EGFP) (+) HDFs], days 7 to 28 [TRA-1–60 (+) cells at intermediate stages of 
reprogramming], and iPSCs after day 35. (B) Predicted maximum life span of HDFs after transient reprogramming (GSE165179) (37). Different lengths of transient repro-
gramming were separated into subpanels. Negative control cells, transiently reprogrammed cells (CD13− SSEA4+), and cells that failed to transiently reprogram (CD13+ 
SSEA4−) were included in the plot. (C) Predicted maximum life span of HDFs with transient expression of Oct4, Sox2, KLF4, Myc, LIN28, and NANOG (OSKMLN) (GSE142439) 
(33). OSKMLN was daily transfected for four consecutive days, and DNAm was measured 2 days after the interruption. (D) Predicted maximum life span in various tissues 
of 4F mice after 7 months of treatment (GSE190665) (35). B6 or 4F mice were given doxycycline in drinking water for 2 days followed by 5 days of withdrawal. The treatment 
started at 15 months of age and continued until 22 months of age (7-month treatment). B6 mice: WT mice; 4F mice: mice with the OSKM polycistronic cassette.
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Fig. 5. Methylation-based estimate of maximum life span in human cohorts. (A to D) Scatterplots of the predicted maximum life span, transformed from log-years 
back to years (DNAmMaximumLifespan, x axis), against chronological age (y axis). These panels depict data from (A) n = 2544 Caucasians of European ancestry in the FHS 
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suggest that lifestyle behaviors do not profoundly influence the 
maximum bounds of human life span, as measured by epigenetic 
predictors. However, it is essential to highlight a notable limitation 
in our analysis: the human data were sourced from a different meth-
ylation array platform and was heavily dependent on imputation 
methods. Future research should revisit these findings using data 
from methylation platforms that assess the highly conserved CpGs 
on the mammalian array.

Evaluation in different dog breeds
Dog breeds display a remarkable variability in life span, with certain 
breeds outliving others by as much as twofold. We assessed our epi-
genetic predictor of maximum life span using 742 individual blood 
samples sourced from 93 distinct dog breeds (41). However, our ca-
nine dataset presented two primary challenges. First, the representa-
tion of dogs within each breed was inconsistent, ranging from as few 
as 2 samples for the English Setter to as many as 95 for the Portu-
guese Water Dog. Second, there was a disparity in age distributions 
across breeds; for example, the relative ages R (defined as ratio of age 
divided by maximum lifespan of the species dog) for the Otter-
hound breed spanned from 0.06 to 0.14, while for the Beagle, R 
ranged from 0.06 to 0.73 (41). To average out these inconsistencies, 
we took the average of maximum life-span predictions for each 
breed. When applying the mammalian maximum life-span predic-
tor to blood samples from 90 diverse dog breeds (Fig. 6), we did not 
observe a significant correlation between the predicted mammalian 
maximum life span and either the breed’s average/maximum life 
span or its average weight. Overall, these results suggest that the epi-
genetic predictor of mammalian life span is not effective in predict-
ing breed-specific life spans in dogs.

The minimal variation in predicted maximum life span for dif-
ferent dog breeds (Fig. 6) may reflect a close alignment with the epi-
genetic life span of their wolf ancestors. This pattern indicates that 
the epigenetic predictor of maximum life span is not substantially 
influenced by the recent selective breeding by humans, but rather 
mirrors the life span of the dogs’ progenitor species. To examine this 

further, we developed another multivariate predictor of maximum 
life span that encompasses all mammalian species, including 93 dog 
breeds. This model was devised in a manner akin to that shown in 
Fig. 1 but with the following distinction: it replaces a single entry for 
Canis lupus familiaris with 93 individual breed-specific entries, 
thereby capturing the variance in life span across breeds (fig. S17A). 
The negligible Pearson correlation among dog breeds (r  =  0.068, 
fig. S17B) highlights the inability of this predictor to effectively dif-
ferentiate between breeds with longer and shorter life spans. Subse-
quently, we constructed a distinct multivariate predictor of breed 
life span trained solely on data from dog breeds. This specialized 
predictor shows a moderate correlation (r = 0.42, fig. S17C) for the 
log-transformed median life span of dog breeds. However, the mod-
est nature of this correlation infers that methylation data may offer 
limited insight into the nuances of life span disparities among 
dog breeds.

