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Summary Statement - For every 1% increase in step length variability, there is an 0.7% 12 

increase in the metabolic cost of walking. 13 

 14 

Abstract - Older adults and neurological populations tend to walk with slower speeds, more gait 15 

variability, and a higher metabolic cost. This higher metabolic cost could be related to their 16 

increased gait variability, but this relationship is still unclear. The purpose of this study was to 17 

determine how increased step length variability affects the metabolic cost of waking. Eighteen 18 

healthy young adults completed a set of 5-minute trials of treadmill walking at 1.20 m/s while we 19 

manipulated their step length variability. Illuminated rectangles were projected onto the surface 20 

of a treadmill to cue step length variabilities of 0, 5 and 10% (coefficient of variation). Actual 21 

step lengths and their variability were tracked with reflective markers on the feet, while 22 

metabolic cost was measured using indirect calorimetry. Changes in metabolic cost across 23 

habitual walking (no projections) and the three variability conditions were analyzed using a 24 

linear mixed effects model. Metabolic power was largest in the 10% condition (4.30 ± 0.23 25 

W/kg) compared to 0% (4.16 ± 0.18 W/kg) and habitual (3.98 ± 0.25 W/kg). The participant’s 26 

actual step length variability did not match projected conditions for 0% (3.10%) and 10% 27 

(7.03%). For every 1% increase in step length variability, there is an 0.7% increase in metabolic 28 

cost. Our results demonstrate an association between the metabolic cost of walking and gait step 29 

length variability. This suggests that increased gait variability contributes to a portion of the 30 

increased cost of walking seen in older adults and neurological populations.  31 
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INTRODUCTION: 32 

With age and increased neurological impairment, people walk slower (Bohannon, 1997; 33 

Steffen et al., 2002), with shorter steps (Osoba et al., 2019), greater gait variability (Owings & 34 

Grabiner, 2004) and increased metabolic energy demands (Christiansen et al., 2009; Martin et 35 

al., 1992; Zamparo et al., 1995). Increased metabolic cost of walking has been mentioned as a 36 

potential risk factor for reduced gait speed and mobility in older individuals (Schrack et al., 37 

2012). Reduced gait speed is associated with mortality (Newman et al., 2006; Studenski et al., 38 

2011), cardiovascular disease, and other adverse effects (Abellan van Kan et al., 2009; Szanton 39 

et al., 2021). As outlined by Boyer et al., (2023) “… the significant societal, economic, and 40 

personal burdens associated with mobility limitations highlight the importance of understanding 41 

the mechanisms for increased metabolic cost of walking…”. While the association between 42 

reduced gait speed and increased metabolic cost is well studied (but not yet fully understood; 43 

Boyer et al., 2023), less is known about the potential association between other gait changes, 44 

such as increased gait variability, and the metabolic cost of walking.  45 

Increasing stride frequency from habitual (+15 strides / minute) increases metabolic cost 46 

by approximately 19% during walking (Holt et al., 1991). As step frequency increases, there is a 47 

greater cost of moving the legs (Doke et al., 2005). Decreasing stride frequency from habitual (–48 

15 strides / minute) increases metabolic cost by almost 30% (Holt et al., 1991). This is likely due 49 

to the increased metabolic cost of redirecting the center of mass between steps (Donelan et al., 50 

2002). Indeed, people habitually self-select a step frequency which minimizes metabolic cost 51 

(Holt et al., 1995).  52 

However, people do not walk with consistent step lengths in daily life because walking 53 

often occurs in short bouts (Seethapathi & Srinivasan, 2015), at variable speeds, and not on level 54 

ground (Kowalsky et al., 2021; Voloshina et al., 2013). Varying step length can also be helpful 55 

when encountering obstacles (Patla et al., 1991) or maintaining stability (Young & Dingwell, 56 

2012). Even for a long walking bout, at a constant speed, on level ground, with one’s optimal 57 

average step length, there will be small variabilities in step length around this average - a mix of 58 

steps that are both shorter and longer than optimal (Owings & Grabiner, 2004), due to intrinsic 59 

sensory and neuromotor noise (Dean et al., 2007; Dingwell et al., 2017). Added variability can 60 

be expected to be more metabolically costly (O’Connor et al., 2012), as each step deviates from 61 

optimal step parameters (Holt et al., 1995).  62 
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Few studies have tried to quantify the impact of step length variability on metabolic cost 63 

