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Abstract 

There is growing interest in multicancer detection tests, which identify molecular signals in the blood that indicate a potential pre
clinical cancer. A key stage in evaluating these tests is a prediagnostic performance study, in which investigators store specimens 
from asymptomatic individuals and later test stored specimens from patients with cancer and a random sample of controls to deter
mine predictive performance. Performance metrics include rates of cancer-specific true-positive and false-positive findings and a 
cancer-specific positive predictive value, with the latter compared with a decision-analytic threshold. The sample size trade-off 
method, which trades imprecise targeting of the true-positive rate for precise targeting of a zero-false-positive rate can substantially 
reduce sample size while increasing the lower bound of the positive predictive value. For a 1-year follow-up, with ovarian cancer as 
the rarest cancer considered, the sample size trade-off method yields a sample size of 163 000 compared with a sample size of 
720 000, based on standard calculations. These design and analysis recommendations should be considered in planning a specimen 
repository and in the prediagnostic evaluation of multicancer detection tests.

A multicancer detection test identifies cancer-specific signals in 
the blood from a variety of preclinical cancers. Technologies 
under development for multicancer detection testing include 
assays based on abnormal DNA methylation (1), circulating pro
teins and variations in cell-free DNA (2,3), fragmentation pat
terns of cell-free DNA (4), and protein markers in exosomes (5).

Our premise is that the multicancer detection test yields a contin
uous risk score, which is an estimated probability of developing can
cer based on multiple predictors, including markers from the blood 
specimens (eg, thousands of DNA fragments) and possibly clinical 
risk factors. In logistic regression, the risk score comes from parame
ter estimates. In machine learning, the risk score arises from the algo
rithm, such as the terminal decision tree nodes in a random forest (6) 
or the last-layer sigmoid activation function in deep learning (7).

The investigator selects a cut point on this risk score such that 
a risk score larger than this cut point indicates a positive multi
cancer detection test result. If the multicancer detection test is 
positive and identifies a tissue of origin, the next step is a diag
nostic workup to ascertain whether there is preclinical cancer at 
the tissue of origin. If the diagnostic workup indicates preclinical 
cancer, the patient receives appropriate early intervention.

There are 2 types of multicancer detection tests. A 1-stage mul
ticancer detection test involves a separate test for each cancer 
type, such as with protein markers from exosomes (5). In this case, 
the tissue of origin is directly known. A 2-stage multicancer detec
tion test first determines whether the test result is positive for any 
cancer, and then, if possible, assigns a tissue of origin (1-4).

The goal of cancer screening with multicancer detection tests 
is to detect cancers earlier to decrease cancer mortality rates. 

The extent to which screening for cancer with multicancer detec
tion tests might affect cancer mortality, however, remains to be 
determined. Also, as with any cancer screening test, a multi
cancer detection test has the potential for harm. One harm is a 
false-positive finding, which is a screening test that indicates pre
clinical cancer not confirmed by diagnostic workup (8). Another 
potential harm is overdiagnosis—that is, the detection of preclin
ical cancer on workup that would not have developed into symp
tomatic cancer in the absence of cancer screening.

Pipeline for evaluating multicancer 
detection tests
Because multicancer detection testing involves potential benefits 
and harms, it requires evaluation before clinical use. We envisioned 
multicancer detection test evaluation in 3 successive studies 
related to the cancer screening biomarker pipeline (9-12): a diagnos
tic performance study, a prediagnostic performance study, and a 
cancer screening randomized trial.

A diagnostic performance study evaluates how well the multi
cancer detection test classified specimens as samples from diag
nosed cancer cases vs noncancer controls. The adjective 
diagnostic refers to cancer diagnosis at the time of the blood draw. 
Many people with diagnosed cancers in this study were likely 
diagnosed because of symptoms, which is relevant to the inter
pretation of results. Other names for a diagnostic performance 
study are phase II study (9) and preliminary performance study 
(10). Most studies evaluating multicancer detection tests have 
been diagnostic performance studies (13).

Received: November 21, 2023. Revised: February 1, 2024. Accepted: February 23, 2024 
Published by Oxford University Press 2024.  
This work is written by (a) US Government employee(s) and is in the public domain in the US. 