DISCUSSION
Drawing from the comprehensive dataset of our Mammalian Meth-
ylation Consortium, we developed multivariate predictors that adeptly 
discern maximum life span and associated life-history traits. Notably, 
our epigenetic estimator demonstrated heightened precision for ges-
tation duration (R = 0.96) compared to maximum life span (R = 0.89). 
This discrepancy might be attributed to the inherent challenges in 
procuring accurate maximum life-span data across a diverse array 
of species.

In terms of sexual dimorphism in life-span predictions, for most 
species, there was a congruence in the predicted maximum life span 
between sexes. However, a distinct trend emerged in 17 species, in-
cluding humans, where females displayed a longer predicted life span, 
with harbor seals being a notable exception. This observation reso-
nates with previously published studies that underscore the longev-
ity advantage of females (42–44).

Our epigenetic markers’ predictive capacity seems to add infor-
mation beyond phylogenetic correlations, indicating their broader 
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applicability. Neither chronological age nor typical adult weight ap-
peared to markedly sway the accuracy of our life-history trait pre-
dictors. In numerous species, there was a conspicuous absence of 
correlation between chronological age and the epigenetic life span.

The actual maximum life span of humans, at 122.5 years, exceeds 
our epigenetic maximum life-span estimates. For humans, the high-
est epigenetic life-span values were observed in blood and epidermis 
samples, at 98.1 and 94.6 years, respectively. This trend of elevated 
epigenetic life span in blood samples is consistent across various 
species, from humans to brown rats. We did not find definitive evi-
dence suggesting that the epigenetic maximum life span of embry-
onic stem cells or iPSCs notably diverges from that of somatic cells. 
The biological significance of cell type–and tissue-specific variations 
in epigenetic life-span predictions warrants further investigation. 
Epigenetic maximum life span showed little variation across dog 
breeds, indicating that it is not affected by recent genetic selection 
enforced on dogs and may represent the ancestral state of the dog as 
a species.

Our study on predicting maximum life span did not incorporate 
DNA sequence data. Instead, we concentrated on methylation levels 
at highly conserved CpG sites. Nonetheless, DNA sequence in-
formation holds promise for developing life-span predictors. For 
instance, Mayne et al. (10) introduced an effective predictor of max-
imum life span in vertebrates, using the density of CpG sites across 
42 selected promoters, highlighting the use of DNA sequence data 
in multivariate prediction models (10). Although our focus on 
methylation contrasts with Mayne et al.’s (10) sequence-based ap-
proach, we similarly identified a connection to CpG islands, as de-
tailed in our companion paper (18). The latter paper presents 
findings from epigenome-wide association studies (EWAS) on max-
imum life span, where individual cytosines’ correlation with log-
transformed life span was examined. While a comprehensive 
discussion of the EWAS findings exceeds this paper’s scope, we 
highlight essential insights: CpG islands and related chromatin 
states, such as transcriptional start sites (TSS1) and flanking pro-
moter states (PromF4, PromF5), show enrichment for CpGs nega-
tively associated with maximum life span (18, 45). In essence, 
species with longer life spans exhibit lower methylation levels at 
CpG islands compared to shorter-lived species.

Analysis of murine life-span interventions showed that only 
growth hormone knockouts showed extended epigenetic life span in 
liver and kidney tissues, while other tissues and long-lived strains 
did not influence epigenetic maximum life span. Similarly, caloric 
restriction did not affect epigenetic maximum life span.

Our analysis of human cohorts, despite its comprehensiveness, 
did not definitively determine the effects of lifestyle on epigenetic 
maximum life span. One possible constraint might arise from using 
different methylation array platforms for data gathering (specifical-
ly, the human Illumina 450K array as opposed to the mammalian 
methylation array). For more accurate insights in future human epi-
demiological cohort studies, it would be beneficial to profile the 
highly conserved CpGs using the mammalian methylation array.

Together our results suggest that species maximum life span is 
strongly associated with an epigenetic signature that is largely inde-
pendent of sex, body mass, calorie restriction, or other lifestyle fac-
tors. This signature may be an intrinsic property of each species that 
is difficult to change. Only growth hormone knockout and full re-
programming had some effect on epigenetic maximum life span. 
It would be interesting to identify novel interventions that affect 

epigenetic maximum life span as they may be the key to achieving 
large life-span differences observed between species.

MATERIALS AND METHODS
Human subjects
We used existing data from the Mammalian Methylation Consor-
tium (18). Detailed ethics statements can be found in the original 
citation (18). The secondary use of the other de-identified/coded 
human tissue samples (blood, postmortem tissues) is not interpret-
ed as human subjects’ research under US Department of Health & 
Human Services 45 CFR 46. Therefore, the need to obtain written 
informed consent from human study participants was waived (sec-
ondary use of deidentified tissues). Human samples were covered by 
University of California Los Angeles IRB#18-000315.