(O’Connor et al., 2012; Rock et al., 2018). O’Connor et al. (2012) used virtual visual flow field 64 

perturbations to increase gait variability and evaluate metabolic cost. At a constant speed of 1.25 65 

m/s, high frequency medio-lateral rotations of the virtual visual flow field induced the largest 66 

increase in metabolic cost (5.9%). Participants walked with increased step length variability in 67 

this condition, but the metabolic increase was most strongly coupled with increased step width 68 

variability. More recently, Rock et al. (2018) evaluated metabolic cost of transport and step 69 

length variability across a range of walking speeds. Although speed had the greatest impact on 70 

metabolic cost, at a constant speed of 1.25 m/s, each 1% increase in step length variability was 71 

also associated with a 5.9% increase in metabolic cost. In these studies, the observed increases in 72 

metabolic cost with increased step length variability could not be separated from changes in step 73 

width variability or walking speed, respectively, so the isolated effects of increased step length 74 

variability on the metabolic cost of walking are still unknown. 75 

 Therefore, we set out to quantify the isolated effects of increased step length variability 76 

on the metabolic cost of walking. We used visual cues to increase step length variability by 77 

projecting illuminated rectangles (stepping stones) on a treadmill progressing at the speed of the 78 

belt (Hollands et al., 1995; Hoogkamer et al., 2015; Roerdink et al., 2009; Van Ooijen et al., 79 

2015). The stepping stones were spaced to the participant’s habitual step length, with increasing 80 

levels of step length variability per condition. By directly targeting step length variability, using 81 

projected stepping stones, we were able to evaluate the metabolic cost of walking with increased 82 

step length variability independent from other gait changes that may arise when using 83 

perturbations that indirectly affect step length variability. We hypothesized that increases in step 84 

length variability would increase the metabolic cost of walking.  85 

 86 

MATERIALS AND METHODS:   87 

Participants: 88 

Eighteen healthy young adults (7F; 24.4 ± 3.7 years; 171.2 ± 17.2 cm; 70.5 ± 13.3 kg) 89 

completed this study. Eligible participants were between the ages of 18 and 45 years old, had not 90 

experienced lower extremity injuries or surgery within the past six months, and were free of any 91 

existing orthopedic, cardiovascular or neuromuscular conditions. Written informed consent was 92 
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obtained from each participant prior to the study. All procedures were approved by the 93 

Institutional Review Board at the University of Massachusetts Amherst (#3002). 94 

Procedures:  95 

We provided each participant with a pair of standardized shoes in their size (Speed 96 

Sutamina, PUMA SE, Herzogenaurach, Germany). We placed retroreflective markers on each 97 

foot at the fifth metatarsal head and calcaneus, and a four-marker cluster on the sacrum.  98 

Participants first walked at a speed of 1.20 m/s (Das Gupta et al., 2019) for five minutes 99 

to familiarize themselves with the dual-belt treadmill (Bertec, Columbus, OH, USA) and the 100 

indirect calorimetry mouthpiece. Next, they walked for three minutes at 1.20 m/s for which we 101 

evaluated habitual step length during the final 30 seconds. An eight-camera Miqus system 102 

(Qualisys, Gothenburg, Sweden) recorded kinematic data at 100 Hz. We used kinematic data 103 

from the left and right calcaneus to determine habitual step length using a custom Matlab script 104 

(The MathWorks, Natick, MA, USA). Step length for each leg was calculated as the distance 105 

between the anterior and posterior positions of the ipsilateral and contralateral calcaneus 106 

markers, respectively, during the maximum anterior position of the calcaneus marker for each 107 

step (Desailly et al., 2009). Mean step length and standard deviation were used to determine the 108 

coefficient of variation, i.e., the mean step length divided by the standard deviation for each foot, 109 

before averaging across feet.  110 

Experimental conditions were: no projections (NP), 0%, 5% and 10% variability. 111 