JNCI: Journal of the National Cancer Institute, 2024, 116(6), 795–799  

https://doi.org/10.1093/jnci/djae050 
Advance Access Publication Date: February 28, 2024 

Commentary   

https://orcid.org/0000-0001-6759-2838
https://orcid.org/0000-0002-9164-6370


A prediagnostic performance study evaluates how well the 
multicancer detection test predicts cancer in asymptomatic indi
viduals (9-12). The adjective prediagnostic refers to cancer diagno
sis after the time of the blood draw. Other names for a 
prediagnostic performance study are phase III study (9) and ret
rospective performance study (10). In a prediagnostic perform
ance study, investigators collect specimens from a blood draw; 
store specimens during the follow-up period (typically, 1 year); 
and, at the end of the follow-up period, test stored specimens 
from all cases and a random sample of controls.

In the prediagnostic performance study, cases refers individu
als who received a blood draw and developed cancer during the 
follow-up period, and controls refers to individuals who received a 
blood draw and did not develop cancer during the follow-up 
period. Participants receiving a blood draw are considered a ran
dom sample from a target population who would receive a multi
cancer detection test, if offered. For each case and randomly 
selected control, the investigators perform a multicancer detec
tion test on the stored specimen.

When evaluating multicancer detection tests based on a pre
diagnostic performance study, the determination of tissue of ori
gin must be based only on the specimen. For example, a 
prediagnostic performance study would not be appropriate if 
tissue-of-origin determination required an imaging scan. The 
American Cancer Society Cancer Prevention Study-3 (14), which 
used 294 000 stored specimens, and the Taizhou Longitudinal 
Study (15), which used 5 000 stored serum specimens, exemplify 
multicancer detection prediagnostic performance studies.

A cancer screening randomized trial is a major leap from the 
previous studies in the pipeline. In a screening trial for a multi
cancer detection test, investigators randomly assign asympto
matic participants to the multicancer detection test or to no 
multicancer detection test with early intervention, if indicated. 
Conventional cancer screening occurs during the trial. The pri
mary endpoint is cancer mortality. The National Cancer Institute 
is developing a pilot cancer screening trial for multicancer detec
tion test evaluation (16).

Because it targets asymptomatic individuals, the prediagnos
tic performance study is more relevant than the diagnostic per
formance study for deciding whether to evaluate the 
combination of the multicancer detection test with early inter
vention in a cancer screening trial. For illustration, suppose that 
a multicancer detection test is based only on marker X, which 
arises after the diagnosis of a symptomatic cancer. This multi
cancer detection test may perform well in the diagnostic per
formance study, which involves symptomatic cancers. It would 
perform poorly, however, in a prediagnostic performance study, 
where participants are asymptomatic and therefore lack marker 
X. As a real-world example, a diagnostic performance study 
found that carcinoembryonic antigen almost perfectly classified 
participants into diagnosed colorectal cancer (CRC) cases or non
cancer controls (17), while a later prediagnostic performance 
study found that carcinoembryonic antigen was a poor predictor 
of the development of CRC in asymptomatic individuals (18). A 
multicancer detection test that poorly predicts cancer develop
ment in a prediagnostic performance study is a poor bet for 
reducing cancer mortality in a cancer screening trial. Moreover, 
excellent performance is needed in the prediagnostic perform
ance study to recommend a cancer screening trial because of 
possible harms from early intervention in the cancer screening 
trial.

Prediagnostic performance studies
We focused on prediagnostic performance studies, which have 
received relatively little attention in multicancer detection test 
evaluation. There are 2 types of prediagnostic performance stud
ies, depending on the data used to develop the prediction model: 
validation-only studies and development-validation studies.

A validation-only prediagnostic performance study, such as 
the American Cancer Society Cancer Prevention Study-3 (14), 
uses 1) the specimens from the diagnostic performance study as 
a training sample for model development and 2) the specimens 
from the prediagnostic performance study as a validation sample 
for performance evaluation. In other words, model development 
involves classifying specimens into a current diagnosis of cancer 
or no cancer, and performance evaluation involves classifying 
specimens into a future diagnosis of cancer during follow-up or 
no future diagnosis of cancer.

A development-validation prediagnostic performance study, 
such as the Taizhou Longitudinal Study (15), splits the set of pre
diagnostic specimens into a training sample for model develop
ment and a validation sample for performance evaluation. 
Ideally, the split would involve a nonrandom sample to investi
gate generalizability. Unlike the validation-only study, both 
model development and performance evaluation involve classi
fying specimens into a future diagnosis of cancer during follow- 
up or no future diagnosis of cancer. Thus, model development in 
a development-validation study is more likely to yield good vali
dation performance than model development in a validation- 
only study. To increase the sample size for model development, 
it may be possible to use bootstrapping for performance evalua
tion (19). With a development-validation prediagnostic perform
ance study, the diagnostic performance study can be viewed as 
proof of principle.

