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Abstract  

Information processing in the brain spans from localised sensorimotor processes to higher-level 
cognition that integrates across multiple regions. Interactions between and within these subsystems 
enable multiscale information processing. Despite this multiscale characteristic, functional brain 
connectivity is often either estimated based on 10-30 distributed modes or parcellations with 100-
1000 localised parcels, both missing across-scale functional interactions. We present Multiscale 
Probabilistic Functional Modes (mPFMs), a new mapping which comprises modes over various 
scales of granularity, thus enabling direct estimation of functional connectivity within- and across-
scales. Crucially, mPFMs emerged from data-driven multilevel Bayesian modelling of large 
functional MRI (fMRI) populations. We demonstrate that mPFMs capture both distributed brain 
modes and their co-existing subcomponents. In addition to validating mPFMs using simulations 
and real data, we show that mPFMs can predict ~900 personalised traits from UK Biobank more 
accurately than current standard techniques. Therefore, mPFMs can offer a paradigm shift in 
functional connectivity modelling and yield enhanced fMRI biomarkers for traits and diseases. 
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1 Introduction 
Within the complex system of 86 billion neurons (1) in the human brain, large ensembles of 
neurons work in synchrony, such that they produce distinct modes of extended, correlated activity 
(2). These functional modes exhibit a spectrum of scales and functionalities, from localised brain 
modes facilitating specialised information processing, such as responses to sensory or motor 
stimuli, to higher-level cognitive modes integrating across multiple regions through long-range 
connections. Functional modes underlie spontaneous brain activity during task-free periods (often 
referred to as resting state networks, RSNs), adapt dynamically during cognitive tasks, and 
undergo permanent changes in neurodegenerative diseases (3–8). Growing evidence, especially 
from new datasets with thousands of individuals, has highlighted that spatiotemporal 
characteristics of functional modes vary systematically across individuals, providing biomarkers 
for traits and disease, akin to a diagnostic assay for the brain (9–14). In this paper, we introduce a 
novel representation, Multiscale Probabilistic Functional Modes (mPFMs), which, unlike the 
existing single-scale modes, encapsulates an ensemble of modes across multiple scales. mPFMs 
have the potential to provide a paradigm shift in how functional connectivity has been modelled 
to date, by offering a new basis to gain insights into spatiotemporal connectivity within and across 
diverse processing scales, and providing more sensitive biomarkers from functional neuroimaging. 

Functional MRI (fMRI), with a spatial resolution of ~2mm and a temporal resolution of ~1s, 
provides a suitable spatiotemporal resolution to characterise functional modes non-invasively. 
This has largely been done using two distinct approaches: a) high-dimensional (highD) 
decomposition of fMRI data into functional parcellations with 100-1000 modes (i.e., parcels), 
where each mode is typically localised to a single brain region (15–17); b) low dimensional (lowD) 
decomposition of fMRI data into ~20-30 modes (18, 19) - the conventional RSNs - each distributed 
across multiple distant brain regions, and often with some spatial overlap between the modes. The 
latter is often carried out using spatial Independent Component Analysis (ICA) (20), or lowD 
parcellations (21). Each of these two approaches offer distinct benefits. On the one hand, fine-
grained, highD parcellations capture local details in the brain’s organisation, especially details that 
have proved useful for cross-individual variability modelling, and prediction of traits and disease 
(22, 23). On the other hand, lowD large-scale modes capture the more global functional 
configuration of the brain. Distant brain regions with intrinsic long-range connections are grouped 
into biologically meaningful neural entities such as language and attention networks, allowing for 
easier interpretation and putative links to cognitive functions (2, 21, 24). Additionally, lower data 
dimensionality makes subsequent statistical analyses more manageable. Therefore, distributed vs 
localised modes each offer distinct benefits and limitations for capturing global vs local functional 
architecture of the brain. Crucially, however, neither of these approaches allow for direct 
modelling of inherent interactions across multiple scales of information processing in the brain. 

In this context, we report the finding of mPFMs, which can bridge this gap by providing a unified 
representation that encompasses modes across multiple scales. mPFMs were identified through 
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high dimensional decomposition of resting state fMRI using the sPROFUMO framework (25, 26). 
sPROFUMO defines a Bayesian hierarchy with two levels of group and individuals across big data 
populations, where group priors are iteratively used for top-down regularisation of individuals, 
and evidence across individuals is accumulated and fed back to the group. Two key distinguishing 
aspects of the model are that: 1) sPROFUMO is subject-specific, i.e., inferring the modes for 
populations and individuals simultaneously; 2) unlike ICA or parcellation-based techniques, 
sPROFUMO does not impose strong constraints on spatial or temporal independence between the 
modes, thus yielding modes that are more flexibly interacting, spatially and temporally (25, 26).  

We report that this added flexibility in modelling population variations, and in spatiotemporal 
connectivity between the modes, resulted in the discovery of mPFMs (Figure 1), which preserve 
conventional large-scale modes, and add new modes with different scales of granularity to the 
ensemble. mPFMs can be considered an alternative to conventional (“single scale”) resting state 
networks (RSNs). We report that: a) mPFMs emerge to explain the existence of multiple distinct 
time-courses within each large-scale mode, thus capturing voxel-to-voxel variability of temporal 
dynamics that cannot be captured by these distributed modes alone; b) we validate mPFMs using 
several methods, including synthetic data, reproducibility between Human Connectome Project 
(HCP) and UK Biobank (UKB) data, and link to HCP’s Multimodal Parcellation (27); c) we further 
show the added benefit of cross-scale interactions of mPFMs, compared with within-scale 
interactions, for capturing cross-individual variability and predicting personalised traits; d) finally, 
we show that, compared with two commonly used techniques, spatial ICA modes and parcellations 
from the Schaefer Atlas (16), mPFMs (of matched high dimensionality) yield more accurate 
prediction of a wide range of imaging- and non-imaging-derived phenotypes (IDPs/nIDPs) related 
to cognition, blood and heart health, brain anatomy, and task fMRI in UK Biobank. 

2 Results 
Results presented here are based on applying sPROFUMO to resting-state fMRI (rfMRI) data from 
1003 HCP subjects and separately to 4999 UK Biobank subjects. Results predominantly focus on 
a 25-mode low-dimensional (lowD) PFM decomposition and its comparison to higher-dimensional 
(highD, >100) PFM decompositions, to investigate the functional relevance and the added benefit 
of mPFMs. Table S 1 includes a summary of the terminology used in the paper. 

Figure 1 shows direct comparisons between lowD vs highD Probabilistic Functional Modes 
(PFM) decomposition of rfMRI data in HCP, where a force-directed network layout is used for 
visualisation (28). LowD decomposition (shown in yellow) yielded the conventional distributed-
only resting state networks, hereafter referred to as large-scale RSNs. The highD decomposition 
yielded a mixture of modes across various scales. By spatial pairing of the modes from highD and 
lowD decompositions, we found a one-to-one correspondence between a set of highD modes 
(shown in orange) and large-scale RSNs, indicating that as we increase the dimensionality from 
25 to 150, conventional RSNs are preserved, and new modes are added (shown in blue). This is a 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2024. ; https://doi.org/10.1101/2024.05.28.596120doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.28.596120
http://creativecommons.org/licenses/by/4.0/


 

 

4 

 

novel type of decomposition, and since it includes functional modes across multiple scales, we 
refer to it as Multiscale Probabilistic Functional Modes, mPFMs.  

 

The following subsections aim to unravel the properties of the brain function that give rise to 
mPFMs, validating them based on simulations and real data, as well as demonstrating the utility 
of mPFMs for capturing individualistic traits and prediction of cognition and health. HCP data, 
compared to UK Biobank, provides higher data quality and longer fMRI recordings (1 hour vs ~6 
minutes) per subject. Thus, HCP data was primarily used for untangling the functional relevance 
of mPFMs, and how they yield a more comprehensive summary of brain activity and connectivity. 
UK Biobank, given its larger sample size and more extensive phenotyping, was primarily used for 
evaluating mPFMs’ performance in out-of-sample prediction of phenotypes. Both datasets were 
used for reproducibility analyses.  

Figure	1	Brain	function	mapping	using	Multiscale	Probabilistic	Functional	Modes	(mPFMs):	High-dimensional	(150)	Probabilistic	
Functional	 Modes	 estimated	 from	 resting	 state	 fMRI	 (1003	 HCP	 subjects)	 yield	 a	 new	 representation	 of	 the	 brain’s	 functional	
organisation,	which	consists	of	an	ensemble	of	conventional	distributed-only	(i.e.,	large-scale)	resting	state	networks	(RSNs)	and	newly-
added	modes	across	more	fine-grained	scales.	We	refer	to	this	new	representation	as	Multiscale	Probabilistic	Functional	Modes,	mPFMs.	
When	paired	with	large-scale	RSNs	from	25-mode	decomposition	(yellow),	25	of	the	mPFMs	showed	a	clear	matching,	labelled	as	Primary	
mPFMs	(orange).	Secondary	mPFMs	(blue)	are	the	remaining	125	mPFMs,	that	start	appearing	with	increased	dimensionality.	A	force-
directed	layout	is	used	to	visualise	the	spatial	similarities	(i.e.	correlations)	between	the	modes.	In	this	layout,	each	circle	denotes	a	
functional	mode,	which	is	a	node	in	the	connectivity	matrix,	and	each	line	is	the	connection	between	a	pair	of	modes.	The	size	of	each	
mode	shows	the	average	strength	of	its	connections,	line	widths	denote	the	strength	of	spatial	correlations	(i.e.	overlaps)	between	two	
modes,	and	the	distance	between	modes	denote	how	close	two	modes	are	in	the	connectivity	matrix.	All	connections	within-large-scale	
and	within-multiscale,	as	well	as	paired	connections	between	large-scale	and	multiscale	were	maintained	in	visualisation.	Matrix-based	
visualisation	of	these	results	is	shown	in	Figure	S	1.	
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2.1 The functional relevance of mPFMs 

Focussing on 25 and 150 sPROFUMO RSNs from rfMRI data of 1003 HCP subjects, we 
investigated the properties of the brain function that underlie mPFMs, and their added benefit over 
large-scale (distributed-only) decompositions for capturing multiscale information processing in 
the brain. We use the following terminology in the rest of the paper (see Figure 1): a) large-scale 
RSNs (yellow): 25 modes from low-dimensional decomposition; b) “primary” mPFMs (orange): 
25 distributed modes from high-dimensional PFM decomposition that best-match the low-
dimensional RSNs; c) “secondary” mPFMs (blue): remaining 125 modes from high-dimensional 
PFM decomposition.  

2.1.1 Multiple distinct subcomponents within each conventional RSN 

Each functional mode is typically characterised by two key characteristics: a) the spatial 
topography across brain voxels (i.e., a spatial map), from which one can derive spatial correlations 
or overlaps with other modes; b) a timecourse, and the resulting temporal correlations with other 
modes (i.e., functional connectivity).  

This representation assumes that voxels within a mode are highly correlated with each other, such 
that they can be summarised with one consensus timecourse. In other words, it assumes that 
temporal variability across voxels within each RSN’s spatial map is negligible. To determine 
whether lowD decomposition complies with this assumption, we asked: how many components 
are needed to explain a majority of variance in the voxel-wise activity within each large-scale 
RSN? We used Principal Component Analysis (PCA), which projects data onto new orthogonal 
axes of variation, and allows to identify distinct subcomponents based on the proportion of 
variance explained (details in Materials and Methods). We found that (Figure S 2) the first 
Principal Component could only explain up to 53.2% of variance of temporal variability, with the 
second to fifth Principal Components each explaining ~5-10% of variance.  

Next, we applied follow-up temporal ICA on data of each mode from lowD decomposition, as 
detailed in Materials and Methods. Temporal ICA projects data onto statistically independent axes 
of variations and allow us to identify temporally independent subcomponents more interpretably. 
We restricted the number of subcomponents to 5 per mode; i.e., 5 subcomponents for each of the 
25 modes. Figure 2a shows examples of these subcomponents for the Default Mode and Language 
Networks. We found that these subcomponents were spatially and temporally distinct, with one 
subcomponent being spatiotemporally best-represented by the original large-scale decomposition 
compared with the rest of the subcomponents (Figure S 3). Figure 2b shows the temporal 
correlation of each of the best-matching subcomponents to the large-scale RSN that they originated 
from. Interestingly, we found that even the temporal representation of the best-represented 
subcomponent ranged from Pearson correlation coefficient = 0.22±0.13 to 0.70±0.09 across the 25 
large-scale RSNs (i.e., in many cases there is not a strong temporal match). We replicated this 
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finding using two alternative subcomponent identification techniques, spatial ICA and PCA 
(Figure S 4).  

