
Prokrustean Graph: A substring index for rapid k-mer size analysis

Adam Parka, David Koslickia,b,c

aComputer Science and Engineering in Pennsylvania State University, PA, USA
bBiology in Pennsylvania State University, PA, USA

cHuck Institutes of the Life Sciences in Pennsylvania State University, PA, USA

Abstract

Despite the widespread adoption of k-mer-based methods in bioinformatics, understanding the influence of k-mer
sizes remains a persistent challenge. Selecting an optimal k-mer size or employing multiple k-mer sizes is often
arbitrary, application-specific, and fraught with computational complexities. Typically, the influence of k-mer size is
obscured by the outputs of complex bioinformatics tasks, such as genome analysis, comparison, assembly, alignment,
and error correction. However, it is frequently overlooked that every method is built above a well-defined k-mer-based
object like Jaccard Similarity, de Bruijn graphs, k-mer spectra, and Bray-Curtis Dissimilarity. Despite these objects
offering a clearer perspective on the role of k-mer sizes, the dynamics of k-mer-based objects with respect to k-mer
sizes remain surprisingly elusive.

This paper introduces a computational framework that generalizes the transition of k-mer-based objects across
k-mer sizes, utilizing a novel substring index, the Prokrustean graph. The primary contribution of this framework is
to compute quantities associated with k-mer-based objects for all k-mer sizes, where the computational complexity
depends solely on the number of maximal repeats and is independent of the range of k-mer sizes. For example,
counting vertices of compacted de Bruijn graphs for k = 1, . . . , 100 can be accomplished in mere seconds with our
substring index constructed on a gigabase-sized read set.

Additionally, we derive a space-efficient algorithm to extract the Prokrustean graph from the Burrows-Wheeler
Transform. It becomes evident that modern substring indices, mostly based on longest common prefixes of suffix
arrays, inherently face difficulties at exploring varying k-mer sizes due to their limitations at grouping co-occurring
substrings.

We have implemented four applications that utilize quantities critical in modern pangenomics and metagenomics.
The code for these applications and the construction algorithm is available at https://github.com/KoslickiLab/
prokrustean.

Keywords: k-mer, k-mer spectra, FM-index, BWT, genome assembly, pangenomics, metagenomics
2000 MSC: 03B70, 05C85, 92-08

1. Introduction

As the volume and number of sequencing reads and reference genomes grow every year, k-mer-based methods
continue to gain popularity in computational biology. This simple approach—cutting sequences into substrings of
a fixed length—offers significant benefits across various disciplines. Biologists consider k-mers as intuitive markers
representing biologically significant patterns, bioinformaticians easily formulate novel methods by regarding k-mers
as fundamental units that reflect their original sequences, and engineers leverage their fixed-length nature to optimize
computational processes at a very low level. However, the understanding of the most crucial parameter, k, remains
surprisingly elusive, thereby impeding further methodological advancements.

Two central challenges emerge in the application of k-mer-based methods. First, the selection of the k-mer size is
often arbitrary, despite its well-recognized influence on outcomes. This issue, though widely acknowledged, remains
insufficiently addressed in the literature, with little formal guidance on how to determine an optimal k size for different
applications. The reasoning behind these choices is frequently obscured, typically confined to specific, unpublished
experimental analyses (e.g. “we found that k = 31 was appropriate...”). Second, methods attempting to utilize multiple

Preprint submitted to Applied Mathematics and Computation September 14, 2024

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://github.com/KoslickiLab/prokrustean
https://github.com/KoslickiLab/prokrustean
https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

k-mer sizes encounter significant computational burdens. While incorporating multiple k-mer sizes can naturally
enhance the accuracy of k-mer-based methods, the computational costs escalate with each additional k-mer size used.
Consequently, researchers often resort to “folklore” k value(s) based on prior empirical results.

The influence of k-mer sizes within each method is a complex function reflecting bioinformatics pipelines that
process k-mers. As biological adjustments and engineering strategies complicate the pipelines, their outputs obscure
the impact of k-mer sizes with noisy factors, as simplified in the following abstraction:

pipeline
(
k-mer-based objects(sequences, k), biological adjustments, engineering

)
.

Despite the complexity of the pipelines, there always exist mathematically well-defined k-mer-based objects that
form the foundation of method formulation. These objects abstract the utilization of k-mers and depend solely on
sequences and k-mer sizes. Thus, they offer potential for generalizability and quantification of the influence of k-mers
in methods. Indeed, intuitive quantities have been derived from k-mer-based objects; however, there are challenges in
actually computing them, as detailed in several examples we now present.

In genome analysis, the number of distinct k-mers is often used to reflect the complexity of genomes. Although the
number varies by k-mer sizes, large data sizes restrict experiments to a few k values [9, 39, 15]. A recent study suggests
that the number of distinct k-mers across all k-mer sizes provides additional insights into pangenome complexity [10].
Furthermore, the frequencies of k-mers provide richer information, as discussed in [1, 46], but their computation
becomes more complicated and sometimes impractical, even with a fixed k-mer size [7].

In comparative analyses, Jaccard Similarity is utilized for genome indexing and searching by being approximated
through hashing techniques [34, 26]. Experiments attempting to assess the influence of k-mer sizes on Jaccard Sim-
ilarity must undergo tedious iterations through various k-mer sizes [8]. Additionally, Bray-Curtis dissimilarity is a
k-mer frequency-based metric frequently used in comparing metagenomic samples, where experiments face resource
limitations due to the growing size of sequencing data, even with a fixed k-mer size. Yet, the demand for analyzing
multiple k-mer sizes continues to increase [23, 36, 35].

Genome assemblers utilizing k-mer-based de Bruijn graphs are probably the most sensitive to k-mer sizes, and
those employing multi-k approaches face significant computational challenges. The choice of k-mer sizes is partic-
ularly crucial in de novo assemblers, yet it predominantly relies on heuristic methods [27, 19, 38]. The topological
features of de Bruijn graphs are succinctly summarized by the compacting process, where vertices represent simple
paths called unitigs, but exploring these features across varying k-mer sizes is computationally intensive. Further-
more, the development of multi-k de Bruijn graphs continues to be a challenging and largely theoretical endeavor
[40, 43, 22], with no substantial advancements following the heuristic selection of multiple k-mer sizes implemented
by metaSPAdes [33].

These examples motivate the pressing need to generalize the exploration of k-mer-based objects across k-mer
sizes. Our manuscript introduces a framework for rapidly computing quantities derived from k-mer-based objects,
thereby addressing the prevalent challenge in bioinformatics. The organization of the manuscript is as follows:

• Section 2 defines the main objective of computing k-mer-based quantities and introduces the proxy problem of
computing substring co-occurrence.

• Section 3 defines GU , the Prokrustean graph, a novel substring representation that provides straightforward
access to substring co-occurrence.

• Section 4 outlines a framework built upon the Prokrustean graph, accompanied by algorithms that treat various
k-mer-based objects and compute related quantities across all possible k-mer sizes in O(|GU |) time.

• Section 5 presents the experimental results of computing k-mer-based quantities.

• Section 6 derives the construction algorithm of GU , and discusses the limitations of other modern substring
indices in computing substring co-occurrence.

2

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

2. Problem Formulation

2.1. Basic Notations

Let Σ be our alphabet and let S ∈ Σ∗ represent a finite-length string, and U ⊂ Σ∗ for a set of strings. Because
of the biological sequence motivation for this work, the elements of U are called sequences. Consider the following
preliminary definitions:

Definition 1. • A region in the string S is a triple (S , i, j) such that 1 ≤ i ≤ j ≤ |S |.

• The string of a region is the corresponding substring: str(S , i, j) B S iS i+1...S j.

• The size or length of a region is the length of its string: |(S , i, j)| B j − i + 1.

• An extension of a region (S , i, j) is a larger region (S , i′, j′) including (S , i, j):

(S , i, j) ⊊ (S , i′, j′) := i′ ≤ i ≤ j ≤ j′ and |(S , i, j)| < |(S , i′, j′)|.

• The occurrences of S inU are those regions in strings ofU corresponding to S :

occU(S) B {(S ′, i, j) | S ′ ∈ U & str(S ′, i, j) = S }.

• S is a maximal repeat in U if it occurs at least twice and more than any of its extensions: |occU(S)| > 1, and
for all S ′ a superstring of S , |occU(S)| > |occU(S ′)|. I.e., given a fixed set U, a maximal repeat S is one that
occurs more than once inU (i.e. is a repeat), and any extension of which has a lower frequency inU than the
original string S .

• RU is the set of all maximal repeats inU.

2.2. The proxy problem: how to compute substring co-occurrence?

There exists a theoretical void in identifying when a k-mer and a k′-mer serve similar roles within their respective
substring sets. Although close k-mer sizes generally yield comparable outputs, dissecting this phenomenon at the
level of local substring scopes is unexpectedly challenging. For instance, de Bruijn graphs constructed from sequenc-
ing reads with k = 30 and k′ = 31 display distinct yet highly similar topologies [40]. However, anyone formally
articulating the topological similarity would find it quite elusive, as vertex mapping and other techniques establishing
correspondences between the two graphs fail to consistently explain it.

A common underlying difficulty is that the entire k-mer set undergoes complete transformations as the k-mer
size changes. Since the role of a k-mer is assigned within its k-mer set, the role of a k′-mer within k′-mers cannot
be “locally” derived. To address this issue, we propose substring co-occurrence as a generalized framework for
consistently grouping k-mers of similar roles across varying k-mer sizes.

Definition 2. A string S co-occurs within a string S ′ inU if:

S is a substring of S ′ and |occU(S)| = |occU(S ′)|.

Modern substring indexes built on longest common prefixes (LCP) of their (implicit) suffix array are adept at
capturing co-occurrence in this “extending direction.” In suffix trees, a substring that extends from S to S ′ along an
edge—without passing through a node—indicates preservation of co-occurrence. Similarly, in the Burrows-Wheeler
Transform (BWT) and its variants such as the FM-index and r-index, representing both S and S ′ with the same set
of LCPs corresponding to some suffix array interval implies co-occurrence. However, there has been no recognized
necessity for addressing the following “substring direction”:

Definition 3. co-substrU(S) is the set of substrings that co-occur within S .

3

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

Modern substring indexes are not efficient at computing co-substrU(S), which results in their failure to “smoothly”
explore k-mer-based objects across varying k-mer sizes. Specifically, shrinking a substring found inU always requires
some link (or pointer) to navigate to the corresponding LCP in the (implicit) suffix array. Given that the number of
substrings scales quadratically with the cumulative size of the input sequences, this linkage system becomes imprac-
tical. For instance, the variable-order de Bruijn graph and its variants address the space issue by employing a compact
de Bruijn graph representation built above the Burrow-Wheeler transform [12]; however, this solution requires non-
trivial operation times for both “forward” moves and changes in order (k) [11, 5]. So, these data structures do not
allow extensive exploration of the substring space, and hence their multi-k approaches do not scale well.

Our work demonstrates that co-substrU(S) can be computed efficiently, and then the functionality can be used to
rapidly compute k-mer quantities. We introduce a simple yet foundational property as groundwork.

Theorem 1 (Principle). For any substring S such that occU(S) > 0,

S co-occurs within exactly one sequence or maximal repeat inU ∪ RU

Proof. Assume the theorem does not hold, i.e., S co-occurs within either no string or multiple strings in U ∪ RU .
Consider the former case: S co-occurs within no string inU∪RU , meaning S occurs more than any of its superstrings
inU ∪ RU . Given that S occurs in some string S ′ ∈ U (i.e.occU(S) > 0), S must be occurring more frequently than
S ′ by assumption. Then, there exists a maximal repeat R such that S is a substring of R and R is a substring of S ′,
because extending S within S ′ decreases its occurrence at some point. Again, whenever S is a substring of a maximal
repeat R, S must be occurring more frequently than R by assumption. Following the similar argument above, there
exists another maximal repeat R′ such that S is a substring of R′ and R′ is a proper substring of R. This recursive
argument will eventually terminate as R′ is strictly shorter than R. Thus, S co-occurs within the last maximal repeat,
which contradicts the assumption.