Throughout we consider step length variability in terms of the coefficient of variation of the step 112 

length during a trial. At 0% variability, we projected stones with no variability in step lengths, 113 

whereas for the 10% condition we projected stones with 10% variability in step lengths across 114 

the entire trial. In a block randomized order, participants completed all four experimental 115 

conditions, before completing them again in reverse, for a total of eight trials (e.g., NP, 10%, 0%, 116 

5%, 5%, 0%, 10%, NP). 117 

The projected stepping stones were generated using a custom Matlab script. A vector of 118 

step lengths for the entire trial was created based on the participant’s habitual step length, 119 

treadmill speed (1.20 m/s), and trial duration (5 minutes). A vector of corresponding step length 120 

perturbations was created using the randn function in Matlab, which generates a list of normally 121 

distributed random numbers with a mean of 0 and variance of 1. This step length perturbation 122 

vector was scaled by the desired step length variability (0, 5 or 10% coefficient of variation) and 123 
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the habitual step length. A larger coefficient of variation increases the frequency of perturbed 124 

steps relative to unperturbed, and of larger perturbations relative to smaller. To ensure that 125 

differences in step length were perceivable by the participants, we discretized the perturbations 126 

into bins that were 5% multiples of the participant’s habitual step length. We limited 127 

perturbations to a maximum of 15% in either direction, to prevent the possibility of unrealistic 128 

perturbations at the tails of the normal distribution. Perturbations that fell within half of the 129 

discretization interval above or below a perturbation target were reassigned to the target value 130 

and applied. Thus, participants encountered distances that matched the habitual step length most 131 

of the time, with less frequent longer and shorter perturbed steps (Fig. 1A).  132 

We used an expired-gas analysis system (True One 2400, Parvo Medics, Salt Lake City, 133 

UT, USA) to measure metabolic cost across the four experimental walking conditions. We added 134 

a 3D printed extension to the three-way valve mouthpiece (Hans Rudolf Mouthpiece, Shawnee, 135 

KS, USA) that pitched forward (5 cm) and up (5 cm) at a 45-degree angle (Fig. 1B). The 136 

participants were then able to see the approaching stepping stones. Each trial was five minutes 137 

long and data across the last two minutes of each trial was used to evaluate metabolic power. We 138 

calculated metabolic power (W/kg) using oxygen uptake, carbon-dioxide production, and the 139 

Péronnet and Massicotte equation (Kipp et al., 2018; Péronnet & Massicotte, 1991). Metabolic 140 

power was averaged across the two trials for each condition (Barrons et al., 2024).  141 

Statistical Analysis: 142 

 We used linear mixed effects models to evaluate changes in metabolic cost with 143 

increasing step length variability. We used the actual step length variability that participants 144 

walked with for each condition, rather than the projected step length variability for that 145 

condition. All statistical analysis was performed in R studio (4.2.2) with a linear mixed effects 146 

regression (Wilkinson et al., 2023) using lme4 (1.1 - 32) and sjstats (0.18.2) packages. A paired 147 

t-test was used to compare metabolic power and step length variabilities between NP and 0% 148 

conditions. A linear model was used to investigate the impact of step length variability on 149 

metabolic power during walking. Random intercepts were adjusted for each participant using 150 

equation 1 where COV is the coefficient of variation of the step lengths during a trial.  151 

 152 

Eqn 1: Metabolic Power ~ COV + (1 | Participant) 153 

 154 
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Metabolic power was then evaluated using the mixed effect model with a random 155 

intercept for each participant and an independent slope corresponding to the participant specific 156 

metabolic power response using equation 2.  157 

 158 

Eqn 2: Metabolic Power ~ COV + (COV | Participant) 159 

 160 

We used a likelihood ratio to test for significance between a model excluding step length 161 

variability and an alternative model that did not. Chi-squared (χ2) and significance values are 162 

reported. For all statistical tests, significance was set at an alpha level of 0.05. 163 

 164 

RESULTS:  165 

Metabolic power and step length variability were different between NP and 0% 166 

conditions (3.98 ± 0.25 vs. 4.16 ± 0.18 W/kg; p = 0.0002 and 2.42 ± 0.55% vs. 3.10 ± 0.58%; p = 167 