These results provide evidence that voxel-wise temporal variability within large-scale RSNs 
results in temporally distinct subcomponents that are not well-represented by one timecourse, as 
assigned in conventional RSN decompositions. Instead, multiple subcomponents are needed to 
explain this voxel-wise temporal variability.  

2.1.2 Temporal subcomponents were best represented by mPFMs  

We next tested if the 5×25 subcomponents described in the previous subsection were better 
represented by mPFMs, compared with lowD large-scale RSNs alone. For this purpose, we applied 
a winner-takes-all approach: the timecourse of each of the subcomponents was correlated with: a) 
large-scale RSNs; b) primary mPFMs and c) secondary mPFMs. As shown in Figure 2d, we found 
that only 12 of the 125 subcomponents were temporally best represented by the large-scale RSNs, 
9 of which were significantly higher (Bonferroni-corrected, Table S 2). The remaining 28 and 85 
subcomponents were better represented by the primary and secondary mPFMs, respectively (28/28 
and 83/85 statistically significant). Therefore, the ensemble of multiscale modes in mPFMs can 
capture the temporally distinct subcomponents within conventional large-scale RSNs.  

2.1.3 Secondary mPFMs were due to temporal co-activation periods of multiple 
large-scale RSNs   

Resting state networks in the brain might be spatially and temporally correlated. Therefore, it is 
plausible that the subcomponents that give rise to the secondary mPFMs are either due to spatially 
overlapping regions or due to distinct temporal co-activation periods of multiple large-scale RSNs. 
To test this hypothesis, we compared the original subcomponents (described in the previous 
subsection) with two alternative scenarios: a) temporally-exclusive subcomponents: estimated 
from each large-scale RSN after the timecourses of the other 24 RSNs were regressed out of its 
timecourse; b) spatially-exclusive subcomponents: estimated from each large-scale RSN after 
spatial maps of the other 24 RSNs were regressed out of its spatial map.  Conceptual illustrations 
of these two analyses are included in Figure 2e and g, respectively. 

As shown in Figure 2f, we found that a majority of the temporally-exclusive subcomponents (114 
out of 125, with109 statistically significant, Table S 3) were temporally best represented by the 
lowD decomposition, unlike the original subcomponents that were best represented by mPFMs. 
Conversely, as shown in Figure 2h, the majority of the spatially-exclusive subcomponents (104 
out of 125, 100 statistically significant, Table S 4) were instead best represented by primary and 
secondary mPFMs, i.e., similar to original subcomponents. All results were Bonferroni-corrected 
for multiple comparisons. 
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Figure	 2	 Temporally	 distinct	 subcomponents	 within	 conventional	 large-scale	 RSNs	 give	 rise	 to	 multiscale	 Probabilistic	
Functional	Modes	(mPFMs).	A	low-dimensional	PFM	decomposition	consisting	of	25	modes	was	estimated	from	cortical	rfMRI	data	of	
1003	HCP	subjects,	yielding	conventional	large-scale	RSNs.	Follow-up	 temporal	ICA	was	applied	to	voxel-wise	 timeseries	within	each	
RSN	to	identify	temporally-distinct	subcomponents.	a)	Examples	of	two	conventional	RSNs	and	5	subcomponents	within	each	RSN.	b)	
Temporal	correlation	of	the	best-matching	subcomponents	to	the	large-scale	RSNs	that	they	originated	from.	c)	A	schematic	illustration	
of	subcomponent	estimation.	d)	A	winner-takes-all	approach	was	applied,	and	it	was	found	that	of	the	25x5	subcomponents,	only	12	were	
best	represented	by	the	large-scale	RSNs	that	they	originated	from,	whereas	28	and	85	subcomponents	were	better	representated	by	
primary	 and	 by	 secondary	mPFMs,	 respectively.	 e)	 A	 schematic	 illustration	 of	 estimating	 temporally-exclusive	 subcomponents.	 f)	 A	
winner-takes-all	approach	was	applied,	and	it	was	found	that	of	the	25x5	temporally-exclusive	subcomponents,	114	(i.e.,	the	majority)	
were	best	represented	by	large-scale	RSNs,	4	by	primary	and	7	by	secondary	mPFMs.	g)	A	schematic	illustration	of	estimating	spatially-
exclusive	 subcomponents.	 h)	 A	 winner-takes-all	 approach	 was	 applied,	 and	 it	 was	 found	 that	 of	 the	 25x5	 spatially-exclusive	
subcomponents,	21	were	best	represented	by	 large-scale	RSNs,	27	by	primary	and	77	by	secondary	mPFMs.	These	results	 show	that	
temporally-distinct	 subcomponents	within	 large-scale	RSNs	give	 rise	 to	secondary	PFMs,	 and	 that	periods	of	 temporal	 co-activation	
between	subnetworks	of	large-scale	RSNs	give	rise	to	secondary	PFMs.	
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Put together, these analyses suggest that temporal co-activation periods of two or multiple large-
scale RSNs from lowD decomposition give rise to new mixed-scale RSNs that are temporally 
distinct from the existing RSNs. These emerge as secondary mPFMs. In other words, secondary 
mPFMs are likely due to transient dynamic connectivity between subnetworks of large-scale 
modes, that are eliminated by temporal averaging (across voxels and/or timepoints) in low-
dimensional decompositions.   

2.1.4 Functional connectivity modelling using mPFMs 

Having examined timecourse modelling in mPFMs, we next investigated the functional 
connectivity (i.e., temporal correlations) between the modes to compare large-scale RSNs (lowD, 
d=25) with mPFMs (d=100 and 150). This was done using 4999 subjects in UK Biobank (Figure 
S 5a), and separately using 1003 subjects in HCP (Figure S 5b). Figure S 5-right shows the 
histograms of between-subject consistency of functional connectivity.  We observed that in both 
datasets, between-subject consistency was increased with dimensionality. In HCP, this was 
increased from 0.19±0.09 for d=25 to 0.46±0.06 and 0.59±0.05 for d=100 and 150, respectively. 
In UK Biobank, this was increased from 0.07±0.07 for d=25 to 0.43±0.13 and 0.70±0.12 for d=100 
and 150, respectively. Therefore, mPFMs yielded more consistent functional connectivity values 
than lowD. Interestingly, subject-specific functional connectivity became sparser for mPFMs 
(Figure S 5-left). This sparsity can be understood in light of the previous subcomponent analysis: 
by attempting to merge the time courses of multiple temporally distinct subcomponents, 
conventional RSNs can yield spurious connectivity between large-scale modes, which in reality 
can be due to one or a few of the underlying subcomponents. mPFMs capture the subcomponents 
using secondary modes, thus reducing such spurious connectivity, and yielding sparser subject-
specific functional connectivity. As a result, functional connectivity in mPFMs becomes less 
contaminated by modelling inaccuracies, and more consistent across individuals.  

2.1.5 Cross-scale interactions of mPFMs predict individualistic traits 

mPFMs can directly characterise the spatiotemporal correlations between modes across multiple 
scales of information processing in the brain. We evaluated the utility of temporal and spatial 
correlations between mPFMs for out-of-sample prediction of a range of phenotypes in UK 
Biobank. This was performed using volumetric rfMRI data from 4999 UK Biobank subjects and 
893 phenotypes divided into 6 categories: region-wise cortical area (148 phenotypes) and thickness 
(148), White Matter (WM) tracts’ microstructure (451), task fMRI response to the contrast of 
emotional faces and shapes (1), cognition (68) and blood & heart health (77), see Materials and 
Methods for details of phenotypes, feature extraction and prediction pipeline. Figure 3a&b, show 
functional and spatial connectivity of large-scale RSNs (d=25) and mPFMs (d=100) for an 
example subject. As demonstrated in these panels, cross-subject consistency of both functional 
and spatial connectivity was higher in mPFMs compared with large-scale RSNs. 
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Figure	3	Spatiotemporal	interaction	of	mPFMs	captures	subject	variability	that	is	predictive	of	personalised	traits	in	UK	Biobank.	
a)	 Examples	 of	 temporal	 correlations	 (functional	 connectivity)	 between	 the	 modes,	 which	 were	 used	 as	 one	 set	 of	 features	 for	 trait	
prediction.	Functional	connectivity	matrices	are	shown	separately	for	conventional	large-scale	RSNs	from	lowD	(25	mode)	decomposition	
and	mPFMs	(highD,	100	mode)	decomposition.	Histograms	show	that	between-subject	consistency	of	functional	connectivity	was	notably	
higher	in	mPFMs.	b)	Examples	of	spatial	connectivity	between	the	modes	which	were	used	as	another	set	of	features	for	trait	prediction.	
Spatial	 correlation	matrices	are	 shown	separately	 for	conventional	 large-scale	RSNs	 from	(lowD,	25	mode)	decomposition	and	mPFMs	
(highD,	100	mode)	decomposition.	Histograms	show	that	between-subject	consistency	of	spatial	connectivity	was	notably	higher	in	mPFMs.		
c)	Comparing	the	prediction	performance	of	mPFMs	with	large-scale	RSNs	for	a	range	of	893	phenotypes	across	6	categories.	Spatial	(top)	
and	temporal	(bottom)	correlations	were	used	as	predictors.	d)	Cross-scale	correlations	refer	to	spatial	and	temporal	interactions	between	
primary	and	secondary	mPFMs,	an	aspect	of	the	brain’s	functional	connectivity	that	conventional	distributed-only	RSNs	or	localised-only	
parcellations	 cannot	 capture.	 The	 prediction	 performance	 of	 this	 cross-scale	 spatial	 (top)	 and	 temporal	 (bottom)	 correlations	 were	
compared	to	that	of	within	primary	or	within	secondary	modes,	and	a	clear	improvement	was	observed,	especially	in	spatial	domain.	Density	
scatter	plots	are	used	to	compare	prediction	performances,	and	colours	denote	densities,	as	shown	in	colourbars.	Dotted	black	lines	denote	
equal	performance.	
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First, we compared the prediction performance of mPFMs with large-scale RSNs, shown in Figure 
3c. We found that spatial connectivity of mPFMs, after matching the number of features as 
elaborated in Materials and Methods, significantly outperformed (Bonferroni corrected, Table S 
5) that of large-scale decomposition in predicting all phenotype categories except cognitive scores. 
Similarly, functional connectivity of mPFMs significantly outperformed that of large-scale 
decomposition in predicting region-wise cortical area and task fMRI phenotypes. This shows that 
subject-specific spatiotemporal correlations between mPFMs carry additional information about 
each person’s traits that is otherwise missed in large-scale decomposition. 

Next, we divided spatiotemporal interactions of mPFMs into three subtypes: i) within primary 
mPFMs; ii) within secondary mPFMs, and iii) between primary and secondary mPFMs. Aiming 
to evaluate the added benefit of cross-scale interactions (iii), we compared its prediction 
performance to within-scale interactions (i.e., i&ii). As shown in Figure 3d-top, cross-scale spatial 
connectivity significantly outperformed (Bonferroni corrected, Table S 5) within-secondary for 
region-wise cortical area and thickness, task fMRI and cognitive phenotype categories, and they 
additionally outperformed within-primary for all the phenotype categories, except cognitive 
scores. Cross-scale functional connectivity, as shown in Figure 3d-bottom, performed on par with 
or worse than within-secondary, but significantly outperformed (Bonferroni corrected, Table S 5) 
within-primary for region-wise cortical area, thickness, blood and heart health metrics.  

These results demonstrate that spatial and temporal connectivity of the ensemble of mPFMs yields 
improved biomarkers for individualistic traits in two ways: first, compared with conventional 
large-scale RSNs, and second, subject variability captured in spatiotemporal correlations across 
multiple scales is more phenotypically relevant compared with within a single scale. 

2.2 Validation of mPFMs 

Our results so far have focussed on resolving the origins and functional relevance of mPFMs in 
modelling brain connectivity. Here we set to validate this new decomposition based on 
simulations, its reproducibility between HCP and UK Biobank datasets and similarity to HCP’s 
Multimodal Parcellation.  