Now consider the latter case where S co-occurs within at least two strings inU∪RU . If S is extended within these
two strings, either to the right or left by one step at each time, the extensions eventually diverge into two different
strings since the two superstrings differ, thereby reducing the number of occurrences. Hence, S must be occurring
more frequently than at least one of those two superstrings, leading to a contradiction.

This theorem provides two key insights. First, every substring found in U exclusively co-occurs as a substring
of either a sequence or a maximal repeat in U, so the collective sets of co-substrU(S) from every S ∈ U ∪ RU
comprehensively and disjointly cover the entire substring space. Second, by computing co-substrU(S) for every
S ∈ U ∪ RU , we can categorize k-mers of similar roles across various lengths, devising various algorithmic ideas on
co-substrU(S). The following main theorem outlines the components discussed in the remainder of the manuscript.

Theorem 2. (Main Result) Given a set of sequencesU, there exists a substring representationGU of size O(|Σ|· |RU |).
GU can be used to compute k-mer quantities of U for all k = 1, . . . , kmax within O(|GU |) time and space, where kmax
is the longest sequence length inU. The k-mer quantities are given as follows:

• (Counts) The number of distinct k-mers, as used in genome cardinality DandD [10].

• (Frequencies) k-mer Bray-Curtis dissimilarities, as used in comparing metagenomic samples [36].

• (Extensions) The number of unitigs in k-mer de Bruijn graphs, as used in analyses of reference genomes and
genome assembly [29, 42].

• (Occurrences) The number of edges with annotated length of k in the overlap graph. [45].

Furthermore, the graph GU can be constructed in O(|BWT | + |GU |) time and space, where |BWT | is the size of the
Burrows-Wheeler transform representation ofU.

Proof. Section 3 analyzes the size of GU , Section 4 introduces the computation of k-mer quantities, and Section 6
derives the construction algorithm.

4

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

The main contribution is that the time complexity for computing k-mer quantities for all k ∈ [1, kmax] using GU is
independent of the range of k-mer sizes, which is O(|GU |). Specifically, letting N be the cumulative sequence length
ofU, |GU | is sublinear relative to N. In contrast, the direct computation of k-mer quantities from the sequence setU
for any fixed k-mer size demands, at best, O(N) time. Extending this computation naively to cover all k = 1, . . . , kmax
would exponentially increase the computational demand to O(Nkmax). This significant improvement in complexity
leverages a proper representation of repeats inU, as will be introduced in the next section.

3. Prokrustean graph: A hierarchy of maximal repeats

The key idea of the Prokrustean graph is to recursively capture maximal repeats by their relative frequencies of
occurrences in U. Consider the following two descriptions of repeats in three sequences: ACCCT, GACCC, and
TCCCG.

1. ACCC is in 2 sequences, and CCC is in all 3 sequences.

2. ACCC is in 2 sequences, and CCC is in 1 sequence TCCCG and 1 substring ACCC.

Each first and second case uses 5 and 4 units of occurrences, respectively, yet preserves the same meaning. As
depicted in Figure 1, the rule of the compact second case is to recursively capture regions of more frequent substrings.

Figure 1: Recursive repeats. At each sequence on the top level, maximally long subregions (indicated with blue underlining) are
used to denote substrings that are more frequent than its superstring. The arrows then points to a node of the substring, and the
process repeats hierarchically.

Definition 4. (S , i, j) is a locally-maximal repeat region inU if:

|occU(str(S , i, j))| > |occU(S)| (1)

and for each extension (S , i′, j′) of (S , i, j),

|occU(str(S , i′, j′))| = |occU(S)|. (2)

**Note that we often omit “inU” when the context is clear.

A locally-maximal repeat region captures a substring that appears more frequently than the “parent” string, and
any extension of the region captures a substring that appears as frequently as the parent string. Consider the previous
exampleU = {ACCCT, GACCC, TCCCG}. (ACCCT, 1, 4) is a locally-maximal repeat region capturing the substring
ACCC in ACCCT. However, (ACCCT, 2, 4) is not a locally-maximal repeat region because the region capturing CCC
in ACCCT can be extended to the left to capture ACCC which occurs more frequently than ACCCT.

Note, an alternative definition using substring notations, such as locally-maximal repeats, instead of regions, is not
robust. ConsiderU = {ACCCTCCG, GCCC} and S :=ACCCTCCG. Observe that the region (S , 2, 4) capturing CCC
is a locally-maximal repeat region because CCC occurs more frequently than S inU, but its immediate left and right
extensions capture ACCC and CCCT that occur the same number of times as S . In constrast, a subregion (S , 2, 3)
capturing CC is not a locally-maximal repeat region because an extension (S , 2, 4) still captures a string (CCC) which
occurs 2 times in U which is more than S . However, (S , 6, 7), which also captures CC, is a locally-maximal repeat
region because |occU(CC)| = 5 > |occU(S)| = 1 and |occU(S)| = |occU(TCC)| = |occU(CCG)|. Consequently,
defining a locally-maximal repeat as S 6..7 =CC becomes ambiguous with S 2..3=CC, whereas an explicit expression of
a region (S , 6, 7) more accurately reflects the desired property of hierarchy of occurrences.

5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2: The Prokrustean graph ofU={ACCCT,GACCC,TCCCG,GGCG}. The left graph describes the recursion of
locally-maximal repeat regions, and the Prokrustean graph on the right represents the same structure with integer labels storing the
regions and the size of the substrings.

3.1. Prokrustean Graph
The Prokrustean graph of U is simply a graph representation of recursive locally-maximal repeat regions on U,

i.e. vertexes represent substrings and edges represent locally-maximal repeat regions. The theorem below says that
all maximal repeats inU are caught along the recursive description.

Theorem 3 (Complete). Construct a string set R(U) as follows:

1. for each locally-maximal repeat region (S , i, j) where S ∈ U, add str(S , i, j) to R(U) and

2. for each locally-maximal repeat region (S , i, j) where S ∈ R(U), add str(S , i, j) to R(U).

It follows that R(U) = RU holds.

Proof. Any string in R(U) is a maximal repeat of U, so the claim is satisfied if the process captures every maximal
repeat ofU. Assume a maximal repeat R is not in R(U). Consider any occurrence of R in some S ∈ U. Extending the
maximal repeat R within S makes the number of its occurrences drop, but since R cannot occur as a locally-maximal
repeat region by assumption, it must be included in some locally-maximal repeat region that captures a maximal
repeat R1, hence R1 ∈ R(U), and R is a proper substring of R1. Now consider any occurrence of R within R1. This
argument continues recursively, capturing maximal repeats R1,R2, ..., but cannot extend indefinitely as Ri+1 is always
shorter than Ri for every i ≥ 1. Eventually, R must be occurring as a locally-maximal repeat region of some Rn, which
is a contradiction.

Therefore, we use maximal repeats as vertices of the Prokrustean graph, along with sequences, soU ∪ RU .

Definition 5. The Prokrustean graph ofU is a directed multigraph GU := (VU ,EU):

• VU: vS ∈ VU if and only if S ∈ U ∪ RU .

• Each vertex vS ∈ VU is annotated with the string size, size(vS) = |S |.

• EU: eS ,i, j ∈ EU if and only if (S , i, j) is a locally-maximal repeat region.

• Each edge eS ,i, j ∈ EU directs from vS to vstr(S ,i, j) and is annotated with interval(eS ,i, j) := (i, j), to represent the
locally-maximal repeat region.

Figure 2 visualizes how locally-maximal repeat regions are encoded in a Prokrustean graph. Next, the cardinality
analysis of this representation reveals promising bounds.

6

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

Theorem 4 (Compact). |EU | ≤ 2|Σ||VU |.

Proof. Every vertex in VU has at most one incoming edge per letter extension on the right (or similarly on the left),
so has at most 2|Σ| incoming edges. Assume the contrary: a maximal repeat appears as two different locally-maximal
repeat regions (S , i, j) and (S ′, i′, j′) within S , S ′ ∈ U ∪ RU , and can extend by the same letter on the right, i.e.,
(S , i, j+ 1) and (S ′, i′, j′ + 1) capture the same string. Extending these regions further together will eventually diverge
their strings, because either S , S ′ or the original two regions are differently located even if S = S ′. Consequently,
at least one of them—(S , i, j + 1) without loss of generality—results in a decreased occurrence count of its string as
it extends. Hence, |occU(str(S , i, j + 1))| > |occU(S)|. This leads to contradiction because a locally-maximal repeat
region (S , i, j) should satisfy |occU(S , i, j + 1)| = |occU(S , 1, |S |)|.

Assuming trivially that |U| ≪ |RU |, meaning there are significantly more maximal repeats than the number of
sequences, we derive that O(|VU |) = O(|RU |), hence O(|GU |) := O(|EU |) = O(|Σ||RU |) by the theorem. Given that |Σ|
is typically constant in genomic sequences (eg. Σ = {A,C,T,G}), the graph’s size depends on the number of maximal
repeats. Letting N be the accumulated sequence length ofU, it is a well-known fact that |RU | < N [25], so the graph
grows sublinear to the input size. Furthermore, in the implementations described in Section 5, RU can be restricted to
maximal repeats of length at least kmin. Although the size of GU is comparable to that of the suffix tree ofU, setting
kmin allows for significantly more efficient and configurable space usage.

4. Framework: Computing k-mer quantities for all k sizes

This section introduces the computation of k-mer quantities for all k sizes, preserving the O(|GU |) time and space.

4.1. Accessing co-occurring k-mers for a single k size
We briefly cover how k-mers of a fixed k-mer size are accessed through the Prokrustean graph, before generalizing

the computation to all k-mer sizes in the next section. Previously, a toy example in Figure 1 depicted blue regions
that cover locally-maximal repeat regions. Then, given a k-mer size, a complementary region is a maximal region that
covers k-mers that are not included in a blue region. See the red regions underlining in Figure 3.

Figure 3: Accessing k-mers by complementing locally-maximal repeat regions. Blue underlining depicts locally-maximal
regions, and red underlining depicts regions that complemented k-mers not covered in blue regions, given sizes of k = 3 and 4.
Every k-mer appears exactly once within a red region. For example, at the figure of k = 3 on left, the 3-mer ACC is included in a
red region in ACCCC and does not appear again in any other red region.

An opportunistic property is that k-mers in red regions co-occur within their parent strings. Following notation
captures substrings in red regions:

Definition 6. A string S k-co-occurs within a string S ′ inU if:

every k-mer in S co-occurs within S ′ inU.

We mean the same by S being a k-co-occuring substring of S ′. Also, S maximally k-co-occurs within S ′ in U
if no superstring of S k-co-occurs within S ′ in U. Maximal k-co-occurring substrings of S ′ are easily computed as
complementary regions in S ′ as introduced in Figure 3. So, they are efficiently identified with the Prokrustean graph,
as implied by the proposition below.

Proposition 1. A string S maximally k-co-occurs within a string S ′ in U if and only if its region in S ′ intersect
locally-maximal repeat regions by under k − 1, and on both sides, either extends to an end of S ′ or intersects a
locally-maximal repeat region by exactly k − 1.

7

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

Proof. The forward direction is straightforward: if S k-co-occurs within S ′, its region cannot intersect any locally-maximal
repeat region by k at any case, and if the intersection is under k − 1 on its edge, by extending S and making the inter-
section k − 1, another superstring of S k-co-occurs within S ′.

For the reverse direction, assume a region satisfies the conditions. A k-mer appearing in the region cannot occur
more than S , as it would mean the region intersects a locally-maximal repeat region by at least k, so S ′ k-co-occurs
within S . S ′ is also maximal because extending its region increases the size of the intersection to more than k−1.