Metrics for prediagnostic performance
A prediagnostic performance study can evaluate multicancer 
detection tests for specific cancers so that investigators can 
refine the set of cancers the multicancer detection test is target
ing. Evaluating the multicancer detection test for all cancers 
combined is less useful because overall performance is domi
nated by some cancers and is not relevant to treatment deci
sions, which involve specific cancers. Therefore, we consider 
study design considerations for specific cancers in a multicancer 
detection test. With some approximations, we evaluate multi
cancer detection test performance using the same metrics as 
would be used to evaluate individual cancer tests.

For computing sample size, we use the cancer-specific true- 
positive and false-positive rates. The true-positive rate (TPR) for 
cancer j is the fraction of cases of cancer j with a positive multi
cancer detection test for cancer j. The false-positive rate (FPR) for 
cancer j is the fraction of the randomly selected controls with a 
positive multicancer detection test for cancer j. Varying cut 
points of the risk score to compute pairs of false-positive rate and 
true-positive rate for cancer j yields a receiver operating charac
teristic curve for cancer j. As we will discuss, we suggest focusing 
the analysis on the point on the receiver operating characteristic 
curve with false-positive rate¼ 0. One can always set false- 
positive rate¼ 0 by making the cut point of the risk score for a 
positive multicancer detection test result larger than the largest 
risk score among the controls.

For interpreting results, we use the cancer-specific positive 
predictive value (PPV). The PPV for cancer j is the estimated 
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probability of diagnosing cancer j during follow-up among indi
viduals positive for cancer j on the multicancer detection test. 
We compute the PPV for cancer j as PPVj¼TPRj � pj / fTPRj � pj þ

FPRj � (1 – P)g, where pj is the estimated probability of diagnosing 
cancer j during follow-up and P is the estimated probability of 
diagnosing any cancer during follow-up. The PPV formula is 
exact for a 1-stage multicancer detection test and approximate 
for a 2-stage multicancer detection test. The exact formula for 
the 2-stage multicancer detection test includes another term in 
the denominator, 

P
i6¼j FTOORij � pi, where FTOORij is the false 

tissue-of-origin rate for cancer j among individuals with cancer i. 
The false tissue-of-origin rate was small in a diagnostic perform
ance study (1), so it is likely small in a prediagnostic performance 
study. Also, because FTOORij is multiplied by pi, the contribution 
to the denominator is much smaller than the contribution from 
the term FPRj � (1 – P).

An important question is how large a PPV is large enough to 
recommend moving to the next step of the multicancer detection 
test evaluation pipeline. To formally address this question based 
on clinical considerations, we define the PPV threshold for cancer 
j as the value of the PPV for cancer j that will yield a positive 
expected utility of prediction for cancer j. If the PPV for cancer j is 
larger than the PPV threshold for cancer j, we recommend further 
evaluation of the multicancer detection test for cancer j.

Ignoring the small contribution of the false tissue-of-origin rate 
in a 2-stage multicancer detection study, the expected that the util
ity of prediction for cancer j is Uj¼ PPVj � qj � Bj – (1 – PPV j) � qj �

Cj, where Bj is the anticipated benefit of a true-positive prediction 
for cancer j, Cj is the anticipated cost of a false-positive prediction 
for cancer j, and qj is the probability of a positive test for cancer j. 
Setting Uj > 0 implies a PPVj > PPV threshold for cancer j¼1/(Bj / Cj 

þ 1). The PPV threshold must be larger than P for a sensible result. 
One can interpret (Bj / Cj) as the number of false positives one would 
trade for a true positive. For example, for ovarian cancer screening, 
where surgery following a true-positive test can lead to major com
plications and there is no clearly established benefit from early 
intervention (20), some investigators have discussed Bj / Cj equal to 
10 (21). We recommend a sensitivity analysis based on a plausible 
range of PPV thresholds. For example, for Bj / Cj¼ 20, 10, and 5, the 
PPV threshold for cancer j is 0.05, 0.09, and 0.17, respectively.

Minimum follow-up time
In planning the sample size for a serum repository, a key consid
eration is the minimum follow-up time for prediagnostic evalua
tion. The choice of minimum follow-up time for the sample size 
calculation balances the following considerations:

� Because multicancer detection technology is developing rap
idly, a shorter minimum follow-up time makes it more likely 
that the multicancer detection technology would be relevant 
at the end of the study. 