2.2.1 Simulations 

Based on real data in Results section, we found evidence that secondary mPFMs likely emerge to 
explain temporally-distinct subcomponents within the conventional large-scale RSNs. In other 
words, we showed that the ensemble of multiscale modes captures the integrated-segregated 
functional brain connectivity. Here we simulated datasets, where distributed and localised modes 
co-existed, such that localised modes were spatial sub-modes of the distributed modes, with 
distinct timecourses. Using these simulations, we tested how well PFM decomposition can recover 
the co-existence of multiscale modes, and compared its performance to spatial ICA, which is the 
current standard technique for RSN modelling. Across 10 simulated datasets, each included 12 
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modes, 6 distributed and 6 localised. Figure 4a shows examples of group-average simulated modes 
in one of the datasets. We compared three elements of the estimated modes with the ground truth: 
group spatial maps, subject spatial maps, and subject time courses, shown in Figure 4 b, c, d, 
respectively. For the group spatial maps, the accuracy of PFM decomposition for distributed and 
localised modes was 0.93 and 0.78, respectively, which was reduced to 0.74 and 0.47 in spatial 
ICA modes. For the subject spatial maps, the accuracy of PFM decomposition for distributed and 
localised modes was 0.87 and 0.70, respectively, which was nearly halved (0.48 and 0.31) in spatial 
ICA modes. For the subject timecourses, the accuracy of PFM decomposition for distributed and 
localised modes was 0.95 and 0.64, respectively, which was reduced to 0.78 and 0.33 in spatial 
ICA modes. Therefore, at both group and subject level, PFMs can recover the simulated multiscale 
modes with overall (average) accuracy of ~0.8 or higher.     

2.2.2 Reproducibility across datasets and data formats 

The next step of validation involved cross-dataset reproducibility tests. We applied sPROFUMO 
separately to three rfMRI datasets and obtained 150 modes per run: 1) 1003 HCP subjects, 
volumetric whole-brain rfMRI (HCP VOL); 2) 1003 HCP subjects, CIFTI cortical rfMRI (HCP 
CORT); 3) 4999 UKB subjects, volumetric whole-brain rfMRI (UKB VOL). All these scenarios 
yielded mPFMs consisting of primary and secondary modes. We paired these mPFMs across runs 
based on spatial correlation of group-level spatial maps.  

Firstly, by comparing HCP VOL and UKB VOL (Figure 4e), we found 100 modes to show very 
good matching (absolute correlation >= 0.7), 40 modes to show good matching (absolute 
correlation between 0.5 and 0.7), and 10 modes to show mediocre matching (absolute correlation 
<= 0.5). Some of the modes in the latter category were due to differences in structured noise across 
datasets (Figure S 6). The top 40 best matching mPFMs across these datasets are shown in Figure 
4g. 

Secondly, by comparing HCP VOL and HCP CORT (Figure 4f), we found 74 modes to show very 
good matching (absolute correlation >= 0.7), 28 modes to show good matching (absolute 
correlation between 0.5 and 0.7), and 48 modes to show mediocre matching (absolute correlation 
<= 0.5). Some of the modes in the latter category were due to structured noise differences across 
data-types, and the remainder were due to inherent differences between volumetric and CIFTI 
fMRI reconstructions. 

2.2.3 Validating secondary mPFMs using HCP’s Multi-Modal Parcellation 

As the next step, we validated mPFMs based on the HCP’s Multimodal Parcellation v1.0 
(HCP_MMP1.0), aiming to validate the secondary mPFMs. We compared mPFMs against the 
HCP_MMP1.0, which includes 360 cortical parcels. This parcellation includes both group-average 
and subject-specific parcels, allowing us to validate secondary mPFMs at both levels. We applied 
sPROFUMO to cortical rfMRI data of 446 HCP subjects (matching the number of subjects in 
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HCP-MMP) and estimated 360 modes. Similar to before, this yielded a multiscale ensemble of 
modes (i.e., mPFMs).  

 

Figure	4	Validation	of	mPFMs	using	synthetic	data	(top	panel)	and	reproducibility	in	real	data	(bottom	panel).	Simulations:	a)	
Examples	of	simulated	group-average	spatial	maps	(one	of	ten	simulated	datasets).	12	modes	were	simulated,	6	mimicking	distributed	
modes,	 6	 mimicking	 localised	 subcomponents	 of	 these	modes.	 Aiming	 to	 validate	 findings	 of	 section	 2.1.1,	we	 observed	 that	 PFM	
decomposition	can	well	capture:	b)	group	spatial	maps;	c)	subject	spatial	maps;	d)	subject	timecourses	of	these	co-existing	modes.	The	
performance	was	~50%	higher	than	that	of	spatial	ICA	at	group	level	and	up	to	100%	higher	at	subject	level.	Real	data	reproducibility:	
PFM	decomposition	with	150	modes	was	compared	at	the	group	level	between:	e)	UK	Biobank	(UKB)	and	HCP	volumetric	fMRI;	each	
HCP	mode	is	shown	on	the	x	axis	and	correlations	to	all	UKB	modes	on	the	y	axis.	Clear	one-to-one	pairing	can	be	seen	for	the	top	100	
modes.	f)	A	similar	comparison	was	conducted	between	HCP	volumetric	and	surface-based	fMRI	data	types.	g)	The	top	40	matching	
mPFMs	between	HCP	and	UKB	(both	volumetric	fMRI)	are	illlustrated.	HCP	modes	are	shown	in	yellow,	UKB	in	blue	and	overlap	in	
green/cyan.		
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We found an interesting group correspondence (Figure S 7a) between secondary mPFMs and 
HCP-MMP, especially 95 parcel-like mPFMs showed a strong correspondence to HCP-MMP 
(dice similarity >=0.5), illustrated in Figure S 7c. 73 mPFMs showed less than 0.2 dice similarity 
to any HCP-MMP parcels; these included conventional low-dimensional modes and the less well-
known variants of distributed modes, and typically occupied multiple distant sub-regions. We 
further found that modes with high group-level correspondence also showed high subject-level 
correspondence (Figure S 7b), with the top 95 matching modes at the group-level also showing 
correlation of 0.47±0.19 (average ± standard deviation across subjects and modes) at the subject-
level. 

These evaluations add to the previous validation steps, by demonstrating that those of the mPFMs 
that are parcel-like have clear spatial similarities to the state-of-the-art individualised parcellations, 
both at the group- and the subject-level. 

2.3 mPFMs yield enhanced biomarkers of personalised traits  

We have so far investigated the brain properties underlying mPFMs, and their added benefit over 
conventional large-scale RSNs. Here we focus on the usefulness of individual-specific mPFMs for 
providing biomarkers for traits and disease. This was done using two steps: 1- population 
covariations between mPFMs and behavioural traits in HCP; 2- out of sample prediction of 
phenotypes in UK Biobank. 

2.3.1 Positive-negative axis of population covariation between mPFMs and 
behaviour 

We investigated whether or not mPFMs can capture one of the key findings in brain-behaviour 
literature: a positive-negative mode of population covariation that links brain connectivity to 
cognition and lifestyle. This was originally reported by Smith et al., (2015) using HCP data, and 
has been replicated on other large datasets since (29). We used Canonical Correlation Analysis 
(CCA), a method that allows to investigate associations between a set of features from brain data 
and a set of personalised traits (i.e., phenotypes), all in a single integrated multivariate analysis. 
Using CCA, we identified modes of population co-variation between brain and phenotypes, as 
pairs of canonical components along which the phenotypes and mPFMs co-varied in a similar way 
across subjects. We used the same analysis pipeline as Smith et al., (2015). 

To examine the link between personalised traits and spatiotemporal characteristics of mPFMs, 
CCA was conducted on features related to spatial maps, spatial and functional connectivity of 
mPFMs. Figure S 8a shows results of correlation between brain and phenotypes after CCA 
transformation. As shown in Figure 5a, we identified the raw behavioural metrics that were most 
strongly linked to the top CCA components. This was done by correlating the behavioural metrics 
with the topmost CCA components related to spatial maps, spatial and functional connectivity, and 
taking the average correlation across the three. This unravelled a single axis of population 
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variation: at one end of this axis, we found behavioural traits positively associated with the 
prominent CCA component. These included metrics related to cognition and emotion such as 
performance on language tests, executive function, self-regulation, and life satisfaction. At the 
other end of this axis, we found behavioural traits negatively associated with the prominent CCA 
component. These included metrics related to psychiatric disorders and substance use such as rule 
breaking, antisocial behaviour, alcohol, tobacco and cannabis use. Therefore, this positive-
negative mode of population variation significantly links brain function mapping using mPFMs to 
behaviour, and interpretably places positive traits close to each other and distant from the negative 
traits, and vice versa.  

 

Figure	5	mPFMs	yield	biomarkers	for	behaviour	and	traits:	a)	shared	population	covariation	between	mPFMs	and	behaviour	in	HCP:	
A	positive-negative	axis	of	population	covariation	identified	based	on	top	CCA	components	of	spatial	and	temporal	mPFMs	features.	b)	
mPFMs	yield	enhanced	fMRI	biomarkers	of	traits	and	health	compared	with	current	standard	techniques	in	UKB.	893	phenotypes	across	
six	 categories	 were	 used.	 Comparisons	 between	 trait	 prediction	 accuracies	 of	 mPFMs	 (y-axis)	 with	 spatial	 ICA	 and	 the	 Schaefer	
parcellation	(x-axis	blue	and	orange,	respectively)	are	shown.	Density	scatter	plots	are	used	to	compare	mPFM’s	prediction	accuaracies	
to	that	of	the	standrd	techniques,	each	dot	corresponds	to	the	prediction	accuracy	of	a	mode	for	a	phenotype/trait,	and	brighter	colours	
(e.g.	light	yellow	and	light	blue)	denote	higher	denisties.	Dotted	grey	lines	denote	equal	performance.	100-mode	decompositions	were	
used	for	all	the	methods,	and	prediction	accuracies	were	computed	per	mode,	in	order	to	obtain	a	more	detailed	summary	of	the	modes.	
mPFMs	outperformed	the	standard	techniques	for	all	the	categories.	
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2.3.2 Enhanced predictions of personalised traits in UK Biobank 

Next, we evaluated the potential of mPFMs for out-of-sample prediction of traits. For this purpose, 
we compared mPFMs to two of the most commonly used techniques in the literature: spatial ICA, 
the current main RSN modelling technique in the core UK Biobank pipeline (30); and the Schaefer 
atlas, a high dimensional hard parcellation derived from the Yeo parcellation (16). For this 
purpose, we used the 100-dimensional Schaefer parcellation and further applied the other two 
methods to volumetric rfMRI data of 4999 UK Biobank subjects, estimating 100 mPFMs and 100 
ICs. We used features of each functional mode (feature matrix, X) to make predictions about 
phenotypes (target, y), details in Materials and Methods. We used ElasticNet regression with 5-
fold nested cross-validation, and predicted 893 phenotypes divided into 6 categories: region-wise 
cortical area and thickness (296), White Matter (WM) tracts’ microstructure (451), task fMRI 
response to the contrast of emotional faces vs shapes (1), cognition (68) and blood&heart health 
metrics (77). Results are shown in Figure 5b, with prediction accuracies of mPFMs shown on the 
y-axis, and accuracies of spatial ICA modes on the x-axis. We found that mPFMs significantly 
outperformed (Bonferroni corrected, Table S 6) Schaefer parcellation in prediction of all the 
phenotype categories, and significantly outperformed spatial ICA in prediction of all the phenotype 
categories except cognitive traits.  

3 Discussion 
In this paper, we presented Multiscale Probabilistic Functional Modes (mPFMs), a new 
representation of the brain’s functional modes, that improves fMRI modelling and its utility for 
prediction of cognition and health. mPFMs were identified using stochastic Probabilistic 
Functional Mode (sPROFUMO) modelling and, unlike any existing representation, include an 
ensemble of modes across multiple scales. sPROFUMO does not impose or prevent this behaviour 
by design, instead, it allows the modes to be spatiotemporally correlated, and accumulate Bayesian 
evidence across individuals in large populations. Therefore, if a multiscale organisation arises from 
the results, this is driven by the structure in the data. Indeed, as demonstrated in the Results section, 
the presence of multiple distinct subcomponents within each large-scale (distributed) mode 
indicates spatiotemporal multiplicity within these modes, which cannot be captured by distributed-
only or localised-only representations. Put together, our results demonstrate mPFMs’ potential to 
provide a useful representation of multiscale information processing in the brain, and enhance 
fMRI-derived biomarkers for traits and disease. We release this representation publicly; we have 
made the group-level maps openly available, whereas subject-level maps will be released in the 
future as part of ongoing work to rebuild a “v2” UKB pipeline (30). 

Multiscale modes are compatible with the notion of hierarchal information processing in the brain; 
that brain function is organised in a hierarchical manner, with each level of the hierarchy 
underlying increasingly complex and abstract processing(12, 31–33). Hierarchical processing is 
enabled via interactions between local unimodal information processing and distributed higher 
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level cognitive function. Such interactions have been well-established, e.g., in visual search tasks, 
where interactions between sub-regions of the visual cortex and fronto-parietal attention networks 
allows for top-down modulation of visual processing by attention, as well as bottom-up modulation 
of attention by the incoming stimulus (34, 35). Interactions between brain systems at different 
levels of these hierarchies cannot be directly modelled using existing functional mode 
representations, considering that they can either be used to measure interactions between 
distributed modes (lowD decompositions) or localised regions (highD parcellations). As a result, 
the interactions between these two layers will have to be modelled using post-hoc techniques, such 
as hierarchical clustering (36) or module detection (37). Even then, the resulting connectivity will 
depend on the assumptions of the post-hoc techniques, and change depending on the choice of 
parameters, rather than being integrated within the original brain function mapping. In contrast, 
mPFM inherently incorporates such multiscale connectivity within fMRI decomposition. 
Crucially, as we demonstrated in the Results, these interactions provide stronger biomarkers of 
cognition and health compared with connectivity within large-scale or within localised modes 
alone. 