Proposition 1 implies that computing maximal k-co-occurring substrings of a string S takes time linear to the num-
ber of locally-maximal repeat regions in S , given the regions pre-ordered by positions: Enumerate locally-maximal
repeat regions of length at least k and check its left and right whether a complementary region of length at least k can be
defined. Lastly, maximally capture complementary regions on both sides so that they either intersect locally-maximal
repeat regions by k − 1 or meet an end of S . See Figure 4 for a detailed example.

Figure 4: Computing k-co-occurring substrings (red) of S of varying k sizes. The rule is to cover every k-mer that is not covered
by a locally-maximal repeat region (blue). Note that a k-co-occurring substring can appear on the intersection of two
locally-maximal repeat regions too. For example, the region (S , 3,6) capturing CAGC in the second row (k = 4) overlaps two blue
regions by 3.

Therefore, the idea for computing complementary regions can be applied to count distinct k-mers for a fixed k-mer
size. The toy algorithm below takes O(|GU |) time and space.

Algorithm 1: Count distinct k-mers of a single k
Input: A Prokrustean graph (VU ,EU) , a k size
Output: The number of distinct k-mers inU

1 for vS ∈ VU do
2 Compute complementary regions by outgoing edges of vS .
3 for (i, j) in complementary regions do
4 count+= j − i + 2 − k

5 return count

Note that line 2 is the computation derived from Proposition 1, as depicted in Figure 4. The locally-maximal
repeat regions of S are represented by the outgoing edges of vS . The nested loop on lines 1 and 2 thus takes O(|EU |),
i.e., O(|Σ||RU |)) time. For correctness, Theorem 1 states that any k-mer K co-occurs within exactly one string S in

8

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

U ∪ RU . K extends to a unique maximal k-co-occurring substring of S ; otherwise, multi-occurrence in S is implied.
Lastly, Proposition 1 guarantees that every maximal k-co-occurring substring of S can be identified by scanning the
outgoing edges of vS .

4.2. Accessing co-occurring k-mers for a range of k
The computation can be extended to a range of k-mer sizes while preserving the complexity. Recall that the

problem is to efficiently express co-substrU(S). It turns out that co-substrU(S) can be expressed by a finite number
of stack-like substring structures.

Definition 7. Consider two strings S and T where T is a substring of S , along with two numbers: a depth d∗ and a
k-mer size k∗, each at least 1. A co-occurrence stack of S in U is defined as a 4-tuple:

(S ,T, k∗, d∗)

when str(T, 1 + δl · (i − 1), |T | − δr · (i − 1)) maximally ki-co-occurs within S

where ki = k∗ − (i − 1) for i = 1, 2, . . . , d∗, with change rates δl := 1T is NOT a prefix of S and δr := 1T is NOT a suffix of S .

A co-occurrence stack expresses a k-mer if it is a substring of some k-co-occurring substring identified by the
stack. A co-occurrence stack is maximal if its expressed k-mers are not a subset of those expressed by any other co-
occurrence stack. It is clear that any k-mer expressed in a co-occurrence stack of S co-occurs within S . So, maximal
co-occurrence stacks of S collectively express co-substrU(S).

Definition 8. co-stackU(S) is the set of all maximal co-occurrence stacks of S inU.

A maximal co-occurrence stack of S is type-0 if the substring T is S itself, type-1 if T is a proper prefix or suffix
of S , and type-2 otherwise. The numeral in each type’s name indicates the number of locally-maximal repeat regions
intersecting the regions of substrings identified by the co-occurrence stack. Refer to Figure 5 for intuition on the type
names.

Theorem 5. co-stackU(S) completely and disjointly cover co-occurring substrings of S , i.e.,

co-substrU(S) =
⊔

(S ,T,k∗,d∗)∈co-stackU (S)

{substrings expressed by (S ,T, k∗, d∗)}.

Also,
|co-stackU(S)| ≤ 1 + 2 · (the number of locally-maximal repeat regions in S)

Proof. Appendix B.1 covers the proof.

Lastly, this scheme is extended to the entire substring space. Also, all maximal co-occurrence stacks inU can be
enumerated within the computation time O(|EU |).

Proposition 2. The number of all maximal co-occurrence stacks inU is O(|GU)|. Precisely,∑
S∈U∪RU

|co-stackU(S)| ≤ |VU | + 2|EU |.

Proof. This is implied by the inequality |co-stackU(S)| ≤ 1 + 2(the number of locally-maximal repeat regions in S).
The term |VU | accounts for the constant contribution of 1 from each S ∈ U ∪ RU , and 2|EU | corresponds to the right
term because EU represents the total set of locally-maximal repeat regions inU ∪ RU .

Proposition 3. Given GU , enumerating co-stackU(S) for some vS ∈ VU takes O(|outgoing edges of vS |) time.

Proof. This is derived from the proof of |co-stackU(S)| ≤ 1 + 2 · the number of locally-maximal repeat regions in S
in Appendix B.1.

Since k-mers expressed by each stack of S inherit characteristics of S , such as frequency and extensions within
U, algorithms can leverage this information to compute k-mer quantities, by considering k-mers in the same stack
as having similar roles in the k-mer-based objects. We further introduce four applications motivated by biological
problems that benefit from this methodology.

9

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 5: Three types of maximal co-occurrence stacks of S (sets of red rectangles), given two locally-maximal repeat regions in
S (blue rectangles). The Rate column describes the change in the count of expressed k-mers as the k-mer size increases by 1.
Hence, the rate is 1 − δl − δr, and it controls the vertical shapes of stacks.

4.3. Application: Counting distinct k-mers of all k sizes
The number of distinct k-mers is commonly used to assess the complexity and structure of pangenomes and

metagenomes [44, 13]. A recent study by [10] spans multiple k contexts, suggesting that the number of k-mers across
all k-mer sizes should be used to estimate genome sizes. The following algorithm counts distinct k-mers for all k-mer
sizes in time O(|GU |). We assume the maximum possible k-mer size, kmax, is always less than |EU |, which is typical
for most sequencing data and genome references.

The core idea leverages the change rate of k-mers within each co-occurrence stack, thereby eliminating the need
to consider k-mer counts individually. The number of k-mers expressed by each type-0, 1, or 2 co-occurrence stack
changes by -1, 0, or +1 as k increases by 1, respectively, as detailed in the Rate column of Figure 5. This property is
utilized in lines 4-7, and hence the loop in line 2 runs in O(|GU |) time.

Algorithm 2: Count k-mers of a range of k sizes
Input: A Prokrustean graph (VU ,EU), kmax

Output: The number of distinct k-mers inU for k = 1, . . . , kmax

1 Make three vectors of length kmax populated with 0’s: C, ∂C, and ∂∂C.
2 for vS ∈ VU do
3 for ((vS , i, j), k∗, d∗) ∈ co-stackU(S) do
4 δ = 1i,1 + 1 j,size(vS) − 1 // the change rate of the number of k-mers expressed by the stack
5 C[k∗−d∗+1]+=(j−i−k∗+2)−δ · (d∗−1) // the number of k-mers expressed by the stack for the lowest

k-mer size
6 ∂∂C[k∗ − d∗ + 2]+=δ // apply the change rate for the lowest k size
7 ∂∂C[k∗ − 1]-=δ // remove the change rate for the highest k size

8 for k = 2 . . . kmax do
9 ∂C[k]+=∂C[k − 1]+∂∂C[k] // total change rate of number of k-mers at each k

10 C[k]+=C[k − 1]+∂C[k] // total number of k-mers at each k

11 return C

4.4. Application: Computing Bray-Curtis dissimilarities of all k sizes
The Bray-Curtis dissimilarity, defined with k-mers, is a frequency-based metric that measures the dissimilarity

between biological samples. The values are sensitive to the choice of k-mer sizes, so they are often calculated with
multiple k-mer sizes to check the influence [47] [23] [36], yet most state-of-the-art tools utilize a fixed k-mer size [7].

10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

We computed the Bray-Curtis dissimilarity for all k-mer sizes of samples A and B using the Prokrustean graph
constructed from the union of their sequence sets,UA andUB. This graph tracks the origins of sequences, computing
the following quantities:

BC(UA,UB, k) = 1 − k-mer inUA∪UB 2 ·min(freqA(k-mer), freqB(k-mer))

k-mer inUA∪UB freqA(k-mer) + freqB(k-mer)

Algorithm 3: Compute Bray-Curtis dissimilarities of a range of k sizes
Input: A Prokrustean graph (VU ,EU) whereU = UA

⊔
UB, kmax

Output: Bray-Curtis dissimilarities between samples A and B for k = 1, . . . , kmax

1 Make 0 vectors of length kmax: N,∂N,∂∂N,D,∂D,∂∂D. # numerator, denominator
2 Compute frequencies f reqA(vS) and f reqB(vS) for all vS ∈ VU .
3 for vS ∈ VU do
4 for ((vS , i, j), k∗, d∗) ∈ co-stackU(S) do
5 # Imitate the value assignments to C, ∂∂C at lines 3-6 in Algorithm 2.
6 Assign to N, ∂∂N with all values weighted with min(f reqA(vS), f reqB(vS))
7 Assign to D, ∂∂D with all values weighted with f reqA(vS) + f reqB(vS)

8 for k = 2 . . . kmax do
9 # Imitate the value assignments to C using ∂C,∂∂C at lines 8-9 in Algorithm 2.

10 Assign to N using ∂N, ∂∂N
11 Assign to D using ∂D, ∂∂D

12 return N/D

Recall that the value assignments in line 5 and 6 utilized co-occurrence stacks for counting k-mers in Algorithm 2.
The values min(f reqA(vS), f reqB(vS)) and f reqA(vS) + f reqB(vS) are assigned instead of a constant 1, because they
grows linear to the number of co-occurring k-mers weighted by the frequency-based values. Consequently, vectors N
and D contains values of the numerator and denominator part of the Bray-Curtis dissimilarities for all k-mer sizes.

Typically, biological experiments compute these values for pairs of multiple samples. The proposed algorithm can
be extended to consider multiple samples, requiring O(|samples|2 · |GU |) time.

4.5. Application: Counting maximal unitigs of all k sizes

A maximal unitig of a de Bruijn graph, or a vertex of a compacted de Bruijn graph [20], represents a simple path
that cannot be extended further, reflecting a topological characteristic of the graph. More maximal unitigs generally
indicate more complex graph structures, which significantly impact genome assembly performance [14, 3]. Their
number across multiple k-mer sizes reflects the influence of k-mer sizes on the complexity of assembly.

The idea is that maximal unitigs are implied by tips, convergences, and divergences, which are indicated by type-0
or 1 co-occurrence stacks. For instance, consider a string S in U ∪ RU with multiple right extensions, such as C
and T. If a suffix region in S of length l is an locally-maximal repeat region, it suggests that a k-co-occurring suffix
of S where k > l corresponds to a vertex in the respective de Bruijn graph of order k with right extensions C and T.
Therefore, identifying the locally-maximal repeat regions on suffixes and prefixes of strings inU ∪ RU is sufficient.

11

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

Algorithm 4: Count maximal unitigs of de Bruijn graphs a range of k sizes
Input: A Prokrustean graph (VU ,EU), kmax

Output: Numbers of maximal unitigs of de Bruijn graphs of orders k = 1, . . . , kmax

1 Make 0 vectors of length kmax: C,∂C.
2 Compute numbers of left/right extensions le f t(vS) and right(vS) for all vS ∈ VU .
3 for vS ∈ VU do
4 for ((vS , i, j), k∗, d∗) ∈ co-stackU(S) do
5 if i = 1 and (le f t(vS) = 0 or le f t(vS) > 1)) # tips or convergence then
6 C[k∗ − d∗ + 1]+=1
7 ∂C[k∗]−=1

8 if j = size(vS) and right(vS) > 1 # divergence then
9 C[k∗ − d∗ + 1]+=right(vS)

10 ∂C[k∗]−=right(vS)

11 for k = 2 . . . kmax do
12 C[k]+=C[k − 1]+∂C[k]

13 return C

4.6. Application: Computing vertex degrees of overlap graph

Overlap graphs are extensively utilized in genome and metagenome assembly, alongside de Bruijn graphs. Al-
though their definition appears unrelated to k-mers, we can view them as representing suffix-prefix k-mers of sequences
in U. Overlap information is particularly crucial for metagenomics in read classification [16, 41, 31, 2] and contig
binning [45, 32]. Vertex degrees are often interpreted as (abundant-weighted) read coverage in metagenomic samples,
which exhibit high variances due to species diversity and abundance variability.