Animal research
All mice were maintained and bred under standard conditions con-
sistent with National Institutes of Health guidelines and approved by 
the University of California, Los Angeles Institutional Animal Care 
and Use Committees. Additional and detailed ethics statements can 
be found in (18).

DNAm data
We used existing data from the Mammalian Methylation Consor-
tium that were published previously (18). All data were generated 
using the mammalian methylation array (HorvathMammalMethyl-
Chip40) (16), which provides high sequencing depth of highly con-
served CpGs in mammals. Nearly 36,000 probes (cytosines) on the 
array exhibit high levels of sequence conservation within mam-
malian species (16). The subset of species for which each probe is 
expected to work is provided in the chip manifest file, which can be 
found at the National Center for Biotechnology Information (NCBI) 
Gene Expression Omnibus (GEO) as platform GPL28271, and on 
the Github webpage from the Mammalian Methylation Consortium. 
The SeSaMe normalization method was used to define β values for 
each probe and to calculate detection P values (46).

Data description
We analyzed methylation data from 348 mammalian species repre-
senting 25 of 26 taxonomic orders (table S2 and Fig. 1). The only 
order not represented was the marsupial order Peramelemorphia. 
DNA was derived from 59 different tissues and organs including 
blood, skin, liver, muscle, and brain regions (table S1).

Life-history traits and anAge database
The high accuracy of the epigenetic estimator of maximum life span 
is a testament to the success of a decade-long effort of biologists and 
the anAge database (2) to establish this elusive phenotype. For sev-
eral species, maximum life span was not available in anAge. For se-
lect species, we used a K = 1 nearest neighbor predictor to impute 
values. Therefore, we limited our comparative analysis to species for 
which this value was available and did not require imputation. To 
enhance the reproducibility of our findings, we include our updated 
version of the anAge database (2) (table S1).

Multivariate estimators of maximum life span
The regression coefficients from the final predictor, that is, the full 
model trained on all available species-level data for extrapolation 
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purposes, are reported in table S5. For most species, relatively few 
animals informed the determination of maximum life span, which 
may bias this life-history trait (47, 48).

To compensate for the disparity in data, with the maximum life 
span of humans and mice being derived from extensive studies and 
that of other mammals from fewer observations, we have applied a 
multiplicative correction factor of 1.3 to the maximum life-span val-
ues of the latter. This correction is based on the presumption that 
maximum life-span estimates from the AnAge database are, on av-
erage, 30% lower than the true potential for all species except hu-
mans and mice. This 30% increment is admittedly arbitrary, chosen 
for its consistency with the methodology of our previous work on a 
universal mammalian clock (17, 18). Nonetheless, we acknowledge 
the necessity for future research to explore more empirically found-
ed adjustment methods and to assess their impact on the predictive 
accuracy of our model.

Furthermore, in the final model trained on all species, we cali-
brated the predictor using the mean and SD. This calibration was 
done to align it with the biomarker’s distribution, matching the ob-
served life-span data (49).

The distributions of mammalian life-history traits, both in gen-
eral and within our dataset, show a pronounced skew toward higher 
values. This skewness is largely due to the exceptionally long life 
spans of certain species, such as humans and bowhead whales, com-
pared to most mammals. To better meet the normality assumption 
of our regression models, we have applied a logarithmic transforma-
tion to all three life-history traits in this study.

We used elastic net regression to build different multivariate pre-
dictors of maximum life span, gestation time, and age at sexual ma-
turity (50). To build a model on the basis of CpGs that are present/
detectable in most species, we restricted the analysis to CpGs with 
significant median detection P values (false discovery rate < 0.05) 
(51) in 85% of the species. This resulted in a lower-dimensional da-
taset consisting of 17,032 CpGs.

We used three strategies for building maximum life-span predic-
tors. The first strategy ignored tissue type. Here, all tissue samples 
from a given species were averaged, resulting in a single observation 
per species. To arrive at unbiased estimates of the predictive accu-
racy of life span and other predictors, we used a LOSO cross-
validation analysis that iteratively trained the predictive model on 
all but one species. Next, the predictor was applied to the observa-
tions from the left-out species. By cycling through the species, we 
arrived at LOSO estimates for each species. The second strategy 
formed average values for each stratum defined by tissue type and 
species. For example, this analysis formed an average value for hu-
man blood (considered as one stratum). The second approach al-
lowed us to study the influence of tissue type on life-span predictions. 
This second strategy shows similar prediction correlations in all 
three life-history traits (fig. S8).