Additionally, by allowing the modes to be spatially overlapping, mPFMs can capture functional 
multiplicity in the brain’s organisation, where a single region contributes to different functions 
depending on the context. Until recently, spatially overlapping functional modes have been largely 
absent from resting state literature. Specifically, studies have commonly relied on either spatial 
ICA (38, 39), that imposes spatial independence between the modes, or hard parcellations, that 
enforce rigid boundaries between the modes (15, 21). Therefore, the literature has relied on spatial 
bases that minimise or prevent spatial overlap. However, growing evidence is now highlighting 
the importance of spatial overlap in modelling cross-individual variability in brain function (40). 
Importantly, recent successful characterisation of brain connectivity using gradients or connectopy 
mapping (41, 42) has brought functional multiplicity to the fore of resting state connectivity. These 
techniques have unravelled multiple overlapping connectivity patterns within brain regions, e.g., 
retinotopic organisation of the visual cortex, and follow-up studies have highlighted the cognitive 
and clinical relevance of these overlapping connectopy maps. As such, allowing for spatial 
overlap, in addition to and not instead of temporal correlations between the modes, is proving 
imperative for obtaining a more comprehensive representation of brain function. mPFMs are, on 
the one hand, similar to conventional spatial ICA modes, in that they capture large-scale prominent 
networks in the brain. One the other hand, mPFMs additionally allow multiple overlapping 
subcomponents within these networks to co-exist. As such, mPFMs can be viewed as a new 
category of brain function mapping that stands somewhere in-between conventional RSNs and the 
more recent gradients of connectivity.   

In addition to their functional relevance, mPFMs also provided enhanced biomarkers for prediction 
of individualistic traits in UK Biobank. To benchmark of mPFMs against standard ICA-based or 
hard parcellation techniques, we used a range of imaging-derived and non-imaging derived 
phenotypes such as cortical geometry, white matter microstructure, brain response to cognitive 
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tasks, behavioural cognitive scores, and health outcome related to blood and heart. The overall 
prediction accuracies of mPFMs were found to be significantly higher than standard techniques 
for various phenotype categories. One key reason for this higher prediction accuracy is likely the 
more comprehensive spatiotemporal feature set in mPFMs. On the one hand, hard parcellations 
yield binary spatial maps for each mode/parcel, and no spatial overlaps between the modes, thus 
summarising individual-specific brain features solely in temporal space. Somewhat similarly, 
Spatial ICA, due to its assumption of spatial independence between the modes, minimises spatial 
overlap by design (3, 25, 43). Consequently, both approaches yield singlescale decompositions of 
functional modes. Therefore, large-scale modes, and their spatiotemporal correlation with each 
other and with localised modes, cannot be fully characterised by the standard techniques. 
Therefore, mPFMs yield a richer set of spatial and temporal features that, even after matching the 
number of features between the methods, can outperform the standard techniques in reflecting 
individualistic traits in brain function. 

4 Materials and Methods 

4.1 Data 

4.1.1 Human Connectome Project (HCP) 

We used minimally pre-processed fMRI data from Human Connectome Project (HCP) from S1200 
data release (https://www.humanconnectome.org/study/hcp-young-adult), with acquisition and 
processing details outlined in (36, 44). Resting state data from 1003 subjects aged 22-35 years 
were used here and included 4x15 minute runs per subject (i.e., 1 hour recording per subject). With 
repetition time (TR) of 0.72s, this dataset includes 4800 time points per individual. We used two 
data formats, volumetric and HCP CIFTI. CIFTI data includes grey matter voxels only (i.e., 
greyordinates), where cortical grey matter is surface-registered using MSMAll (45) and subcortical 
grey matter is in volumetric space. This results in inherent data differences such as signal to noise 
ratio between cortical and subcortical regions, affecting matrix factorisation techniques in, e.g., 
finding an unbalanced number of cortical vs subcortical modes. To prevent such unbalances and 
make the results more easily comparable across CIFTI and Volumetric fMRI, we only used cortical 
greyordinates of CIFTI in this paper. ICA-FIX was used to remove artefacts from volumetric data 
before resampling to 32k_fs_LR space and projecting onto the surface. Standard HCP 
preprocessing includes spatial smoothing with a 2mm FWHM smoothing kernel. We applied 
additional smoothing to obtain 5mm FWHM (for both volumetric and CIFTI data), which 
improves SNR and was found to be useful for obtaining reliable subject-specific modes (25). 

HCP data were predominantly used for analyses that aimed at examining timecourse and functional 
connectivity modelling using mPFMs, their reproducibility across datasets (HCP and UK 
Biobank), and validation of mPFMs against existing functional parcellations. Given the longer 
recordings per subject (1 hour vs 6 minutes), we deemed HCP more suitable for these analyses. 
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4.1.2 UK Biobank (UKB) 

We randomly selected 4999 subjects aged > 45 years from the May 2019 release of UK Biobank 
data (application number 8107). Resting state fMRI data in UKB (at the time that this research was 
conducted) was in standard volumetric space, and included 1 recording of ~6 minute per subject. 
With a TR of 0.735s, data consisted of 490 time points per session. The standard UKB pipeline, 
which includes quality control, brain extraction, motion correction, artefact rejection using FSL-
FIX, high-pass temporal filtering (sigma = 50.0s, Gaussian-weighted least-squares straight line 
fitting) and registration to standard MNI-2mm space was used for preprocessing (30). Standard 
UKB preprocessing includes spatial smoothing with a 2mm FWHM smoothing kernel. We applied 
additional smoothing to obtain 5mm FWHM, which improves SNR and is useful for obtaining 
reliable subject-specific high dimensional PFMs. UKB was used for evaluating reproducibility of 
mPFMs (i.e. high-dimensional PFMs) across datasets, and their prediction accuracy for 
personalised traits. Given the wide range of imaging derived phenotypes (IDPs) and non-imaging 
derived phenotypes (nIDPs) in UK Biobank, this dataset was deemed more suitable for prediction 
of traits (see “Out-of-sample prediction pipeline” section for details). 

4.2 Estimating Resting State Networks 

4.2.1 Probabilistic Functional Modes (PFMs)  

Details of PROFUMO/sPROFUMO models and inference are elaborated in our previous work (25, 
26). Here we provide a brief summary of the model and its application to the data. sPROFUMO is 
a matrix factorisation model for big fMRI data, which uses hierarchical Bayes with two levels of 
modelling and inference: population and individual.  

At the subject level, fMRI timeseries (Dsr) are decomposed into a set of spatial maps (Ps), time 
courses (Asr) and time course amplitudes (Hsr), with residuals 𝜺!" : 

 

𝑫𝒔𝒓 =	𝑷𝒔𝑯𝒔𝒓𝑨𝒔𝒓 +	𝜺𝒔𝒓															𝑫𝒔𝒓 ∈ 	ℝ𝑵𝒗×𝑵𝒕 , 𝑷𝒔 ∈ 	ℝ𝑵𝒗×𝑵𝒎 , 𝑯𝒔𝒓 ∈ 	ℝ𝑵𝒎×𝑵𝒎 , 𝑨𝒔𝒓 ∈ 	ℝ𝑵𝒎×𝑵𝒕 															( 1 ) 

where s denotes subject, r denotes a recording session and Hsr denotes mode amplitudes. Nv, Nm 
and Nt denote the number of voxels, modes and time points, respectively. 

Ps denotes spatial mode layout across brain voxels, hereafter referred to as spatial maps, or just 
maps. These are modelled using a Double-Gaussian Mixture Model (DGMM), with one Gaussian 
component used to model signal and a second Gaussian distribution to model the background 
spatial noise in each voxel. To model the spatial maps hierarchically, in addition to Ps for each 
subject, a consensus set of group-level parameters is also estimated to capture both the group mean 
and variance. Asr represents mode time courses per subject and scan. The time courses also model 
signal and noise elements separately, where the signal element is HRF-constrained and the noise 
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element follows a Gaussian distribution. Connectivity between the timecourses of functional 
modes can have a consensus structure across individuals. To model this simultaneously for 
population and individuals, a second hierarchy is defined over the precision matrix 𝜶!" using 
Wishart distributions. To further allow for modelling of haemodynamic responses that govern the 
BOLD signal, HRF-constrained autocorrelations are incorporated in the modelling of this 
functional connectivity between the modes. Hsr denotes mode amplitudes. These are modelled 
using a multivariate normal distribution, with a Bayesian hierarchy between the group and the 
subject levels. Hsr is diagonal (one value per PFM) and captures timecourse variance for each 
subject and recording.  

To find a solution for the probabilistic model described above, sPROFUMO uses stochastic 
Variational Bayesian (VB) inference. This includes dividing subjects from large data into small 
batches, and optimising the parameters of an approximating distribution 𝑞, with the aim that it is 
as close as possible to the true posterior. The group model is maintained across batches and 
continuously updated over time, and within each iteration of each batch, it is used for top-down 
regularisation of subject-specific matrix factorisations, from which the posterior distributions for 
subject-specific spatial maps, time course correlations and amplitudes are inferred. Subsequently, 
posterior distributions are accumulated across individuals and fed back to the group to update the 
group model. The model iterates between these two levels of estimation until convergence. We 
used the model’s default parameters for application to both HCP and UKB datasets. The forget 
rate (𝛽) was set to 0.6; this controls the degree to which global parameter updates rely on the 
current compared with previous batches. Delay parameter (𝜏) was set to 5; this controls the degree 
to which initial batches influence the overall inference. Batch size was set to 50 subjects, and the 
number of batches was tuned such that each subject will be visited 2.5 times on average (i.e., 
normally chosen in 2 to 3 batches). The overall group model was set to be updated at least 5000 
times for UKB and 4000 times for HCP. 

When applying to each dataset, and as a part of sPROFUMO’s internal initialisation, voxel-wise 
de-meaning and variance normalisation was applied to rfMRI recordings. Additionally, to initialise 
the model using a realistic set of initial group maps that can place the parameters within a realistic 
ballpark, sPROFUMO internally applies an online PCA algorithm called MELODIC’s 
Incremental Group-PCA (MIGP) (46) followed by variational ICA. These initial maps, together 
with hyperpriors, are used to initialise the group-level parameters before conducting the full 
Bayesian inference at subject- and group-level. It is worth noting that, to make the results fully 
comparable across HCP and UKB, the same set of initial maps were used to initialise both datasets. 
We estimated 25, 50, 100, and 150 PFMs, each used in a subset of the analyses, as elaborated in 
Results section.  

4.2.1.1 Volumetric vs CIFTI PFMs: 

sPROFUMO was applied to volumetric and CIFTI data from HCP separately, and group-level 
spatial maps were used as the basis for computing the reproducibility scores reported in Results 
section “Reproducibility across datasets and data formats”. In order to compare volumetric and 
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CIFTI results, volumetric PFMs were mapped onto CIFTI using linear regression at the subject 
level. More specifically, for each subject and run, we used volumetric PFM timeseries (𝑨#$%!" ) and 
amplitudes (𝑯#$%

!" ), as well as raw CIFTI fMRI timeseries 𝑫&'()'
!" . We computed spatial maps in 

CIFTI space (𝑷&'()'! ) through back projection of 𝑨#$%!" 𝑯#$%
!"  onto 𝑫&'()'

!"  using linear regression 
with L2 regularisation. Regression betas were then converted to t-stat values. We next averaged 
𝑷&'()'!  across subjects and obtained volume-to-surface mapped group spatial maps to compare 
against surface based spatial maps. 

4.2.2 Spatial ICA and Dual Regression  

We applied the widely-used group level spatial ICA followed by dual regression (DR) to 
characterise subject-specific RSNs and compare against sPROFUMO results. In standard pipelines 
of large datasets such as HCP and UKB, ICA/ICA-DR have been used for RSN characterisation, 
thus providing a suitable baseline to compare sPROFUMO results against. We applied ICA to 
UKB data and identified 100 group-level spatial components using FSL MELODIC, and 
subsequently mapped these group-level results onto single subject data using FSL 
dual_regression. Subject-specific time courses for each mode and subject-specific spatial maps 
we obtained from stages 1 and 2 of Dual Regression, respectively. Mode amplitudes were 
computed as standard deviation of the time courses and functional connectivity was computed 
using Tikhonov/L2-regularised partial correlations. In order to make the final sPROFUMO and 
ICA/ICA-DR results fully comparable, the same PCA initialisation (using the MIGP approach) 
was used for both models. ICA-DR results were used to predict non-imaging phenotypes and 
compare PFM’s performance against. 