A common computational challenge is the quadratic growth of overlap graphs relative to the number of reads
O(|U|2). A significant drawback of overlap graphs is their quadratic growth in the number of reads, O(|U|2). In con-
trast, the Prokrustean graph, which encompasses the overlap graph as a hierarchical subgraph, requires only O(|GU |)
space. This structure enables the efficient computation of vertex degrees in the overlap graph.

The overlap graph ofU has the vertex setU, and an edge (vS , vS ′) if and only if a suffix of S matches a prefix of
S ′. Define pre f (vR ∈ VU) as the number of R occurring as a prefix in strings inU, which is easily computed through
the recursive structure.

pre f (vR ∈ VU) := Σ
e=(vR′ ,vR)∈EU ,region(e)=(1,∗)

pre f (vR′)

Starting from vS ∈ VU , explore a suffix path, meaning recursively choose edges that are locally-maximal repeat
regions on suffices. Then, sum up pre f (v∗) for all vertices encountered along the path. Since pre f (vR) represents
the occurrence of R as a prefix, the summed quantity equals the outgoing degree of vertex S in the overlap graph
of U. Symmetrically, incoming degrees can be computed by defining su f f (vR). The recursion can be strategically
organized so that vertices are visited only once when computing all overlap degrees ofU, thereby reducing the overall
complexity to O(|GU |).

5. Experiments and Results

Here, we implement and test against various data sets the construction and four applications of the Prokrustean
graph. Datasets were randomly selected to represent a broad range of sizes, sequencing technologies, and biological
origins. Both reference genomes and sequencing data were used to demonstrate the scalability of the Prokrustean
graph. 16 human pangenome and 3,500 metagenome references were used, and diverse sequencing datasets were
collected, including two metagenome short-read datasets, one metagenome long-read dataset, and two human tran-
scriptome short-read datasets. The full list of datasets is provided in appendix A.

12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 6: Sizes of Prokrustean graphs (number of vertices and edges) versus kmin values for a short read dataset ERR3450203.
The size of the graph drops around kmin = [11, ..., 19], meaning the maximal repeats and locally-maximal repeat regions are dense
when kmin is under 11. The number of edges falls again around kmin = 100 because the graph eventually becomes fully
disconnected.

5.1. Prokrustean graph construction with kmin

The construction algorithm is introduced later (Section 6). Recall that the Prokrustean graph grows with the
number of maximal repeats, i.e., O(|GU |) = O(|Σ| · |RU |). The size of GU can be controlled by dropping maximal
repeats of length below kmin. This threshold limits the length of locally-maximal repeat regions to kmin or above,
capturing a subgraph of the Prokrustean graph, and hence achieves O(|GU |) = O(|Σ|·|RU(kmin)|) space while computing
k-mer quantities for k = kmin, . . . , kmax. Figure 6 shows how the graph size of short sequencing reads of length 151
decreases as kmin increases.

Additionally, for 3500 E. coli genomes with kmin = 10, we observed that |VU | < 0.01N and |EU | < 0.03N.
Figure 7 shows how references of pangenome and metagenome grow. Again, the growth of the graph follows the
growth of |RU |.

Figure 7: Sizes of Prokrustean graphs as a function of sequences added. Left: Prokrustean graphs constructed using an
accumulation of 16 human chromosome 1 references. Right: same but generated using 3500 E. coli references exibiting an
increased growth rate reflecting E. coli species diversity.

Table 1 shows that with some practical kmin values applied, the size of the Prokrustean graphs stays around the size
of their inputs. It is observed that |GU | ≪ N, with |VU | < 0.2N and |EU | < 0.5N with short reads.

Subsequent sections cover the results of four applications. Note that, to our knowledge, there are no existing
computational techniques that perform the exact same tasks for a range of k-mer sizes, making performance com-

13

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

dataset reads N kmin time mem output
SRR20044276(metagenomic) 0.94M 72M 20 13s 200mb 40mb
ERR3450203(metagenomic) 55M 4.5B 30 28min 11gb 2.7gb

SRR18495451(metagenomic/long) 0.83M 11.3B 30 90min 43gb 14gb
SRR7130905 (human/rna-seq) 45M 6.8B 30 39min 18gb 4gb

SRR21862404 (human/rna-seq) 336M 22.3B 30 99min 37gb 5.9gb

Table 1: Performances of Prokrustean graph construction from BWTs. Symbols M, B, mb, and gb mean millions, billions,
megabytes, and gigabytes. N denotes the cumulative sequence length ofU and we can see the output is comparable to N.

parisons inherently “unfair.” Readers are encouraged to focus on the overall time scale to gauge the efficiency of the
Prokrustean graph. Additionally, discrepancies in the outputs of the comparisons may arise due to practice-specific
configurations in computational tools, such as the use of only ACGT (i.e. no “N”) and canonical k-mers in KMC.
Consequently, we tested correctness on GitHub using our brute-force implementations.

5.2. Result: Counting distinct k-mers for k = kmin, . . . , kmax

We employed KMC [28], an optimized k-mer counting library designed for a fixed k size , and used it iteratively
for all k values. This “unfair” comparison emphasizes the limitations of current practices in counting k-mers across
various k sizes.

Dataset k KMC Prokrustean Graph
time memory threads time memory threads

SRR20044276 1...150 5m 837mb 22 0.36s 80mb 8
ERR3450203 1...150 70m 12gb 22 106s 11gb 8
SRR18495451 30...50000 days - 22 88s 24gb 8
SRR7130905 30...150 66m 12gb 22 46s 8.5gb 8
SRR21862404 30...150 112m 13gb 22 74s 13.8gb 8

Table 2: Counting distinct k-mers with Prokrustean graphs (Algorithm 2) compared with KMC. KMC had to be executed
iteratively causing the computational time to increase steadily as the range of k increases. The running time of KMC for each k
took about 1-3 minutes.

5.3. Result: Computing Bray-Curtis dissimilarities for kmin, . . . , kmax

Bray-Curtis dissimilarity is a popular metric used in metagenomics analysis [23, 36]. In each reference we found,
dissimilarity scores were presented for a single k-mer size. Figure 8 shows that dissimilarities between four example
metagenome samples are not consistent in that at some k-mer sizes, one observed pattern of dissimilarity is completely
flipped at another k-mer size. I.e. no k size is “correct”; instead, new insights are obtained from multiple k sizes. This
task took about 10 minutes with the Prokrustean graph of four samples of 12 gigabase pairs in total, and the graph
construction took around 1 hour. Computing the same quantity takes around 5 to 8 minutes for a fixed k-mer size with
Simka [7], and no library computes it across k-mer sizes.

14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 8: Bray-Curtis dissimilarities between four samples derived from infant fecal microbiota, which were studied in [36].
Samples include two from 12-month-old human subjects and two from 3-week-olds. The relative order between values shift as k
changes, e.g. the dissimilarity between sample 2 and 4 is highest at k = 8 but lowest at k = 21. Note that diverse k sizes (10, 12,
21, 31) are actively utilized in practice.

5.4. Result: Counting maximal unitigs for kmin, . . . , kmax

We utilized GGCAT [20], a mature library optimized for constructing compacted de Bruijn graphs at a fixed k-
mer size. Since maximal unitigs are vertices of a compacted de Bruijn graph, we measured their de Bruijn graph
construction time. Again, the Prokrustean graph becomes more efficient as additional k-mer sizes are included in the
computation. The following table displays the comparison, and Figure 9 illustrates some of the outputs.

Dataset k GGCAT Prokrustean Graph
time memory time memory

SRR20044276 20..150 13m 310mb 0.36s 70mb
ERR3450203 30..150 98m 1.1gb 31s 5.8gb
SRR18495451 30..50000 days - 127s 26gb
SRR7130905 30...150 126m 1.4gb 46s 8.5gb

SRR21862404 30...150 168m 0.8gb 76s 13.8gb

Table 3: Counting maximal unitigs with GGCAT and Prokrustean Graph(Algorithm 4). The efficiency shown in the compute
column is emphasized, where only a few seconds are required for large datasets. The GGCAT was executed for k sizes iteratively.
The running time for each k took about 1-5 minutes for GGCAT. Both methods used 8 threads.

15

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 9: The number of maximal unitigs in de Bruijn graphs of order k = 20, . . . , 150 of metagenomic short reads
(ERR3450203). A complex scenario is revealed: The decrease of the numbers fluctuates in k = 30, . . . , 60, and the peak around
k = 90 corresponds to the sudden decrease in maximal repeats. Lastly, further disconnections increase contigs and eventually
make the graph completely disconnected.

5.5. Result: Counting vertex degrees of overlap graph of threshold kmin

Here, we describe computing the vertex degrees of an overlap graph using a threshold of kmin on a metagenomic
short read dataset. Limiting the task to vertex degree counting, O(|Σ||RU |) time and space are required (Section 4.6).
With the Prokrustean graph of 27 million short reads (4.5 gigabase pairs in total), the computation generating Figure 10
used 8.5 gigabytes memory and 1 minute to count all vertex degrees.

Figure 10: Vertex degrees of the overlap graph of metagenomic short reads (ERR3450203). The number of vertices per each
degree is scaled as log log y. There is a clear peak around 102 at both incoming and outgoing degrees, which may imply dense
existence of abundant species. The intermittent peaks after 102 might be related to repeating regions within and across species.

6. Prokrustean graph construction

Recall that Section 2.2 addressed the limitations of LCP-based substring indexes in computing co-substrU(S),
which motivated the adoption of the Prokrustean graph. LCP-based representations inherently provide a “bottom-up”
approach and are at best able to access incoming edges of vS in the Prokrustean graph. In contrast, the Prokrustean
graph supports a “top-down” approach by accessing co-substrU(S) through co-occurrence stacks whose number
depends on the outgoing edges of vS .

16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

We start with a more straightforward, but less efficient approach: Section 6.1 employs affix trees—the union of
the suffix tree of U and the suffix tree of its reversed strings—to extract the Prokrustean graph. Although affix trees
allow straightforward operations supporting bidirectional extensions above suffix trees, they are resource-intensive in
practice. Section 6.2 refines the approach using the BWT of U, incorporating an intermediate model to compensate
the bidirectional context lost in moving away from affix trees. Section 6.3 then briefly introduce the implementation,
covering recent advancements in BWT-based computations supporting it.

6.1. Extracting Prokrustean graph from two suffix trees
For ease of explanation, we use two suffix trees to represent the affix tree. Let TU denote the generalized suffix

tree constructed fromU. The reversed string of a string S is denoted by rev(S), and the reversed string set rev(U) is
{rev(S) | S ∈ U}. A node in a tree is represented as node(S) if the path from the root to the node spells out the string
S , with the considered tree being always clear from the context. We assume affix links are constructed, which map
between node(S) in TU and node(rev(S)) in Trev(U) if both nodes exist in their respective trees.

Additionally, a string preceded/followed by a letter represents an extension of the string with that letter, as in σS
or Sσ. Similarly, concatenation of two strings S and S ′ can be written as S S ′. An asterisk (*) on a substring denotes
any number (including zero) of letters extending the substring, as in S ∗.

6.1.1. Vertex set
Collecting maximal repeats of U requires information about |occU(σR)| and |occU(Rσ)| for each σ ∈ Σ, for any

considered substring R. Most substring indexes built above LCPs provide access to occurrences through the LCP
intervals, and the number of occurrences is represented by the length of the corresponding LCP intervals. The reverse
representation Trev(U) is not required yet, implying that the same information is accessible via single-directional
indexes like the BWT in the next section.