� Multicancer detection tests likely perform worse with longer 
follow-up because 1) some cancers arise from preclinical can
cers initiated after specimen collection, diluting the cancer 
cases with cases that could not have been prevented by 
screening, and 2) predictions farther in the future are less 
likely to be reliable. For example, in a study of cancer antigen 
19 to predict pancreatic cancer, true-positive rates were 0.80, 
0.60, 0.39, and 0.28 at a false-positive rate of 0.01 for t¼0.25, 
0.5, and 1, 2 years after the blood draw (22). Less dramati
cally, for the prediction of cancer (CRC, esophageal, liver, 
lung, or stomach) in China, the Taizhou Longitudinal Study 

yielded true-positive rates of 1.00, 0.904, 0.947, and 0.839 at a 
false-positive rate of 0.053 for 0 to 1, 1 to 2, 2 to 3, and 3 to 4 
years after a blood draw (13). 

� The shorter the minimum follow-up time, the more likely the 
multicancer detection test will identify rapidly developing 
cancers with short preclinical durations. 

� Too short a time between the blood draw and cancer diagno
sis may yield insufficient lead time for early intervention to 
be effective, which is an important consideration for further 
evaluation in a cancer screening trial. 

� A shorter minimum follow-up time requires a larger sample 
size to obtain the required number of cases. 

Although these considerations are difficult to balance because 
many aspects are unknowable, we suggest a minimum follow-up 
time of 1 year for the sample size calculation, so the sample size 
is likely feasible, investigators are likely to identify rapidly devel
oping cancers, and the technology is not likely to be outdated at 
completion. Another reason to consider a 1- year minimum 
follow-up time is when the clinical application of multicancer 
detection screening would occur in 1-year intervals.

Sample size
The sample size for the prediagnostic performance study is the 
number of asymptomatic individuals from whom blood is drawn 
and specimens are collected. To illustrate the sample size calcu
lation, we consider a validation-only design to evaluate a multi
cancer detection test involving 9 cancers (ovarian, stomach, 
pancreatic, liver, bladder, CRC, lung, prostate, breast), with a 
minimum follow-up time of 1 year. We compute the sample size 
for the rarest cancer under consideration—here, ovarian can
cer—because that sample size will suffice for more commonly 
occurring cancers. The Supplementary Material (available online) 
provides the mathematical details of the sample size calculation. 
We compute the sample sized based on 1) TPRTAR, the target 
true-positive rate; 2) TPRLOW, the lower bound of the 95% confi
dence interval for the estimated true-positive rate centered at 
TPRTAR, (adjusted for chance results when investigating multiple 
cancers); 3) FPRTAR, the target false-positive rate; and 4) FPRUPP, 
the upper bound of the 95% confidence interval for the estimated 
false-positive rate centered at FPRTAR. These target values yield a 
target value for the lower bound of the estimated PPV for cancer 
j, PPVLOW(j)¼TPRLOW � pj/fTPRLOW � pj þ FPRUPP � (1 – P)g. Based on 
US population data for individuals age 50 to 64 years (23), we use 
pj¼12/100 000 for the 1-year incidence rate of ovarian cancer and 
P¼ 528/100 000 for the 1-year incidence rate of the 9 cancers con
sidered.

Scenario 0 specifies a standard set of target values for false- 
and true-positive rates (11) that many investigators would likely 
find reasonable—namely, TPRTAR¼0.80, TPRLOW¼ 0.70, 
FPRTAR¼ 0.01, and FPRUPP¼ 0.03. As shown in Table 1, a sample 
with 70 cases and 300 controls could satisfy these targets with at 
least 59 positives among the cases and at most 3 positives among 
the controls. Obtaining the required 70 ovarian cancer cases in 
1 year with 95% probability requires 720 000 individuals for speci
men collection. Also, PPVLOW¼0.003, which is too small to pro
vide useful information.

To substantially reduce sample size while increasing PPVLOW, 
we applied the sample size trade-off method (24,25), which 
trades imprecise targeting of TPRTAR for precise targeting of 
FPRTAR¼ 0. Imprecise targeting of TPRTAR means that TPRLOW is 
much smaller than TPRTAR, which decreases sample size because 
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fewer cases are needed to obtain a wider confidence interval, and 
the sample size for specimen collection depends on the number 
of cases, not on the number of controls. Precise targeting of 
FPRTAR means that FPRLOW is close to FPRTAR, which increases 
PPVLOW because the PPV is largely determined by the false- 
positive rate when the disease is rare.