4.3 Identifying temporally distinct subcomponents within large-scale 
RSNs 

Low-dimensional representation of functional modes yields large-scale RSNs that are distributed 
across multiple brain areas. Matrix factorisation techniques (e.g. sPROFUMO or ICA) describe 
each of these modes with a single timecourse. We tested if there are distinct temporal 
subcomponents within each of these modes, and whether or not these subcomponents will be better 
represented by lowD large-scale RSNs vs highD mPFMs. For this purpose, we focused on 25-
mode decomposition from HCP CIFTI rfMRI data of 1003 subjects (see “Estimating Resting State 
Networks” section), and conducted the following tests:  

1. This first step aimed to test whether a single prominent subcomponent can explain a 
majority of group-level temporal variance in the voxel-wise activity within each large-scale 
mode. For this purpose, we used PCA as follows: 

a. Nvoxel × Ntime subject rfMRI timeseries were weighted by each subject PFM (d=25) 
spatial map, obtaining Nvoxel × Ntime weighted rfMRI timeseries (the data 
dimensions are unchanged, but voxels within a given map are up-weighted); 
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b. PCA was applied to each of these weighted timeseries and 10 components were 
estimated per subject per mode. The resulting PCA maps were concatenated across 
subjects (per mode), a second group-level PCA was applied and 10 group-level 
components were extracted per mode. The explained variance per PC was estimated 
(by considering the 10 singular values), results of this analysis are reported in 
“Multiple distinct subcomponents within each conventional RSN” section. 

2. This second step aimed to test whether multiple temporally distinct subcomponents exist 
within each large-scale RSN (i.e., distributed only), and whether subcomponents 
originating from large-scale RSNs can be better represented by large-scale (lowD) vs 
multiscale (highD) PFMs. This was done using temporal ICA, and further replicated using 
spatial ICA and PCA. Steps 2-4 were focused on single-subject modes. 

a. Similar to step 1, Nvoxel × Ntime subject rfMRI timeseries were weighted by each 
subject PFM (d=25) spatial map, and 5 spatial PCs were extracted per mode per 
subject. The choice of 5 PCs was determined based on results of step 1, where PCs 
>6 were found to explain less than 3% of variance for all the PFMs (Figure S 2). 

b. For each PFM the 5 PC maps were concatenated across subjects and group-level 
PCA was used to extract 5 spatial subcomponents per PFM. 

c. These group-level PCs were then linearly regressed onto each subject’s PFM-
weighted rfMRI timeseries (as described in step 2a), giving 5 temporal components 
per subject per mode, which were then concatenated across subjects to obtain 5 long 
timeseries per PFM. 

d. Temporal ICA was applied to the resulting long timeseries to obtain timeseries for 
5 temporally-independent subcomponents. These timeseries were split up into 
temporal chunks to obtain subject-specific tICA subcomponent timeseries.    

e. Subject-specific tICA subcomponent timeseries were linearly regressed onto each 
subject’s PFM-weighted rfMRI timeseries (as described in step 2a) to obtain 
subject-specific tICA subcomponent spatial maps. 

f. By correlating the subject-specific timecourses of each subcomponent with all the 
original lowD and highD mode timeseries, we applied a winner-takes-all approach 
to determine how many of the subcomponents originating from large-scale lowD 
modes were best-represented by lowD vs primary vs secondary mPFMs. An 
unpaired t-test was used to conduct statistical comparisons, and results were 
Bonferroni-corrected for multiple comparisons.  

3. This third step aimed to test whether subcomponents identified in step 2 were exclusive to 
one lowD mode, or if they resided in the temporal space shared by multiple lowD modes: 

a. Similar to step 2a, Nvoxel × Ntime subject fMRI timeseries were weighted by each 
subject PFM (d=25) spatial map, obtaining 25 weighted fMRI datasets per subject.  

b. Linear regression was used to regress out the timecourses of every other (24) PFM 
from each PFM’s weighted fMRI. Then 5 PCs were extracted per mode per subject. 
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c. Steps 2b-f were repeated to test if subcomponents originating from the temporally-
exclusive space of lowD modes were best-represented by lowD vs primary vs 
secondary mPFMs. 

4. This fourth step aimed to test whether subcomponents identified in step 2 were exclusive 
to a single lowD mode, or if they resided in the spatial space shared by multiple lowD 
PFMs: 

a. Linear regression was used to regress out the spatial maps of every other (24) PFM 
from each PFM’s spatial map. 

b. Nvoxel × Ntime subject fMRI timeseries were weighted by the resulting subject PFM 
(d=25) spatial map after regression, obtaining 25 weighted fMRI datasets per 
subject.  

c. Linear regression was used to regress the spatial maps of every other (24) PFM 
from each PFM’s weighted fMRI. Then 5 PCs were extracted per mode per subject. 

d. Steps 2b-f were repeated to test if subcomponents originating from the spatially-
exclusive (non-overlapping) space occupied by lowD modes were best-represented 
by lowD vs primary vs secondary mPFMs. 

4.4 Simulations 

Based on real data (Methods section “Identifying temporally distinct subcomponents within large-
scale RSNs” and Results section “The functional relevance of mPFMs”), we found that Secondary 
mPFMs were likely due to existence of temporally-distinct subcomponents within the Primary 
mPFMs, i.e., the ensemble would capture integrated-segregated modes of brain connectivity. Here 
we simulated datasets where overlapping distributed and localised RSNs exist in the brain, such 
that localised RSNs are spatial sub-nodes of distributed RSNs but have distinct timecourses. Using 
these simulations, we tested how well PFM decomposition can recover the co-existence of global-
local RSNs in the brain, and compared its performance to spatial ICA as the standard technique. 
Details of simulations were as follows: 

• Data: 10 resting state fMRI datasets were simulated, each consisting of 50 subjects and 2 
runs per subject. 

• 12 resting state modes were simulated in each dataset, and they were created from scratch 
in each dataset. 

• 6 of these modes were distributed, covering >=2 brain areas, 6 of these modes were 
localised, covering 1 brain area. Distributed modes were allowed to spatially overlap with 
each other, such that on average, 1.3 modes included a given voxel.  

• Localised modes were simulated such that they were primarily a spatial sub-node of one 
distributed mode, while spatially overlapping with two or multiple distributed modes. 

• Data properties per subject and run: 10,000 voxels, 300 time points at a TR of 0.72s. Data 
was created as detailed below: 
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We defined a set of spatial maps Pg at the group level. Each mode consisted of one or more 
randomly-selected contiguous blocks of voxels (i.e., parcels). Signal weights (per voxel per mode) 
were drawn from a Gamma distribution. Subject-specific spatial maps, Ps, were defined based on 
the group maps by adding background Gaussian noise and applying spatial warps. Subject maps 
were generated to be spatially misaligned in reference to the group, with any a given subject mode 
having on average 83% overlap with the group-average (i.e., 17% spatial misalignment). Time 
courses were generated independently for each session, subject and mode to mimic the 
unconstrained resting state data (but following the between-mode temporal correlation structure 
described next). We assigned a hierarchical link between the group and subjects’ temporal 
correlation matrices, following a Wishart distribution. This was done to obtain a consistent 
functional connectivity pattern between subjects and the group. Time courses were initially 
simulated as semi-Gaussian neural time courses with amplified frequencies < 0.1Hz, and 
subsequently convolved with a random draw from the FLOBS haemodynamic basis functions(47) 
to mimic realistic BOLD signal. Finally, data were created using outer product of subject mode 
spatial maps and timecourses, and random noise was added to the outer product to create space-
time data matrices. More details of simulation parameters are available in(26). 

These simulated modes were then estimated using PFM decomposition and ICA-Dual Regression, 
and results were compared with the ground truth. We initialised both models based on the same 
set of spatial bases from MIGP, to ensure that the observed differences were not due to 
initialisation of the probabilistic models.   

4.5 mPFMs vs HCP-MMP 

We applied sPROFUMO to cortical rfMRI data of 446 HCP subjects (matching the number of 
subjects for which HCP-MMP was available) and estimated 360 PFMs. The two decompositions 
were compared at two levels: First, we computed group correspondence (Figure S 7a&c) between 
mPFMs and HCP-MMP. We binarised group-level mPFMs’ spatial maps by hard thresholding at 
0.3 and computed their dice similarity to group-level parcels in HCP-MMP. The modes were 
paired based on group-level matching, and this ordering was used in the subsequent analyses 
presented below.  Second, we examined subject-level correspondence (Figure S 7b) by binarising 
subject-level mPFMs’ spatial maps by hard thresholding, and finding dice similarity between 
binarised mPFMs and subject-level parcels in HCP-MMP. The same mode ordering as the group-
level was used here in visualisation.  

4.6 Out-of-sample prediction pipeline 

We investigated the link between the spatial/temporal properties of mPFMs and a range of 
phenotypes in UKB and HCP. This was done using out-of-sample predictions in UKB and 
Canonical Correlation Analysis (CCA) in HCP. These accuracies were used to compare mPFMs 
vs conventional large-scale RSNs, primary vs secondary mPFMs, and mPFMs vs spatial ICA and 
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Schaefer parcellation of same dimensionality. Depending on the question at hand in each 
subsection, we conducted predictions based on all or some of the following features: a) Mode 
spatial maps, b) Mode temporal network matrices (TNETs or temporal NetMats; partial correlation 
matrix between mode timecourses), c) Mode spatial NetMats (SNETS, the full spatial correlation 
matrix between mode maps). 

4.6.1 Imaging and non-imaging derived phenotypes (IDPs and nIDPs)  

We used 893 Imaging-derived and non-Imaging-Derived phenotypes (IDPs and nIDPs) from UK 
Biobank as targets in the prediction pipeline. These included IDPs related to Grey Matter, White 
Matter and task fMRI, as well as nIDPs related to cognitive scores and blood and heart health 
metrics. A brief summary of these phenotypes is included in this subsection, and a full list is 
included in Table S 7-S 9. 

Grey Matter: 148 IDPs related to GM area and 148 IDPs related to GM thickness, generated with 
Freesurfer by parcellation of the white surface using Destrieux (a2009s) parcellation. More details 
about these IDPs (e.g. histograms) can be found on the UKB website: 
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=197. 

White matter: 3 IDPs extracted based on the volume of white matter hyperintensities using 
BIANCA. 162 IDPs extracted based on mean intensity for dtifit outputs (FA, MD, MO3) and 
NODDI outputs (ICVF, OD, ISOVF) for the 27 tracts segmented with the probabilistic 
tractography analysis. 288 IDPs extracted based on mean intensity for dtifit outputs (FA, MD, 
MO) and NODDI outputs (ICVF, OD, ISOVF) for the 48 tracts segmented with the TBSS-like 
analysis. 

Task fMRI: UKB includes data for one task, which involves brain responses to images of 
emotionally-valenced faces and shapes. 1 IDP, called ‘contrast’ in the results section, was 
estimated as 90th percentile (z-statistic) of activity for response to faces vs shapes 
(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=25766).  

Cognitive: Starting from 1172 nIDPs related to cognitive tests, we narrowed these down to 68 
using two criteria. Firstly, one of the authors prefiltered the outcome measures manually, by only 
including active measures that were indicative of subject’s performance. For example, among 
outputs directly related to “Reaction Time”, which entails viewing two cards (A and B) and 
pressing buttons when identical, “Mean time to correctly identify matches”, was included whereas 
“Index for card A in round” was excluded. Secondly, we only selected tests that had a non-NaN 
value in at least 25% of the subjects. The final list of 68 tests belonged to the following categories: 
Reaction time, Trail making, Matrix pattern completion, Numeric memory, Prospective memory, 
Pairs matching, Symbol digit substitution and Fluid intelligence. More details about these nIDPs 
are available here: https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100026.  

Blood and Heart related metrics: Starting from 992 nIDPs related to blood and heart related 
health, we narrowed these down to 77 using two criteria. Firstly, one of the authors prefiltered the 
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outcome measures manually, by excluding metrics that were not directly related to health. For 
example, “LV stroke volume (2.0)” and “Systolic blood pressure, manual reading (0.0)” were 
included whereas “Completion status of test (0.0)” and “Program category (0.0)” were excluded. 
Secondly, we only selected tests that had a non-NaN value in at least 25% of the subjects. More 
details about these nIDPs are available in the following links: 
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100011, 
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=104 and 
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100012   

4.6.2 Confound Removal in UK Biobank 

When conducting brain-behaviour analyses in big data, e.g., association or out-of-sample 
predictions, imaging confounds can significantly distort the interpretability of the results (48, 49). 
For example, if a common confounding factor such as head size or head motion is correlated with 
both brain features and behavioural targets, this is likely to inflate our prediction accuracies (49). 
Therefore, we opted to de-confound the data before conducting any brain-behaviour analyses. This 
was done by linearly regressing out the confounds from both imaging and non-imaging variables. 