6.1.2. Edge set
A more nuanced approach is required to extract the edge set of a Prokrustean graph. Since an edge in a suffix tree

basically implies co-occurrence, it sometimes directly indicates a locally-maximal repeat region, providing a subset
of substrings that co-occur within their extensions. That is, an edge from node(S) to node(S ′) in TU implies that S
may represent a locally-maximal repeat region in S ′ capturing a prefix S of S ′. However, different scenarios may
arise—sometimes the reverse direction should be considered, or both directions, or neither. These variations depend
on the combinations of letter extensions around the substring. We present a theorem that delineates these cases,
visually explained in Figure 11 for intuition.

We define terms distinguishing occurrence patterns of extensions. A string R is left-maximal if |occU(σR)| <
|occU(R)| for every σ ∈ Σ, and left-non-maximal with σ if |occU(σR)| = |occU(R)|, and right-maximality and
right-non-maximality are symmetrically defined.

Theorem 6. Consider a maximal repeat R ∈ RU and letters σl, σr ∈ Σ. The following three cases define a bijective
correspondence between selected edges in the suffix trees (TU and Trev(U)) and the edges (EU) of the Prokrustean
graph ofU.

Case 6.1 (Prefix Condition) The following three statements are equivalent.

(a) Rσr is left-maximal.

(b) There exists a string T of form Rσr∗ inU ∪ RU such that an edge from node(R) to node(T) is in TU .

(c) There exists an edge eT,i, j in EU satisfying str(T, i, j + 1) = Rσr and i = 1.

Case 6.2 (Suffix Condition) The following three statements are equivalent.

(a) σlR is right-maximal.

(b) There exists a string T of form ∗σlR inU ∪ RU such that an edge from node(rev(R)) to node(rev(T))
is in Trev(U).

(c) There exists an edge eT,i, j ∈ EU satisfying str(T, i − 1, j) = σlR and j = |T |.

17

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 11: Deriving locally-maximal repeat regions from edges of suffix trees. From a node of a maximal repeat R or rev(R), the
extension S is identified by adding strings on edge annotations. Then, the three scenarios depict how each edge(s) locates each
locally-maximal repeat region that captures R within S .

Case 6.3 (Interior Condition) The following three statements are equivalent.

(a) Rσr is left-non-maximal with σl and σrR is right-non-maximal with σr.

(b) There exist strings S l and S r, and T := S lRS r of form ∗σlRσr∗ in U ∪ RU such that an edge from
node(R) to node(RS r) is in TU and an edge from node(rev(R)) to node(rev(S lR)) is in Trev(U).

(c) There exists an edge eT,i, j in EU satisfying str(T, i − 1, j + 1) = σlRσr.

Proof. Refer to Appendix C.1 for the proof, which is straightforward but tedious.

The computation of extracting the edge set of the Prokrustean graph is realized by collecting incoming edges for
each vertex: Explore TU to identify each maximal repeat R ∈ RU , and verify the maximality conditions in items
labeled (a) in the theorem. Upon satisfying (a) of any case, use the corresponding (b) to identify a superstring T
from the suffix trees TU and Trev(U). The corresponding (c) then confirms that the region of R within T is indeed a
locally-maximal repeat region in U. The precise region (T, i, j) is inferred from the decomposition of T outlined in
(b). For instance, if T is S lR as in Case 9.2, then (T, i, j) is the suffix region (T, |S l| + 1, |T |), so an edge from vT to vR

is labeled (|S l| + 1, |T |).
This approach covers every edge in the Prokrustean graph. Observe that items labeled (c) distinguish locally-maximal

repeat regions by the letters on immediate left or right. Each region is unique with respect to the letter extension, as
previously established in the proof of Theorem 4. Hence, for each maximal repeat R, the conditions met in (a) have
bijectively mapped incoming edges to vR, thus the entire edge set EU is identified through Theorem 9.

We have leveraged a bidirectional substring index, but if only one direction is supported, i.e., Trev(U) is unavailable,
finding T as outlined in (b) becomes challenging. This limitation with single-directional substring indexes motivates
the development of an enhanced algorithm.

6.2. Extracting Prokrustean graph from Burrows-Wheeler transform

This section addresses two issues of the previous computation when implemented in practice. Firstly, suffix
tree representations generally consume substantial memory, which hinders scalability when handling large genomic
datasets such as pangenomes. Secondly, bidirectional indexes are more space-consuming, expensive to build, and
less commonly implemented than single-directional indexes. Instead, BWTs enable traversal of the same suffix tree
structure using sublinear space relative to the input sequences, and are supported by a range of actively improved
construction algorithms.

18

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

Since the bidirectional extensions in items of (b) in Theorem 9 are not directly applicable to the BWT or other
single-directional substring indexes, we utilize a subset of occurrences of maximal repeats as an intermediate rep-
resentation of locally-maximal repeat regions. This approach necessitates a consistent way of utilizing suffix orders
within the generalized suffix arrays ofU.

Before describing the construction of the Prokrustean from a BWT, we need the following definitions.

Definition 9. Let the rank of a region (S , i, j) be the rank of the suffix of S starting at i in the generalized suffix array
of U, which is implied by a substring index being used. Then, the first occurrence of a string R, occU(R)1, is the
lowest ranked occurrence among occU(R).

Note that suffix ordering is consistent only within a sequence but varies across sequences depending on imple-
mentations. For example, among BWTs that employ different strategies, some consider the global lexicographical
order, yielding occU(AA)1 = (CCAA, 3, 4) forU = {GGAA, CCAA}, while others impose a strict order on input se-
quences, such as U = {GGAA#1,CCAA#2}, resulting in occU(AA)1 = (GGAA, 3, 4). This variability is extensively
discussed in [18]. In any scenario, the identical Prokrustean graph will be generated as long as the first occurrences
are consistently considered.

The following intermediate model achieves the goal by collecting specific occurrences of maximal repeats uti-
lizing first occurrences. These occurrences are designed to form one-to-one correspondences with the edges of the
Prokrustean graph.

Definition 10. Pro jOccU is a subset of occurrences of strings inU ∪ RU , where elements are specified as follows:

1. For every sequence S ∈ U, the entire region of the sequence, i.e., (S , 1, |S |) ∈ Pro jOccU .

2. For every maximal repeat R ∈ RU and letters σl, σr ∈ Σ,

(1) If Rσr is left-maximal, then (S , i, j − 1) ∈ Pro jOccU given (S , i, j) := occU(Rσr)1.

(2) If σlR is right-maximal, then (S , i + 1, j) ∈ Pro jOccU given (S , i, j) := occU(σlR)1.

(3) If Rσr is left-non-maximal with σl and σlR is right-non-maximal with σr, then
(S , i + 1, j − 1) ∈ Pro jOccU given (S , i, j) := occU(σlRσr)1.

Figure 12: Construction of the Prokrustean graph via projected occurrences. Gray vertices, depicted as either rectangles or
circles, represent sequences inU, while blue vertices denote maximal repeats ofU. The suffix tree is shown flipped to better
illustrate the correspondence, providing intuition for the “bottom-up” approach. Dotted rectangles in each diagram refer to a
maximal repeat R. First occurrences of substrings like σlR and Rσr are identified through the construction of Pro jOccU . Then,
the nested structure of projected occurrences derive incoming edges of vR in the Prokrustean graph.

Refer to Figure 12 for intuition that Pro jOccU is indirectly deriving the locally-maximal repeat regions inU∪RU .
Although the same maximality conditions are used in both Theorem 9 and the definition of Pro jOccU , the occurrences
in Pro jOccU are organized in a nested manner, allowing locally-maximal repeat regions to be inferred through their
inclusion relationships. So, Pro jOccU is a projected image of the Prokrustean graph of U. The decoding rule for
Pro jOccU , necessary for reconstructing the Prokrustean graph, is articulated in the following proposition and theorem.

The following theorem elaborates the decoding rule. Let the relative occurrence of (S , i, j) within (S , i′, j′) be
(str(S , i′, j′), i − i′ + 1, j − i′ + 1) defined only if (S , i, j) ⊊ (S , i′, j′).

19

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

Theorem 7. eT,p,q ∈ EU , i.e., (T, p, q) is a locally-maximal repeat region in some T ∈ U ∪ RU if and only if there
exist (S , i, j), (S , i′, j′) ∈ Pro jOccU satisfying:

• (S , i, j) ⊊ (S , i′, j′), and

• the relative occurrence of (S , i, j) within (S , i′, j′) is (T, p, q), and

• no region (S , x, y) ∈ Pro jOccU satisfies (S , i, j) ⊊ (S , x, y) ⊊ (S , i′, j′).

Proof. Refer to Appendix C.2 for the proof, which is straightforward but tedious.

Therefore, two occurrences in their “closest” containment relationship in Pro jOccU imply their strings form
a locally-maximal repeat region. Since every occurrence in Pro jOccU originates from either a maximal repeat or a
sequence, each represents a vertex in the Prokrustean graph. Therefore, collecting these relative occurrences constructs
the edge set of the Prokrustean graph. Refer to Appendix C for the algorithm.

6.3. Implementation

We briefly introduce the techniques implemented in our code base: https://github.com/KoslickiLab/prokrustean.
Firstly, the BWT is constructed from a set of sequences using any modern algorithm supporting multiple sequences

[30, 17, 21]. The resulting BWT is then converted into a succinct string representation, such as a wavelet tree, to
facilitate access to the “nodes” of the implied suffix tree. For this purpose, we used the implementation from the
SDSL project [24]. The traversal is built on foundational works by Belazzougui et al. [4] and Beller et al. [6],
as detailed by Nicola Prezza et al. [37]. Their node representation, based on LCP intervals, enables constant-time
access to occU(Rσ) and occU(σR) for each substring R and letter σ ∈ Σ. This capability is crucial for verifying the
maximality conditions outlined in Definition 10. Also, the first occurrence of so that the first occurrences occU(Rσ)1
and occU(σR)1 are identified as the start of the LCP interval of Rσ and σR, respectively, so Pro jOccU can be built.

Pro jOccU is collected by exploring the nodes of the suffix tree implicitly supported by the BWT of U. The
exploration requires O(log |Σ| · |TU |) time in total, because succinct string operations take O(log |Σ|) time. Identifying
a maximal repeat takes O(|Σ|) time and then collecting its occurrences in Pro jOccU takes O(|Σ|2), which is obvious
because each combination of occurrence, e.g., |occU(σlRσr)|) is accessible in constant time. Therefore, constructing
Pro jOccU takes O(log |Σ| · |Σ|2 · |TU |) time and O(|BWT |+ |Pro jOccU |) space where |BWT | is the size of the succinct
string representing the BWT ofU.

Lastly, reconstructing the Prokrustean graph using Theorem 10 takes O(|Pro jOccU |) time, which is introduced
in Appendix C. Note that the computation need not consider every combination of occurrences in Pro jOccU; it
leverages the property that an occurrence (S , i, j) ∈ Pro jOccU can imply locally-maximal repeat regions with up
to two extensions in S found in Pro jOccU . Therefore, Pro jOccU is grouped by each sequence S ∈ U, and the
edge set EU can be built from each group. Hence, the total space usage is O(|BWT | + |Pro jOccU | + |GU |), where
O(|Pro jOccU |) = O(|GU |). The space usage is primarily output-dependent that around 2|GU | in practice, and the most
time-consuming part is the construction of Pro jOccU via traversing the implicit suffix tree.

7. Discussion

We have introduced the problem of computing co-occurring substrings co-substrU(S) (Section 2) and derived the
Prokrustean graph (Section 3). The graph facilitates computing co-stackU(S) to efficiently express co-substrU(S)
(Theorem 8), which is used to implement algorithms computing k-mer-based quantities (Section 4.3, Section 4.4,
Section 4.5, Section 4.6). Lastly, the graph was constructed from the BWT (Section 6).

It is worthwhile to note that the construction described in Section 6.1 highlights the limitations of LCP-based
substring indices by comparing the differences between the Prokrustean graph and suffix trees. Suffix trees cannot ac-
cess the co-occurrence structure in constant time without the “top-down” representation supported by the Prokrustean
graph. Therefore, we conjecture that building multi-k methods with modern LCP-based substring indices is challeng-
ing regardless of the underlying approach.