0.001, respectively; Figure 2). Thus, when pooling the true step length variability across 168 

conditions, we excluded the NP condition (i.e., we included only data from the 0%, 5% and 10% 169 

step length variability trials in our model). Overall, metabolic power increased with increasing 170 

step length variability (χ2 = 9.41; p = 0.002; Fig. 3). For every 1% unit increase in step length 171 

variability, there was an increase in metabolic power of 0.03 ± 0.01 W/kg, or 0.7%.  172 

 173 

DISCUSSION:  174 

In this study, we quantified the isolated effects of increased step length variability on the 175 

metabolic cost of walking. In line with our hypothesis, increases in step length variability 176 

resulted in increases in metabolic cost. Additionally, we observed a difference in metabolic cost 177 

between walking without projections and with projections with no variability. Our results are 178 

similar, but of smaller magnitude than observations from studies that indirectly increased step 179 

length variability (O’Connor et al., 2012; Rock et al., 2018).  180 

Our findings suggest a modest contribution of step length variability to the metabolic cost 181 

of walking (0.7% increase in metabolic power per 1% increase in step length variability; Fig. 3) 182 

at a common walking speed of 1.20 m/s. At this speed, every percent change in step length 183 

variability increases metabolic cost by 0.03 W/kg. This increase is almost five times smaller than 184 

the 0.14 W/kg increase in metabolic cost, for every 1% increase in variability, modeled by Rock 185 
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et al (2018). This difference is likely related to our direct manipulation of step length variability 186 

at a single, constant speed, eliminating the metabolic penalty of walking slower than preferred 187 

(Ralston, 1958). Additionally, the work of O’Connor et al. (2012), reported greater step width 188 

variability (+65%), mean step width (+19%) and an increased metabolic cost (5.9%) while 189 

walking with virtual visual flow perturbations (high frequency medio-lateral rotations). This 190 

suggests that step width variability has a larger effect on metabolic cost than step length 191 

variability. Indeed, walking with increased step width comes at a metabolic cost (Donelan et al., 192 

2001).  193 

Two mechanisms can be expected to play a role in elevating the metabolic cost of 194 

walking with increased step length variability. First, adjusting to a closer stepping stone (i.e., 195 

reducing step length), increases the metabolic cost of moving limbs at a higher rate (Doke et al., 196 

2005). Second, an adjustment to a farther stepping stone (i.e., increasing step length) increases 197 

the cost of lifting the center of mass over the point of collision (Donelan et al., 2001). An 198 

additional possible mechanism, that relates to the need to step accurately on each stone, is an 199 

increase in muscle co-contraction, commonly observed with increased accuracy demands 200 

(Gribble et al., 2003). While some of the increased metabolic cost of walking could be attributed 201 

to increased accuracy demands, an additional portion could be related to the cost of consistently 202 

regulating steps across projected stones, degrading the contribution of passive dynamics to 203 

walking (Wezenberg et al., 2011). These additional mechanisms could help explain the 204 

differences in metabolic cost between walking with no projections (habitual) and with 0% step 205 

length variability projections that closely matched habitual gait characteristics (Fig. 2). 206 

 Beyond slower gait with shorter steps and longer double support phases, older adults 207 

have more gait variability and increased metabolic energy demands (Boyer et al., 2023; Schrack 208 

et al., 2012). The larger gait variability in older adults and in those with neurological 209 

impairments could contribute to their increased metabolic cost of walking as compared to young 210 

(e.g., +8%; Martin et al., 1992) or neurologically healthy adults (+17-170%; Compagnat et al., 211 

2020; Jeng et al., 2020; Rooney et al., 2022). At matched speeds, older adults walk with higher 212 

step length variability than younger adults (Almarwani et al., 2016; Kang & Dingwell, 2008), 213 

more so if the older adult has mobility impairments, with a reported  2.7% increase in step length 214 

variability (James et al., 2020). Our data suggest that a 2.7% increase in step length variability 215 

would increase the metabolic cost of walking by 1.7%. At their preferred speeds, adults with 216 
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neurological impairments have been reported to walk with step length variabilities that are 217 

approximately 2.5%, 3.0%, and 6.0% larger than neurologically healthy controls, for Parkinson's 218 

disease, Multiple Sclerosis, and Cerebellar Ataxia, respectively (Buckley et al., 2018; Noh et al., 219 