For UK Biobank, we started with a comprehensive set of 602 confounds proposed by Alfaro-
Almagro et al. (2020). We reduced this set by: a) selecting conventional confounds including age, 
age squared, sex, age × sex, site, head size and head motion; b) reducing the remaining confounds 
using Principal Component Analysis. The top PCs that explained >85% of the variance were kept. 
These two steps yielded 82 variables. Importantly, we applied deconfounding taking into account 
cross-validation folds in order to avoid leakage of information from test to train data, as proposed 
by (49).  

4.6.3 Elastic-Net prediction and cross-validation 

We used Python 3.6.5 and scikit-learn 0.19.1 (50) to set up the prediction pipeline. We used 
ElasticNet regression and nested 5-fold cross validations to conduct out-of-sample predictions, 
with 20/80 test/train ratio. Next, we Gaussianised each predictor and target variable across subjects 
using quantile transformation (QuantileTransformer). In each cross-validation loop, the training 
set was used to compute the quantile transforms which were then applied to both train and test 
data. Similarly, deconfounding was also conducted within each cross-validation loop, where 
training set was used to estimate the regression parameters (or “betas”), which were then applied 
to de-confound both train and test data. Finally, we used ElasticNetCV to predict target variables 
in the test set. Hyperparameters related to ElasticNet; i.e., ratio of Lasso to Lasso+Ridge 
regularisation (L1 ratio varied between [0.1,0.5,0.7,0.9,0.95,0.99,1.0] with 10 alphas per L1 ratio) 
we optimised using nested cross-validations within the training set. Finally, we computed 
correlations between estimated and actual values of the target variables across subjects in the test 
set, which will be reported as prediction accuracies. 
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4.6.4 Feature spaces: Large-scale vs multiscale PFMs 

The comparison between conventional large-scale RSNs and mPFMs aimed to determine any 
added benefit of the latter, and additionally to determine the added benefit of having both types of 
primary and secondary modes in a decomposition, as opposed to one type only. For this purpose, 
we focussed on interactions between the modes, i.e., spatial/temporal correlations, and their 
prediction power for phenotypes in UKB. Specifically, the comparison was made between 
prediction power of correlations in three scenarios: large-scale RSNs vs mPFMs; between primary 
and secondary mPFMs vs within primary mPFMs; between primary and secondary mPFMs vs 
within secondary mPFMs.  

To summarise mode interactions, two types of feature matrices were used, Spatial NetMats 
(SNETs) and partial temporal NetMats (TNETs). TNETs were computed based on precision 
matrices and with a Tikhonov regularisation parameter 0.01. SNETs and TNETs are of size Nmode 
× Nmode for each subject in each PFM decomposition. 

Based on highD decomposition (d=100), we divided each of the NetMats into three sub-matrices 

1. SNETpri2pri : Npri × Npri and TNETpri2pri : Npri × Npri, with Npri = 25 
2. SNETsec2sec : Nsec × Nsec and TNETsec2sec : Nsec × Nsec, with Nsec = 75 
3. SNETpri2sec : Npri × Nsec and TNETpri2sec : Npri × Nsec 
4. Based on large-scale lowD decomposition (d=25), we obtained SNETlow_dim : NlowD × NlowD 

and TNETlow_dim : NlowD × NlowD  

We applied the Fisher r-to-Z transformation, and unwrapped these matrices into 1D vectors. Since 
Pri2Pri, Sec2Sec and LowD2LowD matrices (but not Pri2Sec) are symmetric, only the upper 
diagonal elements were kept before unwrapping. Next, we used SVD to dimension-reduce each of 
these eight Nsubject × Nedges matrices to feature matrices of size Nsubject × 200, which were fed into 
ElasticNet. The dimensionality reduction was done to obtain the same number of features to use 
in predictions, reducing the possibility of one mode type outperforming due to the number of 
features. Five-fold cross-validations were performed and accuracies computed as detailed in 
Section “Elastic-Net prediction and cross-validation”. Cross-validations were repeated k times for 
each phenotype category, k being: GM: 20, WM: 20, task fMRI-condition: 200 (since there is only 
1 phenotype in this category), task fMRI-contrast: 200, cognitive: 20, blood and heart metrics: 20. 

For each IDP/nIDP category, accuracies were computed for each phenotype, and pooled across the 
number of phenotypes in that category (Nphenotype) and number of repeats (k), yielding two vectors 
of size k* Nphenotype to be compared between different mode types. 

4.6.5 Feature spaces: mPFMs vs standard techniques: 

4.6.5.1 mPFMs and spatial ICA features: 
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The comparison of mPFMs to highD ICA aimed to examine any added benefit of mPFMs over 
state-of-the-art RSN decompositions for capturing individualistic traits and phenotype predictions. 
For this purpose, three types of feature matrices were used in predictions, spatial maps (SMAPs), 
SNETs, and TNETs. HighD decompositions with 100 RSNs from UKB data were used in these 
analyses. This dimensionality was optimised based on a left-out phenotype (age): we compared 
age prediction using 50, 100, 150, and 200 dimensional decompositions and found 100 to be 
optimal. Feature spaces were estimated using a pipeline similar to the Uni-mode predictions 
described in our previous study (25): 

• For SMAPs, estimating 100 modes resulted in a matrix of Nsubject × Nvoxel × 100. We 
performed dimensionality reduction across the second dimension (per mode) using sparse 
dictionary learning (51) and obtained feature matrix of size (Nsubject × 500) × 100. Next, we 
used the feature space of each PFM separately in phenotype predictions.   

• For SNETs and TNETs, we started with matrices of size Nsubject × Nmode × Nmode. After 
applying the Fisher r-to-Z transformation per subject, we used rows of correlation matrices 
(i.e., one per mode) for each subject without additional dimensionality reduction, thus 
obtaining 100 feature matrices of size Nsubject × 99 from SNETs and 100 feature matrices 
of size Nsubject × 99 from TNETs that were used separately for predictions. TNETs were 
computed using partial correlations with Tikhonov regularisation.  

4.6.5.2 Schaefer Parcellation features: 

The standard Schaefer parcellation in MNI space, 
Schaefer2018_100Parcels_17Networks_order_FSLMNI152_2mm.nii.gz, from 
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefe
r2018_LocalGlobal/Parcellations/MNI was applied to pre-processed fMRI timeseries of UK 
Biobank subjects; timecourses of voxels within each parcel were averaged to obtain one 
timecourse per parcel/mode. Subsequently, similar to the PFM/sICA procedure explained above, 
TNET features were computed from these timecourses using Fisher r-to-Z transformed partial 
correlations with Tikhonov regularisation. These resulted in 100 feature matrices of size Nsubject × 
99 which were used in uni-mode predictions.  

4.6.5.3 Summary of features from mPFM/sICA/Schaefer: 

We used features of each mode separately in predictions.  

On the one hand, for PFM and sICA, SMAP, SNET and TNET feature matrices were concatenated 
horizontally, yielding 100 features matrices of size Nsubject × 799 to use in cross-validated 
ElasticNet predictions, as elaborated in “Out-of-sample prediction pipeline” Section. Accuracies 
were computed for each mode and pooled across modes to compare PFMs and ICA-DR.  

On the other hand, mPFMs and spatial ICA both yield spatial and temporal features, whereas hard 
parcellations such as Schaefer generate TNET features only. This is due to the fact that hard 
parcellations yield binarised spatial topographies for the modes/parcels, with fixed hard boundaries 
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between the parcels. Therefore, the number of features derived from the Schaefer parcellation will 
be lower. To balance this number across the three methods, we used cross-validated feature 
selection based on correlation to the target in the training set to select a subset of features from 
mPFM/sICA, matching the number of features (99 per mode) from the Schaefer parcellation.  

For each phenotype category (e.g., blood, cognitive etc.), accuracies were computed for each mode 
and each phenotype, and pooled across the number of phenotypes in that category (Nphenotype) and 
number of modes (100), yielding three vectors of length 100* Nphenotype to compare mPFMs with 
ICA-DR and the Schaefer Parcellation.   

4.7 Canonical Correlation Analysis 

Canonical Correlation Analysis (CCA) was used to find a single multivariate mapping between a 
set of PFM features and a set of non-imaging variables. Each CCA component estimates a linear 
combination of PFM features and a linear combination of phenotypes, such that the transformed 
outputs are maximally correlated. In order words, CCA components project data onto common 
axes of subject variability that co-vary between brain and behaviour. In previous studies of rfMRI 
functional connectivity using spatial ICA, CCA has identified a positive-negative axis of brain-
behaviour associations in HCP data (14). Here, using HCP and focussing on the same set of 
phenotypes, we conduced CCA aiming to examine the behavioural relevance of mPFMs in the 
context of existing literature. 1001 out of 1003 subjects that were included in both fMRI and 
phenotype recordings were included in this analysis. 

4.7.1 Non-imaging Phenotypes 

We used 158 phenotypes for the CCA. These were sub-selected from a wider range of phenotypes 
using a set of criteria described in(14), and included metrics related to cognition such as various 
measures of fluid intelligence, executive function, language, episodic memory, working memory, 
attention; metrics of emotion such as life satisfaction, friendship, loneliness; metrics of psychiatric 
and life function such as depression, anxiety, aggression; metrics of alertness related to sleep, five 
metrics of personality related to agreeableness, extraversion, neuroticism, conscientiousness and 
openness, metrics of physical health related to sensory-motor function, and lifestyle metrics related 
to substance use such as alcohol, tobacco and drug. A full list of these phenotypes is presented in 
Table S 14. 

4.7.2 Confound Removal in HCP 

Similar to “Confound Removal in UK Biobank” Section , we de-confounded both feature and 
phenotype matrices before conducting CCA. For this purpose, we used 13 imaging confounds that 
are included regularly in HCP studies: acquisition reconstruction software version; age; age 
squared; sex; age × sex; sex × age squared; race, ethnicity; height; weight; a summary statistic 
quantifying average subject head motion during the resting-state fMRI acquisitions; the cube-root 
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of total brain volume (including ventricles), as estimated by FreeSurfer; the cube-root of total 
intracranial volume, as estimated by FreeSurfer. 

4.7.3 mPFMs feature spaces 

For CCA, we need a single feature matrix of size Nsubject × Nfeature estimated from brain imaging to 
be paired with a single phenotype matrix of size Nsubject × Nphenotype from behavioural/non-imaging 
traits. Therefore, we required a further condensed feature space compared to what described earlier 
in trait prediction. We extracted feature summaries separately from SMAPs, SNETs, and TNETs, 
and ran CCA using each feature type independently. Feature summaries were created as follows: 

• For the spatial maps (SMAPs), estimating 150 modes resulted in a Pgrand matrix of (Nsubject 
× Nvoxel)x 150, yielding ~35 million features per subject. To extract a few hundred features 
that can meaningfully capture the essence of subject SMAPs, we used unsupervised 
learning by applying FMRIB’s Linked ICA for big data (BigFLICA)(52, 53). This is an 
ICA framework originally proposed for multimodal data fusion, and was applied here in 
two steps. First, subject SMAPs were dimension-reduced across voxels using sparse 
dictionary learning, yielding a matrix of size (Nsubject × 1000) × 150. Next, each PFM was 
used as a separate “modality” within bigFLICA to obtain a feature matrix of size Nsubject × 
500. Using FLICA here allows us to preserve subject-specific variations in each mPFM 
and efficiently summarise them across numerous modes to obtain a set of independent 
features to characterise the sources of population variations in mPFMs.   

• For the spatial and partial temporal correlation matrices (SNET, TNET), we started with 
matrices of size Nmode × Nmode for each subject. After applying the Fisher r-to-Z 
transformation, we flattened these matrices by taking the above-diagonal elements. With 
150 PFMs, this resulted in two feature matrices, one for SNET another for TNET, each of 
size Nsubject × (150*149/2) = Nsubject × 11175. 

Each of these three matrices were used separately in CCA estimation, and results were combined 
post-hoc, as elaborated in the next subsection. 