The application Section 4.5 indicates that a Prokrustean graph somehow access de Bruijn graphs of all orders.
That is, a Prokrustean graph has potential for advancing the so-called variable-order scheme. Indeed, a Prokrustean of

20

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://github.com/KoslickiLab/prokrustean
https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

U can be converted into the union of de Bruijn graphs of all orders. Since the Prokrustean graph does not grow faster
than maximal repeats, the new representation can help formulating multi-k methods to identify errors in sequencing
reads, SNPs in population genomes, and assembly genomes.

Thus, the open problem 5 in [40] can be answered by the Prokrustean graph, which calls for a practical represen-
tation of variable-order de Bruijn graphs that generates assembly comparable to that of overlap graphs. Recall that
Section 4.6 analyzed the overlap graph of U from the Prokrustean graph of U. So, the two popular objects used in
genome assembly are elegantly accessed through the Prokrustean graph.

There is abundant literature analyzing the influence of k-mer sizes in many bioinformatics tasks. However, little
effort has been made to derive rigorous formulations or quantities to explain these phenomena. It is a significant
disadvantage to leave the effects of k-mer sizes shrouded in mystery, especially as many other biological assumptions
are made in these tasks and complex pipelines. Understanding the usage of k-mers at least at the level of substring
representations of the sequencing data or references is an essential initial step. Our framework is expected to contribute
to forming this prerequisite so that further improvement involving biological knowledge is desired afterwards.

References

[1] Hussah N AlEisa, Safwat Hamad, and Ahmed Elhadad. K-mer spectrum-based error correction algorithm for next-generation sequencing
data. Computational Intelligence and Neuroscience, 2022, 2022.

[2] Marleen Balvert, Xiao Luo, Ernestina Hauptfeld, Alexander Schönhuth, and Bas E Dutilh. Ogre: overlap graph-based metagenomic read
clustering. Bioinformatics, 37(7):905–912, 2021.

[3] Anton Bankevich, Andrey V Bzikadze, Mikhail Kolmogorov, Dmitry Antipov, and Pavel A Pevzner. Multiplex de bruijn graphs enable
genome assembly from long, high-fidelity reads. Nature biotechnology, 40(7):1075–1081, 2022.

[4] Djamal Belazzougui. Linear time construction of compressed text indices in compact space. In Proceedings of the forty-sixth Annual ACM
Symposium on Theory of Computing, pages 148–193, 2014.

[5] Djamal Belazzougui and Fabio Cunial. Fully-functional bidirectional burrows-wheeler indexes and infinite-order de bruijn graphs. In 30th
Annual Symposium on Combinatorial Pattern Matching (CPM 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[6] Timo Beller, Simon Gog, Enno Ohlebusch, and Thomas Schnattinger. Computing the longest common prefix array based on the burrows–
wheeler transform. Journal of Discrete Algorithms, 18:22–31, 2013.

[7] Gaëtan Benoit. Simka: fast kmer-based method for estimating the similarity between numerous metagenomic datasets. In RCAM, 2015.
[8] Maciej Besta, Raghavendra Kanakagiri, Harun Mustafa, Mikhail Karasikov, Gunnar Rätsch, Torsten Hoefler, and Edgar Solomonik.

Communication-efficient jaccard similarity for high-performance distributed genome comparisons. In 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 1122–1132. IEEE, 2020.

[9] Vincenzo Bonnici and Vincenzo Manca. Informational laws of genome structures. Scientific reports, 6(1):28840, 2016.
[10] Jessica K Bonnie, Omar Ahmed, and Ben Langmead. Dandd: efficient measurement of sequence growth and similarity. bioRxiv, pages

2023–02, 2023.
[11] Christina Boucher, Alex Bowe, Travis Gagie, Simon J Puglisi, and Kunihiko Sadakane. Variable-order de bruijn graphs. In 2015 data

compression conference, pages 383–392. IEEE, 2015.
[12] Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de bruijn graphs. In International workshop on algorithms

in bioinformatics, pages 225–235. Springer, 2012.
[13] Florian P Breitwieser, Daniel N Baker, and Steven L Salzberg. Krakenuniq: confident and fast metagenomics classification using unique

k-mer counts. Genome biology, 19:1–10, 2018.
[14] Karel Břinda, Michael Baym, and Gregory Kucherov. Simplitigs as an efficient and scalable representation of de bruijn graphs. Genome

biology, 22:1–24, 2021.
[15] Yuval Bussi, Ruti Kapon, and Ziv Reich. Large-scale k-mer-based analysis of the informational properties of genomes, comparative genomics

and taxonomy. PloS one, 16(10):e0258693, 2021.
[16] Margherita Cavattoni and Matteo Comin. Classgraph: improving metagenomic read classification with overlap graphs. Journal of Computa-

tional Biology, 30(6):633–647, 2023.
[17] Davide Cenzato, Veronica Guerrini, Zsuzsanna Lipták, and Giovanna Rosone. Computing the optimal BWT of very large string collections.

In In Proc. of the 33rd Data Compression Conference, DCC 2023, 2023, pages 71–80, 2023. doi:10.1109/DCC55655.2023.00015.
[18] Davide Cenzato and Zsuzsanna Lipták. A survey of bwt variants for string collections. Bioinformatics, page btae333, 2024.
[19] Rayan Chikhi and Paul Medvedev. Informed and automated k-mer size selection for genome assembly. Bioinformatics, 30(1):31–37, 2014.
[20] Andrea Cracco and Alexandru I Tomescu. Extremely fast construction and querying of compacted and colored de bruijn graphs with ggcat.

Genome Research, pages gr–277615, 2023.
[21] Diego Dı́az-Domı́nguez and Gonzalo Navarro. Efficient construction of the bwt for repetitive text using string compression. Information and

Computation, 294:105088, 2023.
[22] Diego D’ıaz-Dom’ınguez, Taku Onodera, Simon J Puglisi, and Leena Salmela. Genome assembly with variable order de bruijn graphs.

bioRxiv, pages 2022–09, 2022.
[23] Veronika B Dubinkina, Dmitry S Ischenko, Vladimir I Ulyantsev, Alexander V Tyakht, and Dmitry G Alexeev. Assessment of k-mer spectrum

applicability for metagenomic dissimilarity analysis. BMC bioinformatics, 17:1–11, 2016.
[24] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug and play with succinct data structures. In 13th

International Symposium on Experimental Algorithms, (SEA 2014), pages 326–337, 2014.

21

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1109/DCC55655.2023.00015
https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

[25] Dan Gusfield. Algorithms on stings, trees, and sequences: Computer science and computational biology. Acm Sigact News, 28(4):41–60,
1997.

[26] Luiz Irber, Phillip T Brooks, Taylor Reiter, N Tessa Pierce-Ward, Mahmudur Rahman Hera, David Koslicki, and C Titus Brown. Lightweight
compositional analysis of metagenomes with fracminhash and minimum metagenome covers. bioRxiv, pages 2022–01, 2022.

[27] Rashedul Islam, Rajan Saha Raju, Nazia Tasnim, Istiak Hossain Shihab, Maruf Ahmed Bhuiyan, Yusha Araf, and Tofazzal Islam. Choice
of assemblers has a critical impact on de novo assembly of sars-cov-2 genome and characterizing variants. Briefings in bioinformatics,
22(5):bbab102, 2021.

[28] Marek Kokot, Maciej Długosz, and Sebastian Deorowicz. Kmc 3: counting and manipulating k-mer statistics. Bioinformatics, 33(17):2759–
2761, 2017.

[29] Thomas Krannich, W Timothy J White, Sebastian Niehus, Guillaume Holley, Bjarni V Halldórsson, and Birte Kehr. Population-scale
detection of non-reference sequence variants using colored de bruijn graphs. Bioinformatics, 38(3):604–611, 2022.

[30] Heng Li. Fast construction of fm-index for long sequence reads. Bioinformatics, 30(22):3274–3275, 2014.
[31] Xingyu Liao, Min Li, Junwei Luo, You Zou, Fang-Xiang Wu, Yi Pan, Feng Luo, and Jianxin Wang. Improving de novo assembly based on

read classification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17(1):177–188, 2018.
[32] Vijini Mallawaarachchi. Metagenomics Binning Using Assembly Graphs. PhD thesis, The Australian National University (Australia), 2022.
[33] Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov, and Pavel A Pevzner. metaspades: a new versatile metagenomic assembler. Genome

research, 27(5):824–834, 2017.
[34] Brian D Ondov, Todd J Treangen, Páll Melsted, Adam B Mallonee, Nicholas H Bergman, Sergey Koren, and Adam M Phillippy. Mash: fast

genome and metagenome distance estimation using minhash. Genome biology, 17:1–14, 2016.
[35] Ana Elena Pérez-Cobas, Laura Gomez-Valero, and Carmen Buchrieser. Metagenomic approaches in microbial ecology: an update on whole-

genome and marker gene sequencing analyses. Microbial genomics, 6(8):e000409, 2020.
[36] Alise Jany Ponsero, Matthew Miller, and Bonnie Louise Hurwitz. Comparison of k-mer-based de novo comparative metagenomic tools and

approaches. Microbiome Research Reports, 2(4), 2023.
[37] Nicola Prezza and Giovanna Rosone. Space-efficient computation of the lcp array from the burrows-wheeler transform. arXiv preprint

arXiv:1901.05226, 2019.
[38] Andrey Prjibelski, Dmitry Antipov, Dmitry Meleshko, Alla Lapidus, and Anton Korobeynikov. Using spades de novo assembler. Current

protocols in bioinformatics, 70(1):e102, 2020.
[39] T Rhyker Ranallo-Benavidez, Kamil S Jaron, and Michael C Schatz. Genomescope 2.0 and smudgeplot for reference-free profiling of

polyploid genomes. Nat. comm., 11(1):1432, 2020.
[40] Raffaella Rizzi, Stefano Beretta, Murray Patterson, Yuri Pirola, Marco Previtali, Gianluca Della Vedova, and Paola Bonizzoni. Overlap graphs

and de bruijn graphs: data structures for de novo genome assembly in the big data era. Quantitative Biology, 7:278–292, 2019.
[41] Luis M Rodriguez-r and Konstantinos T Konstantinidis. Estimating coverage in metagenomic data sets and why it matters. The ISME journal,

8(11):2349–2351, 2014.
[42] Sebastian Schmidt, Shahbaz Khan, Jarno N Alanko, Giulio E Pibiri, and Alexandru I Tomescu. Matchtigs: minimum plain text representation

of k-mer sets. Genome Biology, 24(1):136, 2023.
[43] Basir Shariat, Narjes Sadat Movahedi, Hamidreza Chitsaz, and Christina Boucher. Hyda-vista: towards optimal guided selection of k-mer

size for sequence assembly. BMC genomics, 15(10):1–8, 2014.
[44] Deyou Tang, Yucheng Li, Daqiang Tan, Juan Fu, Yelei Tang, Jiabin Lin, Rong Zhao, Hongli Du, and Zhongming Zhao. Kcoss: an ultra-fast

k-mer counter for assembled genome analysis. Bioinformatics, 38(4):933–940, 2022.
[45] Anuradha Wickramarachchi and Yu Lin. Metagenomics binning of long reads using read-overlap graphs. In RECOMB International Work-

shop on Comparative Genomics, pages 260–278. Springer, 2022.
[46] Zhenhua Yang, Hong Li, Yun Jia, Yan Zheng, Hu Meng, Tonglaga Bao, Xiaolong Li, and Liaofu Luo. Intrinsic laws of k-mer spectra of

genome sequences and evolution mechanism of genomes. BMC Evolutionary Biology, 20:1–15, 2020.
[47] Hongxuan Zhai and Julia Fukuyama. A convenient correspondence between k-mer-based metagenomic distances and phylogenetically-

informed β-diversity measures. PLOS Computational Biology, 19(1):e1010821, 2023.