We consider 2 scenarios under the sample size trade-off 
method. Scenario 1 specifies TPRTAR¼0.50, TPRLOW¼0.20, 
FPRTAR¼ 0, and FPRUPP¼ 0.005. Scenario 2 specifies TPRTAR¼0.80, 
TPRLOW¼ 0.50, FPRTAR¼ 0, and FPRUPP¼0.005. As shown in  
Table 1, a sample with 12 ovarian cancer cases and 7500 controls 
could satisfy these targets with at least 7 positives among the 
cases for scenario 1, at least 10 positives among the cases for sce
nario 2, and 0 positives among the controls. Obtaining the 
required 12 ovarian cancer cases in 1 year with 95% probability 
requires only 163 000 individuals for specimen collection—an 
impressive 77% reduction in the sample size relative to scenario 
0. For scenario 1, PPVLOW(j)¼ 0.05, corresponding to Bj / Cj � 19, 
and for scenario 2, PPVLOW(j)¼0.11, corresponding to Bj / Cj � 8. 
These target benefit-cost ratios are reasonable for multicancer 
detection tests for ovarian cancer, and, if achieved, would sug
gest moving to the next step for evaluation.

Discussion
In this commentary, we explore the feasibility and sample size 
requirements for prediagnostic performance studies in the set
ting of multicancer detection testing. The sample size calculation 
was based on a validation-only design with a minimum follow- 
up of 1 year. A good case can be made for a 6-month minimum 
follow-up to detect more rapidly developing cancers, which 
would double the sample size. Alternatively, one might halve the 
sample size by specifying a minimum follow-up of 2 years, antici
pating 6 ovarian cancers in year 1 and 6 in year 2. A sample of 
only 6 ovarian cancers in year 1 is not informative, however, if 
the goal is to draw conclusions at year 1. To investigate perform
ance at longer times before diagnosis, investigators can follow 
patients longer than the minimum follow-up time used in the 
sample size calculation.

The sample size trade-off method is based on the target preci
sion for the estimated true-positive rate when the estimated 
false-positive rate equals 0, which corresponds to 1 threshold on 
the receiver operating characteristic curve. A possible concern 

with the sample size trade-off method is that estimates of the 

true-positive rate are imprecise. We believe, however, that this 

imprecision in estimating true-positive rates is a small price to 

pay for a greatly reduced sample size. More importantly, PPV, 

which is more relevant to patients than is the true-positive rate, 

is estimated precisely because of the precise estimation of the 

false-positive rate, which is achieved by using many controls.
Another approach to reducing sample size in a study for the 

early detection of cancer is to focus only on individuals with a 

high risk of developing cancer. Because multicancer detection 

tests involve many cancers, the risk factors would have to apply 

across the cancers tested. The most predictive risk factor applica

ble to all cancers is age. Implementing the study for older ages 

would decrease sample size but with less generalizability (26). 

Because generalizability is important, we recommend applying 

the prediagnostic performance study design to asymptomatic 

individuals in an age group corresponding to that targeted by the 

multicancer detection test.
In summary, serum repositories are likely to be a valuable 

resource for prediagnostic evaluation of multicancer detection 

tests, but the field needs guidance regarding how they should be 

designed and sized. Focusing the analysis on the lower bound of 

the PPV yields useful results and allows for a feasible sample 

size. Focusing the sample size on a minimum 1-year follow-up 

allows for a timely evaluation and good performance for identify

ing rapidly developing cancers.
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Table 1. Sample size and positive predictive value lower bound 
based on ovarian cancer as the rarest cancer considered in a 
validation-only prediagnostic performance study with 1-year 
follow-up

Standard sample size trade-off targets

Targeted quantity Scenario 0 Scenario 1 Scenario 2

TPRTAR 0.80 0.50 0.80
TPRLOW 0.70 0.20 0.50
FPRTAR 0.01 0.0000 0.0000
FPRUPP 0.03 0.0005 0.0005
PPVLOW(j) for ovarian cancer 0.003 0.05 0.11
No. of cases 70 12 12
No. of test-positive cases 59 7 10
No. of controls 300 7500 7500
No. of test-positive controls 3 0 0
Sample size 720 000 163 000 163 000

FPR¼ false-positive rate; PPV¼positive predictive value; TPR¼ true-positive 
rate.
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