2020; Roemmich et al., 2012; Socie et al., 2013). Our data suggests that these increases in step 220 

length variability will increase the metabolic cost of walking by 1.8, 2.1 and 4.2%, respectively. 221 

The metabolic cost of walking with increased step length variability only contributes a small part 222 

to the total increased metabolic cost (17– 170%) of walking observed across these populations 223 

(Compagnat et al., 2020; Jeng et al., 2020; Martin et al., 1992; Rooney et al., 2022). 224 

Limitations and future directions: 225 

 To ensure that the step length variations were perceivable to participants, we binned step 226 

lengths into 5% multiples, not exceeding 15% of their habitual step length. Normal walking does 227 

not contain such discretized step length variability. Although the perturbed conditions do not 228 

perfectly reflect real-world gait variability, they provide an upper limit for the increases in 229 

metabolic cost in young healthy individuals. Most participants were unable to exactly match the 230 

discretized step length variabilities that were projected; while the use of 5% bins is different than 231 

real-world gait variability, participants still had trouble maintaining accuracy across the stepping 232 

stones without additional feedback. We were limited in identifying how participants altered their 233 

step length. In future research it could be insightful to evaluate whether participants took larger 234 

or shorter steps when aiming for the stone targets, as well as the frequency and magnitude of 235 

their errors. This would not change the relationship between step length variability and metabolic 236 

cost, but it could help in relating task performance to step length variability within a condition. 237 

While few participants were able to walk with 5 and 10% step length variability, 0% step length 238 

variability was unachievable – the lowest value for a single participant was 2%. This is in line 239 

with observations that walking inherently contains some variability in step length (Collins & 240 

Kuo, 2013) which might also be distinct between participants.   241 

 Participants did not receive feedback on how well they were performing during a trial. 242 

Feedback could have improved task performance (Shull et al., 2014) to better align with our 243 

variability conditions. To investigate whether co-contraction, to maintain accuracy (Gribble et 244 

al., 2003), contributes to the increased metabolic cost of walking with variable step lengths, 245 

future studies should quantify foot placement accuracy and muscle activity across similar virtual 246 

projections. Finally, to clarify the relationship between variability and gait deficiencies for 247 
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populations already experiencing increased step length variability, further investigations should 248 

be conducted with these populations specifically.  249 

 250 

Conclusion: 251 

Older adults and those with neurological conditions walk with greater step length 252 

variability and increased metabolic cost. In a population of healthy young adults, we found that 253 

metabolic cost increases by approximately 0.7% (0.03 W/kg) for every 1% increase in step 254 

length variability. Although most of our participants were unable to exactly match the projected 255 

conditions, our virtual visual perturbation successfully increased step length variability and 256 

metabolic cost across step variability conditions. The metabolic cost per unit of variability was 257 

smaller than reported in previous work, indicating that step length variability plays a modest, 258 

albeit significant role in the metabolic cost of walking.  259 
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Figures: 

 

 
Figure 1. (A) Diagram of example step length conditions for 0, 5, and 10% variability. Grey 

rectangles are stepping stone targets projected at a participant’s specific habitual step length. 

Black rectangles are the lengthwise deviations of perturbed stones generated randomly from 

discretized bins. (B) Illustration of indirect calorimetry including pitched 45-degree extension 

used to open participant field-of-view. (C) Top-down visual of a participant targeting projected 

stepping stones (purple; moving from right to the left) for 0% variability.  
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Figure 2. Metabolic power (n = 18) was lower for walking without any projected stepping stones 

than for walking over stepping stones projected without any step length variability. Values are 

mean ± s.d., * p < 0.05 
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Figure 3: For every percentage increase in step length variability, there is a 0.03 W/kg (0.7%) 

increase in metabolic power, averaged between conditions and across participants (inset). Linear 

mixed effects models identified linear trends for each subject (n =18; colored lines) across 

conditions.  
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