22

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Datasets

• Datasets mainly used in applications.

SRR20044276, ERR3450203, SRR18495451, SRR21862404, SRR7130905

• Human pangenome references (Chromosome 1).

AP023461.1, CH003448.1, CH003496.1, CM000462.1, CM001609.2, CM003683.2, CM009447.1, CM009872.1,
CM010808.1, CM021568.2, CM034951.1, CM035659.1, CM039011.1, CM045155.1, CM073952.1, CM074009.1,
CP139523.1, NC 000001.11, NC 060925.1

• Metagenome e.coli references.

3682 E. coli assemblies in NCBI circa 2020. (https://zenodo.org/records/6577997)

• Metagenome sample for Bray-Curtis, referring to [36].

ERS11976829, ERS11976830, ERS11976565, ERS11976566

B. Maximal co-occurrence stacks

B.1. The proof of co-stackU(S) completely covering co-substrU(S) and its bound.

Proposition 4. A maximal k-co-occurring substring T and a maximal k′-co-occurring substring T ′ of S are identified
by the same maximal co-occurrence stack if and only if they share identical boundary conditions: on both sides, they
either extend to the end of S or intersect the same locally-maximal repeat region by k − 1 and k′ − 1, respectively.

Proof. Consider maximal k-co-occurring substring T and k′-co-occurring substring T ′ of S where k < k′. The forward
direction is straightforward; a maximal co-occurrence stack (S , S ′, k∗, d∗), which identifies T and T , identifies S ′ as
a k∗-co-occurring substring of S by definition, and S ′ either extends to an end of S or intersects an locally-maximal
repeat region by k∗ − 1 on both sides according to Proposition 1. Then, as T and T ′ are identified as the (k∗ − k+ 1)-th
and (k∗ − k′ + 1)-th elements by the stack, respectively, the rates δl and δr derived from the stack ensure T and T ′

sharing the equivalent side conditions with S ′ as described in Proposition 1.
For the reverse direction, consider three types of co-occurrence stacks: 1. T = T ′ = S , i.e., they extend to both

ends of S . Then a type-0 stack identifies them. Whenever S k-co-occurs within S , the same holds for k + 1 and above
until |S |. Therefore, (S ,T := S , k∗ := |S |, d∗) with some maximal d∗ identifies T and T ′ .

2. T and T ′ are proper prefixes of S . Then a type-1 stack identifies them. The condition says there is a
locally-maximal repeat region (S , i, j) intersecting the regions of T and T ′ in S by k − 1 and k′ − 1, respectively.
Without loss of generality, let the intersection be on the left of (S , i, j). Then, a k∗-co-occurring prefix of S with
k∗ := |(S , i, j)| intersects (S , i, j) by k∗ − 1; if not, there must be a k∗-mer occurring more than |occU(S)| starting
between positions 1 and i − 1. But k-mers of T start in the positions too, so T does not k-co-occur within S , which
leads to contradiction. Thus, (S ,T := str(S , 1, j− 1), k∗ := |(S , i, j)|, d∗) is a type-1 stack that identifies both T and T ′.

3. T and T ′ are neither prefixes nor suffixes. Then a type-2 stack identifies them. There are two locally-maximal
repeat regions (S , i, j) and (S , i′, j′) that intersect the regions of T and T ′ by k − 1 and k′ − 1, respectively. Assuming
(S , i, j) is smaller, a similar argument as in the previous paragraph shows that a k∗-co-occurring substring intersects
both (S , i, j) and (S , i′, j′) by k∗ − 1 given k∗ := |(S , i, j)|, so (S ,T := str(S , j − k∗ + 2, i′ + k∗ − 2), k∗ := |(S , i, j)|, d∗)
identifies T and T ′.

This proposition implies that either zero, one, or two locally-maximal repeat regions in S characterize a co-
occurrence stack by identifying substrings of identical side conditions. This corresponds to the classifications—type-
0, type-1, and type-2. The proposition also implies that the number of maximal co-occurrence stacks of S does not
grow faster than the number of locally-maximal repeat regions in S .

23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://www.ncbi.nlm.nih.gov/sra/?term=SRR20044276
https://www.ncbi.nlm.nih.gov/sra/?term=ERR3450203
https://www.ncbi.nlm.nih.gov/sra/SRR18495451
https://www.ncbi.nlm.nih.gov/sra/?term=SRR21862404
https://www.ncbi.nlm.nih.gov/sra/?term=SRR7130905
https://www.ncbi.nlm.nih.gov/nuccore/AP023461.1/
https://www.ncbi.nlm.nih.gov/nuccore/CH003448.1/
https://www.ncbi.nlm.nih.gov/nuccore/CH003496.1/
https://www.ncbi.nlm.nih.gov/nuccore/CM000462.1/
https://www.ncbi.nlm.nih.gov/nuccore/CM001609.2/
https://www.ncbi.nlm.nih.gov/nuccore/CM003683.2/
https://www.ncbi.nlm.nih.gov/nuccore/CM009447.1/
https://www.ncbi.nlm.nih.gov/nuccore/CM009872.1/
https://www.ncbi.nlm.nih.gov/nuccore/CM010808.1/
https://www.ncbi.nlm.nih.gov/nuccore/CM021568.2/
https://www.ncbi.nlm.nih.gov/nuccore/CM034951.1/
https://www.ncbi.nlm.nih.gov/nuccore/CM035659.1/
https://www.ncbi.nlm.nih.gov/nuccore/CM039011.1/
https://www.ncbi.nlm.nih.gov/nuccore/CM045155.1/
https://www.ncbi.nlm.nih.gov/nuccore/CM073952.1/
https://www.ncbi.nlm.nih.gov/nuccore/CM074009.1/
https://www.ncbi.nlm.nih.gov/nuccore/CP139523.1/
https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11/
https://www.ncbi.nlm.nih.gov/nuccore/NC_060925.1/
https://zenodo.org/records/6577997
https://www.ebi.ac.uk/ena/browser/view/SAMEA14382676
https://www.ebi.ac.uk/ena/browser/view/SAMEA14382677
https://www.ebi.ac.uk/ena/browser/view/SAMEA14382411
https://www.ebi.ac.uk/ena/browser/view/SAMEA14382412
https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

Theorem 8. co-stackU(S) completely and disjointly cover co-occurring substrings of S , i.e.,

co-substrU(S) =
⊔

(S ,T,k∗,d∗)∈co-stackU (S)

{substrings expressed by (S ,T, k∗, d∗)}.

Also,
|co-stackU(S)| ≤ 1 + 2 · (the number of locally-maximal repeat regions in S)

Proof. co-stackU(S) completely and disjointly covers co-substrU(S): any k-mer occurring in U co-occurs within
an exactly one string S in U ∪ RU by Theorem 1. The k-mer extends to a unique superstring that maximally k-co-
occurs within S because appearing in two distinct maximally k-co-occurring substrings imply multi-occurrence of the
k-mer in S . The superstring is identified by a unique maximal co-occurrence stack by Proposition 4. So, the k-mer is
expressed by exactly one maximal co-occurrence stack.

To demonstrate the inequality, first, consider a type-0 stack on a string S , where all identified substrings are S
itself by definition, i.e., extend to ends of S . A single type-0 stack identifies them all by Proposition 4. Hence, just
one type-0 stack identifies them all by Proposition 4.

Next, for a type-1 or type-2 maximal co-occurrence stack (S ,T, k∗, d∗), we show its longest identified substring
always intersects some locally-maximal repeat region of length k∗ by exactly k∗ − 1. Since a proper type-1 stack
identifies every k-co-occurring prefix (or suffix) of S whose region intersects the same locally-maximal repeat region
by k − 1, by Proposition 4, the largest order k∗ works too. Then, k∗ should be the length of the locally-maximal
repeat region; otherwise, we can find a (k∗ + 1)-co-occurring prefix (or suffix) of S , denoted T ′, intersecting the
locally-maximal repeat region by k∗, so (S ,T ′, k∗ + 1, d∗ + 1) is a proper co-occurrence stack, resulting in the original
stack non-maximal. Similarly, a type-2 stack identifies substrings that intersect two locally-maximal repeat regions
on both sides, so checking the length of the smaller region be k∗ permits a similar deduction.

Note that each left and right side of a locally-maximal repeat region of length l intersect the region of at most
one maximally l-co-occurring substring by exactly l − 1. Since such maximal intersection happens with every type-1
or type-2 maximal co-occurrence stack at least once, the number of such stacks is bounded by twice the number of
locally-maximal repeat regions, thus is 2(the number of outgoing edges of vS in EU) in total.

Lastly, enumerating co-stackU(S) is efficient. A type-0 stack is uniquely defined for a string S where the depth
d∗ is one more than the length of the largest locally-maximal repeat region. Each side of a locally-maximal repeat
region maximally intersects the largest substring identified in at most one stack, either type-1 or type-2. Without loss
of generality, a type-1 stack is defined on the left side of a locally-maximal repeat region if it is the largest one among
those found on its left, while a type-2 stack pairs with the nearest locally-maximal repeat region of at least the same
size on its left. These properties can be verified by a single scan of the locally-maximal repeat regions of a string.

C. Prokrustean graph construction

C.1. The proof of suffix trees to Prokrustean graph
Theorem 9. Consider a maximal repeat R ∈ RU and letters σl, σr ∈ Σ. The following three cases define a bijective
correspondence between selected edges in the suffix trees (TU and Trev(U)) and the edges (EU) of the Prokrustean
graph ofU.

Case 9.1 (Prefix Condition) The following three statements are equivalent.

(a) Rσr is left-maximal.

(b) There exists a string T of form Rσr∗ inU ∪ RU such that an edge from node(R) to node(T) is in TU .

(c) There exists an edge eT,i, j in EU satisfying str(T, i, j + 1) = Rσr and i = 1.

Case 9.2 (Suffix Condition) The following three statements are equivalent.

(a) σlR is right-maximal.

(b) There exists a string T of form ∗σlR inU ∪ RU such that an edge from node(rev(R)) to node(rev(T))
is in Trev(U).

24

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

(c) There exists an edge eT,i, j ∈ EU satisfying str(T, i − 1, j) = σlR and j = |T |.

Case 9.3 (Interior Condition) The following three statements are equivalent.

(a) Rσr is left-non-maximal with σl and σrR is right-non-maximal with σr.

(b) There exist strings S l and S r, and T := S lRS r of form ∗σlRσr∗ in U ∪ RU such that an edge from
node(R) to node(RS r) is in TU and an edge from node(rev(R)) to node(rev(S lR)) is in Trev(U).

(c) There exists an edge eT,i, j in EU satisfying str(T, i − 1, j + 1) = σlRσr.

Proof. Case 9.1 (a) =⇒ (b): We proceed arguing in the contrapositive. Assume T := RS r < U ∪ RU which is
non-maximal on either left or right. Observe that the definition of the construction of the suffix tree TU implies
|occU(Rσr)| = |occU(RS r)| and RS r being right-maximal. Since RS r is right-maximal, RS r must be left-non-maximal
with some σ ∈ Σ, so |occU(σRS r)| = |occU(RS r)|. Since |occU(Rσr)| = |occU(RS r)|, |occU(σRS r)| = |occU(RS r)| =
|occU(Rσr)| meaning Rσr is left-non-maximal with some σ.

Case 9.1 (b) =⇒ (c): Since R,T ∈ U ∪ RU holds and T [|R| + 1] = σr, showing (T, 1, |R|) is a locally-maximal
repeat region is enough to show eT,1,|R| satisfies the statement. Let T := RS r. First, the region’s string R occurs
more than RS r because R is a maximal repeat. Next, as (RS r, 1, |R|) is a prefix region, every extension includes the
smallest extension (RS r, 1, |R| + 1), so the string of any of its extensions occurs at least |occU(Rσr)|, but TU implies
|occU(Rσr)| = |occU(RS r)|, so the extensions co-occur within RS r. Hence, (T, 1, |R|) is a locally-maximal repeat
region and str(T, 1, |R| + 1) = Rσr.