Third, we also conducted a LOCO analysis as described in the 
following.

Conducting a comprehensive leave–one–taxonomic order–out 
cross-validation presented challenges. The primary issue was the 
unequal distribution of animals across taxonomic orders; for in-
stance, Rodentia comprised 27% of all species, while many orders 
had fewer than 3% (table S2). To circumvent this, we adjusted the 
leave-one-order-out analysis. In larger taxonomic orders with 
over 20 species (like Rodentia, Artiodactyla, Chiroptera, Primates, 
Carnivora, and Eulipotyphla), we left out all species except 

two, representing the minimum and maximum life span. These 
two species functioned as a benchmark, tasking the predictor to es-
timate the life span for the entire taxonomic order based on limited 
data. Conversely, smaller taxonomic orders were left out completely 
as test sets. For instance, orders such as Dasyuromorphia, Microbio-
theria, Sirenia, and Tubulidentata were represented only by a single 
species (table S2). This modified approach was termed the LOCO 
analysis. A predictor heavily influenced by neighboring species with 
close life spans, like the tree-based k-NN, would likely struggle with 
this methodology. Notably, as we used k-NN for imputing missing 
life-span observations for several species, life-span estimates natu-
rally favor k-NN. Therefore, for this specific analysis, we relied on 
the original anAge database (2) that was devoid of imputed values.

It became clear that, while the k-NN life-span predictor showed 
a reasonable prediction correlation, it frequently provided static and 
deviant predictions for entire taxonomic orders (Fig.  2B). When 
faced with any test set, the algorithm often perceived the “nearest” 
species as the two specified in the LOCO training set, or occasion-
ally species in a neighboring small order. This led to uniform esti-
mates across a taxonomic order, making the algorithm less effective 
for diverse species or clades.

For assessing the sex difference in individuals’ DNAm maximum 
life-span prediction results, we chose to conduct two-sided Wilcox-
on rank sum tests (20) instead of Student’s t tests, for the following 
considerations: (i) small sample sizes in some species’ tissue-sex 
strata; (ii) weak normality assumption in these small sample sizes; 
(iii) Wilcoxon rank sum test is a relatively more conservative test 
than Student’s t test (52); (iv) both Wilcoxon rank sum test and Stu-
dent’s t test work in other strata in which normality can be assumed 
and larger sample sizes are present; and (v) to be consistent across all 
strata and species, Wilcoxon rank sum test was used for sex differ-
ence in DNAm life-span predictions.

Random forest predictors of species and tissue
We specified 100 trees, with a bootstrap resampling limited to 200 
per category, to counteract the imbalance in tissue and species cat-
egory sample sizes. Other settings are standard (default parameter 
choices) for our random forest predictors of species, tissue, and sex 
(the predictive performance is detailed in Table 1).

To discern which CpGs hold the greatest predictive value for spe-
cies identification in our random forest model (Table 1), we used the 
Gini index–based measure of variable importance. To demonstrate 
the distinctiveness of our random forest species predictor from our 
multivariate model predictor of maximum life span (which relies on 
152 CpGs), we highlight an interesting contrast. Among the top 100 
most significant CpGs identified by the random forest predictor of 
species, only 2 overlap with the 152 CpGs used in the maximum 
life-span predictor (fig. S18). Furthermore, only 3 of the 152 CpGs 
are ranked within the top 1000 by the random forest predictor, un-
derscoring the uniqueness of the predictors.

Interventions in mice
We used existing mammalian methylation data from mouse studies 
(18). The mammalian array data were generated using two versions 
of the mammalian array: the original mammalian array (called 
“40K” array) and the expanded array (referred to as “320K”) that 
also includes mouse probes (16). Some CpG probes unique to each 
array required imputation. Methylation levels of CpG sites miss-
ing on the 320K array were imputed from median β values of the 
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training mouse samples (“40K” array). None of the samples from 
the murine anti-aging studies were incorporated into the training 
set. Our DNAmMaxAge was assessed using the following indepen-
dent test datasets: (1) Snell dwarf mice (n = 95), (2) GHRKO 
experiment 1 (n = 71), (3) liver specific GHRKO experiment 2 
(n = 96), and (4) calorie restriction (n = 95).

t tests evaluated whether these conditions affected epigenetic 
maximum life span. The DNAm data from datasets 1 and 3 were 
collected using the Mammalian Methylation 320k customized array 
(available in GSE223943 and GSE223944). Datasets 2 and 4 are 
available at GSE223748. Below is a brief overview of the experi-
ments. Comprehensive details can be found in the supplementary 
materials of (18).