4.7.4 Conducting CCA 

CCA analysis consisted of the following steps: 

1. One side of CCA received mPFM feature matrices as input:  SMAPs: 1001 × 500 (Nsubject 
× NFLICA); SNETs: 1001 × 11175 (Nsubject × NNET_ELEMENT); TNETs: 1001 × 11175 (Nsubject 
× NNET_ELEMENT). Preprocessing steps similar to(14) were applied to these matrices, which 
included normalisation and dimensionality reduction using SVD. Each feature matrix was 
reduced to a matrix of size 1001 × 50. The dimension reduction helps to avoid an over-
determined (rank deficient) CCA solution. 
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2. The other side of CCA received phenotype matrices as input: 1001 × 158. Preprocessing 
steps similar to (14) were applied to these matrices, which included inverse Gaussian 
transformation and dimensionality reduction using SVD. The phenotype matrix was 
reduced to a matrix of size 1001 × 50. 

3. Imaging confounds were regressed out of both phenotype and PFM feature matrices, as 
elaborated in “Confound Removal in UK Biobank” Section. 

4. CCA was conducted for three pair-wise comparisons: 1) PFM SMAP vs phenotypes; 2) 
PFM SNET vs phenotypes; 3) PFM TNET vs phenotypes. This was done using the 
'canoncorr' function in Matlab. 

5. CCA yields a linear transformation of PFM feature matrix (X) and phenotype feature 
matrix (Y) so as to maximise their correlation; i.e. Y*A=U ∼ X*B=V, where U and V are 
the linearly-transformed versions of ICA-DR and PFM feature matrices, respectively. 

6. By finding correlations between columns of U and V for the top 50 CCA components, we 
estimated shared variances for each pairwise comparison.  

7. We finally tested how many of the CCA components were significantly correlated. For this 
purpose, we conducted multi-level block permutations(54) which takes family structure of 
HCP data into account. In each iteration, X in step 5 was kept fixed, and rows of Y were 
randomly permuted (i.e., permuting subjects, while keeping family members together), and 
step 6 was repeated. Across 10,000 permutations, we constructed a null distribution for the 
correlations of the top 50 CCA components. The correlation value corresponding to the top 
5% of the null distribution for the first CCA component was used as threshold for p-
value<0.05 significance level for all the CCA components. This yields a significance 
threshold that is Family-Wise Error-rate (FWE) corrected for multiple comparisons (across 
CCA components).  
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7 Supplementary Materials 
 
 

 
  

Figure	 S	 1	 Supplement	 to	 Figure	 1:	 This	 figure	 provides	 an	 alternative	 visualisation	 of	 the	 comparison	 between	 multiscale	
Probabilistic	Functional	Modes	(mPFMs)	and	conventional	large-scale	RSNs.	This	visualisation	provides	additional	clarification	that	
when	mPFMs	are	spatially	paired	with	large-scale	RSNs	from	25-mode	decomposition	(yellow),	25	of	the	mPFMs	show	a	clear	one-
to-one	matching,	labelled	as	Primary	mPFMs	(orange).	Secondary	mPFMs	(blue)	are	the	remaining	125	mPFMs,	that	start	appearing	
with	increased	dimensionality.	
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Figure	S	2	Supplement	to	Section	“Multiple	distinct	subcomponents	within	each	conventional	RSN”:	Principal	Component	Analysis	
was	used	to	test	if	one	temporal	component	is	sufficient	to	capture	temporal	variability	within	conventional	large-scale	RSNs	from	lowD	
decompositions	of	rfMRI.	LowD	refers	to	25	modes	obtained	from	PFM	decomposition	of	rfMRI	in	HCP.		The	top	10	PCs	per	lowD	mode	are	
illustrated	on	the	x-axis,	and	their	explained	variance	on	the	y-axis.	Boxplots	show	median	and	confidence	intervals	across	25	modes.	
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Figure	S	3	Supplement	to	Section	“Multiple	distinct	subcomponents	within	each	conventional	RSN”:	a)	The	degree	to	
which	5x25	subcomponents	estimated	using	temporal	ICA	are	spatially	(right)	and	temporally	(left)	correlated	with	each	other	
(i.e.	testing	for	distinctiveness).	The	25	rows	correspond	to	the	25	modes,	and	the	flattened	above-diagonal	of	5x5	correlation	
matrices	(correlations	between	subcomponents	estimated	within-subject	and	then	averaged	over	subjects)	appear	on	the	x-
axis.	b)	Temporal	(left)	and	spatial	(right)	correlation	of	5x25	subcomponents	with	their	respective	lowD	modes.	Boxplots	
show	median	and	confidence	intervals	across	25	modes.					
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Figure	 S	 4	 Supplement	 to	 Section	 “Multiple	 distinct	 subcomponents	 within	 each	 conventional	 RSN”:	 A	 low-dimensional	 (lowD)	 PFM	
decomposition	consisting	of	25	modes	was	estimated	from	cortical	rfMRI	data	of	1003	HCP	subjects,	yielding	conventional	large-scale	RSNs,	and	
follow-up	spatial	ICA	(top)	and	PCA	(bottom)	applied	to	voxel-wise	timeseries	within	these	RSNs	to	identify	temporally-distinct	subcomponents.	
This	analysis	was	conducted	to	confirm	that	subcomponent	identification	results	in	section	2.1.1	are	not	specific	to	the	choice	of	temporal	ICA	as	
the	subcomponent	identification	technique.	Temporal	correlation	of	the	best-matching	a)	sICA	and	b)	PCA	subcomponents	to	the	large-scale	RSNs	
that	they	originated	from;	A	winner-takes-all	approach	was	applied:	c)	of	the	25x5	sICA	subcomponents	32,	22	and	71	were	best	represented	by	
large-scale	decomposition,	primary	and	secondary	mPFMs,	respectively;	d)	of	the	25x5	PCA	subcomponents	34,	37	and	54	were	best	represented	
by	large-scale	decomposition,	primary	and	secondary	mPFMs,	respectively.	
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Figure	S	5	Supplement	to	Section	“Functional	connectivity	modelling	using	mPFMs”:	Functional	connectivity	values	between	modes,	estimated	
using	regularised	partial	correlations.	Three	PFM	dimensionalities	are	compared:	25,	100	and	150	based	on	a)	4999	subjects	in	UK	Biobank	data	
(volumetric	 fMRI)	 and	 b)	 1003	 subjects	 in	 Human	 Connectome	 Project	 data	 (cortical	 CIFTI).	 Left:	 distributions	 of	 group	 average	 Functional	
connectivity	 values.	 Middle:	 distributions	 of	 subject	 specific	 functional	 connectivity	 values.	 Right:	 Cross	 subject	 consistenties	 of	 Functional	
connectivity,	which	is	calculated	as	Pearson	correlation	coefficient	between	vectorised	functional	connectivity	matrices	across	subjects.	Subject-
specific	functional	connectivity	becomes	sparser	and	more	consistent	acorss	subjects	in	mPFMs,	leading	to	less	sparse	group-average	functional	
connectivity.	
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Figure	S	6	Supplement	to	Figure	4:	28	Volumetric	HCP	modes	with	reproducibility	scores	of	<0.6	in	UKB.	Several	of	these	modes	were	
artefactual.	
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Figure	 S	 7	 Supplement	 to	 Section	 “Validating	 secondary	mPFMs	 using	 HCP’s	Multi-Modal	 Parcellation”:	 a)	 group-level	 HCP-MMP	
parcellation	with	360	 parcels	 compared	 to	 a	 360-mPFM	decomposition	of	HCP.	 95	modes	were	 parcel-like	 (lightest	 shade	of	yellow)	and	
showed	a	clear	one-to-one	match	to	HCP-MMP	parcels.	The	remaining	large-scale	and	mixed-scale	mPFMs	are	marked	with	dark	and	medium	
shades	of	yellow,	respectively.	73	mPFMs	showed	less	than	0.2	dice	similarity	to	any	HCP-MMP	parcels	(highlighted	with	the	darkest	shade	of	
yellow);	these	included	conventional	low-dimensional	modes	and	the	less	well-known	variants	of	large-scale	modes,	and	typically	occupied	
multiple	distant	sub-regions.	b)	subject-level	HCP	MMP	(with	the	same	ordering	as	Fig5a).	Median	showed	in	red,	and	grey	error	margins	show	
25	 to	75	percentile	across	subjects.	Good	pairing	for	95	parcel-like	modes	were	observed	here	as	well.	d)	Top	95	matched	pairs	of	modes	
between	mPFM	and	HCP-MMP.	Black	contours	denote	group-level	HCP-MMP	parcels	and	green-brown	patches	denote	thresholded	group-level	
PFMs.		
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Figure	S	8	Supplement	to	Figure	5:	shared	population	covariation	between	mPFMs	and	behaviour	in	HCP:	a)	Canonical	
Correlation	Analysis	(CCA)	was	used	to	compute	modes	of	population	co-variation	between	behavioural	traits	and	spatial	maps	
(SMAPs)/Spatial	correlations	(SNETs)/temporal	correlations	(TNETs)	of	mPFMs.	Statistical	significance	of	CCA	components	was	
determined	 using	 multi-level	 block	 permutations	 that	 takes	 family	 structure	 of	 HCP	 data	 into	 account	 (54).	 	 b)	 2,	 3	 and	 2	
significant	CCA	components	were	 identified	for	SMAPs,	SNETs	and	TNETs,	respectively,	and	their	correlations	are	shown.	we	
found	maximum	correlations	between	 transformed	pairs	SNET-SMAP,	SNET-TNET,	and	SMAP-TNET	to	be	 -0.498,	 -0.484	and	
0.483,	 respectively,	 indicating	 that	 the	phenotype-transformed	SMAPs,	 SNETs,	 and	TNETs	 capture	distinct	 aspects	of	 subject	
variability.	
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Table	S	1	A	summary	of	terminology	used	throughout	the	paper.	

Terminology Description 
Functional Modes Modes of functional brain connectivity, where one or multiple brain regions work in 

synchrony such that they can be described with a single timecourse.  
PFMs Probabilistic Functional Modes: functional modes estimated using sPROFUMO software, 

which estimates the modes simultaneously for big populations and individuals, thus 
yielding personalised functional modes. 

RSNs Resting State Networks: functional modes estimated from resting state fMRI (rfMRI). 
Resting state refers to brain activity from task-free recordings, where participants are 
instructed to not think about anything specific while lying in the scanner. 

Large-scale or Distributed 
RSNs/PFMs 

25 modes from low-dimensional (lowD) decomposition of rfMRI data using PFMs.     

Multiscale PFMs (mPFMs) Modes from high-dimensional (highD) decomposition of rfMRI data using PFMs. 
Depending on dataset/application, we have used different number of modes as highD 
decomposition. Specifically, for HCP data we have used 50, 100, 150 or 360 modes, for 
UK Biobank data we have used 150 or 100 modes. Justifications are included the 
corresponding Methods subsections. 

Primary mPFMs 25 distributed modes from high-dimensional PFM decomposition of rfMRI that best-
match the large-scale RSNs. 

Secondary mPFMs New modes from high-dimensional PFM decomposition that emerge as we increase the 
dimensionality to >=100.  

Spatial Maps, or SMAPs Spatial organisation of functional modes across the brain voxels. 
Functional Connectivity A matrix of size Nmode × Nmode including partial temporal correlations between 

timecourses of functional modes, also referred to as TNET. L2/Tikhonov regularisation is 
used in estimation of partial correlations. 

Spatial Connectivity A matrix of size Nmode × Nmode including spatial correlation coefficients between SMAPs 
of functional modes, also referred to as SNET. This is an indicator of spatial overlap 
between the modes. 
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Table	S	2	T-value	and	p-values	related	to	subcomponent	analysis:	original	subcomponents.	Statistically	significant	p-values	(Bonferroni-
corrected	threshold	to	account	for	multiple	comparisons)	are	shown	in	bold	font.	Supplement	to	Figure	2c&d.	