Case 9.1 (c) =⇒ (a): Since T, 1, |R| is a locally-maximal repeat region, its extension captures Rσr, so |occU(Rσr)| =
|occU(T)| holds. Also, T ∈ U ∪ RU implies T is left- and right-maximal, so |occU(σT)| < |occU(T)| holds for any
σ ∈ Σ. Therefore, |occU(σRσr)| < |occU(Rσr)| for any σ ∈ Σ, hence Rσr is left-maximal.

**Case 9.2 is symmetrically argued in line with Case 9.1.
Case 9.3 (a) =⇒ (b): The non-maximalities in (a) imply |occU(σlR)| = |occU(Rσr)| = |occU(σlRσr)|. Also,

by co-occurrences implied by two suffix trees, |occU(S lR)| = |occU(σlR)| and |occU(RS r)| = |occU(Rσr)| hold.
Hence, |occU(S lR)| = |occU(S lRS R)| = |occU(RS R)| is satisfied, meaning S lRS R is left- and right-maximal that
T := S lRS R ∈ U ∪ RU .

Case 9.3 (b) =⇒ (c): The maximal repeat R occurs more than S lRS r and the string of any extension occurs at least
|occU(σlR)| or |occU(Rσr)| times, while |occU(σlS)| = |occU(S lS S R)| = |occU(S S R)| is implied by the two suffix
trees. Hence, (T, i, j) := (S lRS r, |S l| + 1, |S l| + |R|) is a locally-maximal repeat region such that str(T, i − 1, j + 1) =
σlRσr.

Case 9.3 (c) =⇒ (a): This statement is trivial because the locally-maximal repeat region implies |occU(σlR)| =
|occU(S lRS R)| = |occU(Rσr)|, hence |occU(σlR)| = |occU(Rσr)| = |occU(σlRσr)| holds, which implies non-maximalities
on both sides of R.

C.2. The proof of projected occurrences to Prokrustean graph
Below proposition is useful to prove the main theorem.

Proposition 5. For every maximal repeat R ∈ RU , occU(R)1 is in Pro jOccU .

Proof. If a maximal repeat is a whole sequence in U, it is trivially in Pro jOccU . So, assume every occurrence of R
inU is extendable by some letters.

Let (S , i, j) := occU(R)1, and define σl := S [i − 1] and/or σr := S [j + 1]. One of σl or σr might not be defined,
so consider (S , i − 1, j) = occU(σlR)1 without loss of generality.

If σlR is right-maximal, then occU(R)1 trivially belongs to Pro jOccU by 2-(2) of Definition 10. Otherwise, σlR
is right-non-maximal with some σr, so (S , i, j + 1) = occU(Rσr)1 must hold.

Consequently, whether Rσr is left-maximal or left-non-maximal with σl, occU(R)1 ∈ Pro jOccU holds because
conditions 2-(1) or 2-(3) of Definition 10 apply, respectively. The symmetric argument assuming (S , i, j + 1) =
occU(Rσr)1 confirms the same results.

Theorem 10. eT,p,q ∈ EU , i.e., (T, p, q) is a locally-maximal repeat region in some T ∈ U ∪ RU if and only if there
exist (S , i, j), (S , i′, j′) ∈ Pro jOccU satisfying:

25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

• (S , i, j) ⊊ (S , i′, j′), and

• the relative occurrence of (S , i, j) within (S , i′, j′) is (T, p, q), and

• no region (S , x, y) ∈ Pro jOccU satisfies (S , i, j) ⊊ (S , x, y) ⊊ (S , i′, j′).

Proof. The forward direction is composed of three parts. We show there exists some (S , i, j) ∈ Pro jOccU correspond-
ing to (T, p, q) that is specified by Theorem 9, and then show there exists some (S , i′, j′) ∈ Pro jOccU such that the
relative occurrence of (S , i, j) in the region is (T, p, q). Lastly, the third statement is shown.

First, there exists an occurrence (S , i, j) ∈ Pro jOccU that captures the same string and shares some left or right
extension with (T, p, q). (T, p, q) must be satisfying exactly one of three items labeled (c) in Case 9.1, Case 9.2, and
Case 9.3 conditioned by extensions of (T, p, q). Then the corresponding item of (a) describes a maximality condition
around R that is equally described in 2-(1), 2-(2), and 2-(3) in Definition 10 to derive elements in Pro jOccU . So,
there is always some (S , i, j) in Pro jOccU chosen for (T, p, q) by the agreement in letter extensions, i.e., either
S [i − 1] = T [p − 1] or S [j + 1] = T [q + 1] or both holds.

Next, there exists some (S , i′, j′) such that the relative occurrence of (S , i, j) within (S , i′, j′) is (T, p, q). The
construction of (S , i, j) showed either S [i− 1] = T [p− 1] or S [j+ 1] = T [q+ 1] holds, so assume S [i− 1] = T [p− 1]
without loss of generality. Since (T, p, q) is a locally-maximal repeat region, str(T, p − 1, q) co-occurs within T and
hence str(S , i − 1, j) co-occurs within T . Therefore, (S , i, j) can be extended to some (S , i′, j′) so that T is captured
and i is at i′ + p − 1 reflecting the position of (T, p, q) within T . Similarly, j = j′ + q − 1 holds, and hence (T, p, q) is
recovered by (str(S , i′, j′), i − i′ + 1, j − j′ + 1).

We need (S , i′, j′) ∈ Pro jOccU to finish showing the second statement. If T is in U, then trivially (S , i′, j′) =
(S , 1, |S |) holds and (S , 1, |S |) ∈ Pro jOccU is applied by item 1. in Definition 10. Otherwise, T is in RU , then (S , i′, j′)
is occU(T)1 because the first occurrence of some subtring co-occurring within T was utilized for identifying (S , i, j).
Proposition 5 confirms that occU(T)1 ∈ Pro jOccU .

Lastly, assume some (S , x, y) in Pro jOccU satisfies (S , i, j) ⊊ (S , x, y) ⊊ (S , i′, j′). Then a maximal repeat
R′(:= str(S , x, y)) exists such that R′ is a superstring of R(:= str(T, p, q)) and T is a superstring of R′. Then R′ could
be captured by extending (T, p, q) and R′ occurs more than T , so (T, p, q) is not a locally-maximal repeat region,
leading to a contradiction.

For the backward direction, assume (T, p, q) is not a locally-maximal repeat region for contradiction. Then some
locally-maximal repeat region (T, p′, q′) must be found by extending (T, p, q) because R := str(T, p, q) occurs more
than T . Then by following the the same steps in the first paragraph utilizing Theorem 9 and Definition 10, (T, p′, q′) is
used to identify an occurrence (S ′′, i′′, j′′) in Pro jOccU that shares some letter extension. So, letting R′ := (T, p′, q′),
a substring of form either σlR′ or R′σr is used to find a first occurrence and the substring co-occurs within T ,
so (S ′′, x′′, y′′) appears within occU(T)1 so that its relative occurrence within occU(T)1 is (T, p′, q′). Therefore,
(S ′′, i′′, j′′) ⊊ occU(T)1. Also, (S , i, j) ⊊ (S ′′, i′′, j′′) because (T, p′, q′) is an extension of (T, p, q) that (S ′′, i′′, j′′)
is an extension of (S , i, j) too. Lastly, occU(T)1 = (S , i′, j′) indeed holds because of (S , i, j) ⊊ (S , i′, j′). That is, if
occU(T)1 is not (S , i′, j′) but some other occurrence of T in S ′′, then the corresponding occurrence of R in Pro jOccU
must be found in S ′′ instead of (S , i, j). Thus, the presence of (S ′′, i′′, j′′) leads to contradiction.

26

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

C.3. The algorithm — projected occurrences to Prokrustean graph

The algorithm below reduces the task of reconstructing the Prokrustean graph from Pro jOccU to a problem
designed for a specific string S ∈ U. For the subset of regions {(S ′, i, j) ∈ Pro jOccU | S ′ = S }, determine their
inclusion relationships to identify the closest related pairs. This is easily parallelized as it processes the intervals for
each S separately. And the running time is linear to the size of the subset of regions per each S , hence |Pro jOccU | in
total.

An important assumption in the algorithm is that for any region (S , i, j) ∈ Pro jOccU , within the subset {(S ′, i, j) ∈
Pro jOccU | S ′ = S }, there are at most two regions (S , i′, j′) such that (S , i, j) ⊊ (S , i′, j′) and no (S , x, y) exists where
(S , i, j) ⊊ (S , x, y) ⊊ (S , i′, j′). It is straightforward to check the property.

Algorithm 5: Find recursive inclusions of intervals

1 Input: A set of intervals I pre-ordered by first and then second element.
2 Output: Interval pairs such that each (I, I′) satisfies I ⊊ I′ and no other interval I′′ satisfies I ⊊ I′′ ⊊ I′. [1]
3 Set Ints := Ints[pos] = intervals in I starting from pos. (accessed by Ints[pos][idx]).
4 Set IdxMap := IdxMap[pos] = 0 for each starting position pos in Ints.
5 Set PostMap := PostMap[pos] = nextPos per each adjacent positions (pos,nextPos) in Ints, and nextPos is

NULL if pos is rightmost.
6 Set curPos = The rightmost position of Ints.
7 Set curIdx = 0
8 Set Pairs = ∅
9 while curIdx , NULL do

10 if curIdx > 0 then
11 // Adjacent intervals sharing start positions completely satisfy the conditions.

Pairs =Pairs∪{(Ints[curPos][curIdx − 1], Ints[curPos][curIdx])}
12 Set postPos = PostMap[curPos]
13 while postPos , NULL do
14 postIdx= IdxMap[postPos] if Ints[postPos][postIdx] 1 Ints[curPos][curIdx] then
15 break while
16 while Ints[postPos][postIdx + 1] ⊂ Ints[curPos][curIdx] do
17 postIdx += 1

18 Pairs =Pairs∪{(Ints[postPos][postIdx], Ints[curPos][curIdx])}
19 if postIdx is NOT last in Ints[postPos] then
20 IdxMap[postPos] = postIdx + 1

21 else
22 IdxMap[postPos] =NULL
23 PostMap[curPos] = PostMap[postPos]

24 postPos = PostMap[curPos]

25 if curIdx is NOT last in Ints[curPos] then
26 curIdx += 1

27 else if curPos is not first in Ints then
28 curPos= previous position of curPos in Ints
29 curIdx= IdxMap[curPos]

30 else
31 curIdx= NULL

32 Return Pairs

27

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2023.11.21.568151doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.21.568151
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Problem Formulation
	Basic Notations
	The proxy problem: how to compute substring co-occurrence?

	Prokrustean graph: A hierarchy of maximal repeats
	Prokrustean Graph

	Framework: Computing k-mer quantities for all k sizes
	Accessing co-occurring k-mers for a single k size
	Accessing co-occurring k-mers for a range of k
	Application: Counting distinct k-mers of all k sizes
	Application: Computing Bray-Curtis dissimilarities of all k sizes
	Application: Counting maximal unitigs of all k sizes
	Application: Computing vertex degrees of overlap graph

	Experiments and Results
	Prokrustean graph construction with kmin
	Result: Counting distinct k-mers for k=kmin,…,kmax
	Result: Computing Bray-Curtis dissimilarities for kmin,…,kmax
	Result: Counting maximal unitigs for kmin,…,kmax
	Result: Counting vertex degrees of overlap graph of threshold kmin

	Prokrustean graph construction
	Extracting Prokrustean graph from two suffix trees
	Vertex set
	Edge set

	Extracting Prokrustean graph from Burrows-Wheeler transform
	Implementation

	Discussion
	Datasets
	Maximal co-occurrence stacks
	The proof of co-stackU(S) completely covering co-substrU(S) and its bound.

	Prokrustean graph construction
	The proof of suffix trees to Prokrustean graph
	The proof of projected occurrences to Prokrustean graph
	The algorithm — projected occurrences to Prokrustean graph