Snell dwarf experiment (n = 95): We analyzed tissues from 47 
Snell dwarfs and 48 age-matched wild-type control mice, aged 
around 6 months. Snell dwarf mice, known for an approximately 30 
to 40% extended life span, lack growth hormone, thyroid-stimulating 
hormone, and prolactin. Methylation profiling was conducted on 
blood, cerebral cortex, liver, kidney, spleen, and tail from these mice.

GHRKO experiments: We analyzed tissues from full-body 
(n = 71) and liver-specific (n = 96) GHRKO studies. The full-body 
GHRKO mice exhibited prolonged life span, while liver-specific 
GHRKO did not. DNAm profiles were created for various tissues, 
and age matching was performed.

Calorie restriction study (n = 95): This study involved analyz-
ing liver samples from 95 male mice, 59 from the calorie-restricted 
group, and 36 controls. All mice, sourced from UT South-
western Medical Center, Dallas, were 1.57 years old and from 
the C57BL/6J strain.

Cancer risk in different mammals
We sourced estimates of mammalian cancer risk from a recent study 
(21). Two key metrics were considered: First, cancer mortality risk 
(CMR)—this refers to the ratio of cancer-related deaths to the total 
number of individuals for whom postmortem pathological records 
exist. It is a measure that has been used in various comparative stud-
ies (53, 54). Second, cumulative incidence of cancer mortality 
(ICM)—this metric gauges the risk of cancer mortality by eliminat-
ing potential biases from both left and right censoring. Notably, 
there is a strong correlation between CMR and ICM, with a Pearson 
correlation coefficient of r  =  0.89 (21). However, neither of these 
metrics showed any correlation with epigenetic maximum life span.

Mortality analysis in human epidemiological cohort studies
We estimated DNAm maximum age in blood methylation data from 
4651 individuals from (i) the FHS offspring cohort (n = 2544 Cau-
casians, 54% women) (38) and (ii) WHI cohort (39, 40) (n = 2107, 
100% women). Since these data were generated on a different plat-
form (the Ilumina 450K array), we applied the Array Converter 
algorithm to impute mammalian methylation array data (18). Al-
though the epigenetic maximum life-span estimates are not corre-
lated with chronological age, we defined a measure of epigenetic age 
acceleration (AgeAccel) as the raw residual resulting from regress-
ing DNAm maximum life span on chronological age. By definition, 
the resulting DNAmMaxLifespanAdjAge measure is not correlated 
with chronological age. We applied Cox regression analysis for time 
to death (as a dependent variable) to assess if individual variation in 
the predicted maximum life span is attributable to mortality risk. 
The analysis was adjusted for age at blood draw and sex in the FHS 

cohort. We stratified the WHI cohort by ethnic/racial groups and 
combined a total of four results across the FHS and WHI cohorts 
using fixed-effect models weighted by inverse variance. The meta-
analysis was performed using the metafor function in R.

Dog breeds
We used existing methylation profiles from 742 blood samples, rep-
resenting 93 distinct dog breeds (C. lupus familiaris) (41). Breed 
weight and average life-span data were compiled from multiple 
sources as outlined in (41). We formed consensus values by integrat-
ing information from the American Kennel Club and the Atlas of 
Dog Breeds of the World. Life-span approximations were derived 
from averaging standard breed life spans across sexes. This informa-
tion was gathered from a myriad of publications, most of which are 
multibreed studies focusing on age and mortality causes from vet-
erinary clinics, as well as extensive breed-specific research typically 
conducted by purebred dog associations. The specific sources for 
each breed’s median life span are cited in (41).

To derive a reliable estimate for the maximum life span of each 
breed, we based our calculations on the breed’s median life span. 
Specifically, we used the following formula: MaxLifespan = 1.33 × 
MedianLifespan. Notably, our conclusions hold even when applying 
different multipliers beyond 1.33, as the log transformation converts 
these multipliers into additive shifts. Comprehensive data on the 
breeds can be found in (41). Among the 93 breeds studied, median 
life spans varied between 6.3 years (Great Dane, with an average 
adult weight of 64 kg) and 14.6 years (Toy Poodle, average adult 
weight being 2.3 kg).
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