Winner:  
Large-Scale 

 Winner:  
Primary mPFMs 

 Winner:  
Secondary mPFMs 

t-values p-values  t-values p-values  t-values p-values t-values p-values 
0.46 6.42e-01  19.81 5.57e-74  22.96 4.70e-94 23.08 7.82e-95 

40.45 7.04e-213  17.29 8.47e-59  14.19 8.30e-42 16.34 2.07e-53 
1.86 6.35e-02  22.53 2.74e-91  17.81 7.82e-62 29.73 8.81e-140 
7.60 6.64e-14  14.21 7.29e-42  4.64 4.01e-06 17.66 5.87e-61 

36.36 3.06e-185  10.26 1.54e-23  28.59 6.15e-132 -0.61 5.43e-01 
37.73 1.35e-194  5.33 1.21e-07  31.04 9.76e-149 24.86 1.12e-106 
15.01 4.24e-46  44.60 3.17e-240  19.73 1.70e-73 15.69 8.63e-50 
-2.64 8.33e-03  15.12 1.07e-46  10.46 2.31e-24 10.89 3.61e-26 
7.04 3.49e-12  14.02 6.60e-41  24.87 1.03e-106 -0.01 9.94e-01 
7.98 4.06e-15  57.85 1.13e-321  10.30 1.00e-23 4.77 2.08e-06 

35.48 3.05e-179  23.84 7.72e-100  5.45 6.42e-08 11.08 5.24e-27 
15.05 2.63e-46  14.47 3.29e-43  12.29 1.95e-32 40.87 1.13e-215 

   4.88 1.26e-06  4.77 2.08e-06 32.10 5.01e-156 
   16.06 8.24e-52  16.35 1.92e-53 18.47 8.46e-66 
   7.10 2.36e-12  51.75 2.76e-285 26.74 2.64e-119 
   37.67 3.76e-194  9.99 1.76e-22 26.53 7.10e-118 
   10.92 2.62e-26  27.84 8.20e-127 16.47 4.19e-54 
   3.23 1.27e-03  52.06 3.32e-287 35.81 1.68e-181 
   15.55 4.96e-49  17.32 5.24e-59 39.36 1.46e-205 
   17.40 1.91e-59  44.44 3.60e-239 61.30 0.00e+00 
   6.98 5.22e-12  10.31 9.63e-24 29.06 3.88e-135 
   33.82 7.52e-168  31.74 1.39e-153 17.77 1.28e-61 
   37.02 9.35e-190  24.91 5.39e-107 29.35 3.66e-137 
   26.00 2.47e-114  15.64 1.69e-49 11.63 1.99e-29 
   27.83 9.80e-127  24.38 1.78e-103 13.61 7.77e-39 
   16.07 6.90e-52  21.47 2.08e-84 34.87 4.61e-175 
   19.13 9.34e-70  22.20 3.81e-89 9.84 7.32e-22 
   38.03 1.39e-196  38.65 8.15e-201 54.03 3.83e-299 
      61.69 0.00e+00 23.29 2.93e-96 
      27.37 1.24e-123 25.14 1.54e-108 
      27.32 2.92e-123 14.85 2.95e-45 
      49.52 1.59e-271 74.34 0.00e+00 
      88.06 0.00e+00 6.00 2.82e-09 
      44.50 1.58e-239 14.35 1.34e-42 
      3.59 3.42e-04 19.80 6.30e-74 
      11.52 6.05e-29 24.71 1.17e-105 
      9.78 1.22e-21 19.73 1.75e-73 
      22.43 1.26e-90 13.38 1.12e-37 
      11.77 4.55e-30 13.04 5.38e-36 
      40.02 5.40e-210 62.63 0.00e+00 
      34.89 3.22e-175 16.04 1.02e-51 
      14.68 2.54e-44 37.97 3.27e-196 
        49.84 1.71e-273 

   

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2024. ; https://doi.org/10.1101/2024.05.28.596120doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.28.596120
http://creativecommons.org/licenses/by/4.0/


 

 

 46 

Table	S	3	T-value	and	p-values	related	to	subcomponent	analysis:	temporally-exclusive	subcomponents.	Statistically	significant	p-values	
(Bonferroni-corrected	threshold	to	account	for	multiple	comparisons)	are	shown	in	bold	font.	Supplement	to	Figure	2e&f.	

Winner:  
Large-Scale 

 Winner:  
Primary mPFMs 

 Winner:  
Secondary mPFMs 

t-values p-values t-values p-values  t-values p-values  t-values p-values 
30.98 2.52e-148 46.74 6.02e-254  1.52 1.28e-01  6.41 2.20e-10 
28.70 1.00e-132 37.99 2.40e-196  3.12 1.88e-03  15.88 8.34e-51 
15.48 1.20e-48 4.87 1.31e-06  4.21 2.78e-05  1.55 1.22e-01 
4.11 4.30e-05 34.01 3.38e-169  1.13 2.59e-01  6.07 1.82e-09 

41.43 2.13e-219 20.80 3.71e-80     11.45 1.27e-28 
1.62 1.06e-01 35.79 2.27e-181     11.26 8.68e-28 

15.50 9.33e-49 10.34 7.19e-24     1.69 9.20e-02 
10.65 3.63e-25 10.02 1.32e-22       
67.89 0.00e+00 1.27 2.04e-01       
16.01 1.50e-51 62.64 0.00e+00       
26.71 4.26e-119 37.78 6.91e-195       
7.64 5.18e-14 37.84 2.51e-195       

42.21 1.46e-224 25.98 3.70e-114       
15.03 3.57e-46 34.11 7.63e-170       
24.92 4.92e-107 42.65 1.83e-227       
6.33 3.61e-10 10.44 2.72e-24       

22.85 2.21e-93 22.93 6.88e-94       
60.43 0.00e+00 58.42 0.00e+00       
25.70 2.91e-112 25.22 4.90e-109       
5.16 3.02e-07 26.83 6.54e-120       

27.78 2.27e-126 22.02 5.46e-88       
8.02 3.00e-15 8.93 1.96e-18       

50.27 3.33e-276 54.66 6.28e-303       
33.88 2.63e-168 3.63 2.99e-04       
27.60 3.55e-125 3.79 1.58e-04       
17.19 3.05e-58 2.38 1.75e-02       
13.68 3.60e-39 72.20 0.00e+00       
71.00 0.00e+00 44.52 1.04e-239       
43.53 3.04e-233 21.80 1.47e-86       
34.39 9.00e-172 23.88 3.76e-100       
30.32 8.00e-144 4.15 3.59e-05       
35.19 2.98e-177 58.48 0.00e+00       
38.02 1.57e-196 24.23 1.77e-102       
33.46 2.09e-165 8.54 4.82e-17       
28.81 1.82e-133 105.56 0.00e+00       
23.01 2.10e-94 29.69 1.62e-139       
21.48 1.81e-84 23.61 2.41e-98       
49.70 1.10e-272 34.32 2.69e-171       
30.70 2.12e-146 27.49 2.07e-124       
20.28 6.98e-77 69.98 0.00e+00       
16.30 3.74e-53 10.83 6.31e-26       
24.46 5.31e-104 9.19 2.15e-19       
63.10 0.00e+00 14.30 2.33e-42       
3.10 1.97e-03 4.85 1.40e-06       

12.88 3.22e-35 38.13 2.64e-197       
18.38 3.02e-65 23.52 1.00e-97       
12.50 2.12e-33 11.53 5.92e-29       
78.92 0.00e+00 74.21 0.00e+00       
35.71 8.46e-181 18.10 1.39e-63       
19.95 7.70e-75 42.58 5.12e-227       
30.69 2.35e-146 31.93 6.42e-155       
25.75 1.29e-112 38.12 3.17e-197       
19.17 4.85e-70 91.42 0.00e+00       
38.45 1.86e-199 29.99 1.49e-141       
21.55 5.77e-85 30.16 9.74e-143       
23.77 2.17e-99 27.38 1.14e-123       
2.54 1.12e-02 22.64 5.45e-92       
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Table	 S	 4	 T-value	 and	 p-values	 related	 to	 subcomponent	 analysis:	 spatially-exclusive	 subcomponents.	 Statistically	 significant	 p-values	
(Bonferroni-corrected	threshold	to	account	for	multiple	comparisons)	are	shown	in	bold	font.	Supplement	to	Figure	2g&h.	

	

Winner:  
Large-Scale 

 Winner:  
Primary mPFMs 

 Winner:  
Secondary mPFMs 

t-values p-values  t-values p-values  t-values p-values t-values p-values 
5.69 1.66e-08  6.72 2.99e-11  9.19 2.26e-19 34.20 1.78e-170 
5.38 9.08e-08  5.23 2.08e-07  7.34 4.28e-13 26.13 3.38e-115 
6.52 1.13e-10  15.49 1.18e-48  26.05 1.25e-114 2.76 5.98e-03 

13.65 5.09e-39  15.99 2.08e-51  34.10 8.66e-170 40.76 5.93e-215 
0.13 8.96e-01  21.76 2.96e-86  27.08 1.23e-121 18.72 2.89e-67 

26.21 9.44e-116  14.93 1.17e-45  43.91 1.10e-235 23.28 3.76e-96 
61.72 0.00e+00  10.59 6.59e-25  5.19 2.51e-07 13.26 4.26e-37 
22.23 2.76e-89  18.96 1.03e-68  4.75 2.30e-06 53.60 1.43e-296 
16.48 3.43e-54  3.97 7.59e-05  49.56 9.49e-272 57.32 1.46e-318 
0.59 5.55e-01  38.36 7.99e-199  12.44 3.84e-33 31.82 4.05e-154 
5.10 4.14e-07  8.41 1.43e-16  31.73 1.77e-153 9.44 2.56e-20 
3.46 5.65e-04  19.28 1.02e-70  3.03 2.49e-03 14.04 5.04e-41 
3.33 9.01e-04  5.47 5.58e-08  55.94 1.62e-310 34.32 2.67e-171 
1.65 9.96e-02  52.83 6.65e-292  14.90 1.68e-45 26.62 1.73e-118 
8.39 1.63e-16  22.88 1.58e-93  4.61 4.54e-06 49.63 3.14e-272 

11.01 1.13e-26  12.22 4.24e-32  22.67 3.51e-92 13.06 4.35e-36 
19.96 7.23e-75  3.86 1.19e-04  20.11 7.89e-76 26.66 8.40e-119 
21.98 1.08e-87  15.40 3.47e-48  1.22 2.21e-01 44.86 7.14e-242 
11.82 2.91e-30  4.54 6.24e-06  45.25 1.96e-244 26.79 1.24e-119 
15.23 2.86e-47  27.83 9.10e-127  15.46 1.67e-48 21.68 8.53e-86 
15.47 1.43e-48  27.79 1.69e-126  15.53 6.65e-49 5.08 4.61e-07 

   17.66 6.01e-61  0.24 8.10e-01 31.60 1.20e-152 
   27.53 1.12e-124  22.53 2.79e-91 30.37 3.89e-144 
   15.86 1.07e-50  45.45 1.05e-245 52.73 2.57e-291 
   21.31 2.11e-83  3.94 8.72e-05 14.26 3.83e-42 
   18.86 3.69e-68  36.17 5.61e-184 55.50 7.10e-308 
   23.85 6.66e-100  18.62 1.05e-66 13.58 1.05e-38 
      12.19 5.60e-32 12.37 8.18e-33 
      38.93 1.22e-202 11.22 1.35e-27 
      45.34 5.24e-245 25.39 3.53e-110 
      6.91 8.36e-12 24.99 1.66e-107 
      9.67 3.17e-21 18.15 7.23e-64 
      6.76 2.32e-11 25.25 3.02e-109 
      18.88 2.96e-68 75.50 0.00e+00 
      4.75 2.31e-06 8.23 5.80e-16 
      18.66 6.15e-67 38.35 9.55e-199 
      20.49 3.29e-78 14.31 2.02e-42 
      10.18 3.28e-23 27.85 6.72e-127 
        33.14 3.38e-163 
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Table	 S	 5	 T-value	 and	 Bonferroni-corrected	 (36	 comparisons)	 p-values	 to	 compare	 phenotype-prediction	 performance	 of	 Spatial	 and	
Temporal/Functional	connectivity	features	related	to:	a)	LowD	large-scale	RSNs	vs	highD	mPFMs	and	b)	within-scale	vs	cross-scale	mPFMs.	
Pri:	Primary,	Sec:	Secondary,	Statistically	significant	values	are	shown	in	bold	font.	Supplement	to		Figure	3.	

T-Value 
(corrected P-Value) 

 
Spatial connectivity Temporal connectivity 

lowD > mPFMs Pri2Pri > Pri2Sec Sec2Sec > Pri2Sec lowD > mPFMs Pri2Pri > Pri2Sec Sec2Sec > Pri2Sec 

Cognitive -1.464 
(0.148) 

-1.243 
(0.219) 

-3.526 
(7.92E-04) 

-0.6182 
(0.539) 

-1.5678 
(0.122) 

-0.487 
(0.628) 

GMa -21.657 
(1.37E-47) 

-21.017 
(3.89E-46) 

-14.978 
(2.21E-31) 

-4.6115 
(8.88E-06) 

-2.6633 
(8.64E-03) 

3.3587 
(1.01E-03) 

GMt -9.226 
(2.81E-16) 

-12.042 
(1.14E-23) 

-4.916 
(2.34E-06) 

-1.0236 
(0.31) 

-0.1672 
(0.867) 

2.0203 
(0.045) 

WM -26.469 
(6.31E-94) 

-25.468 
(2.19E-89) 

-0.583 
(0.56) 

1.0486 
(0.295) 

-9.8976 
(5.09E-21) 

7.1892 
(2.75E-12) 

Task-Contrast -15.190 
(4.15E-35) 

-7.165 
(1.48E-11) 

-56.461 
(1.94E-124) 

-7.0706 
(2.56E-11) 

-0.6513 
(0.516) 

35.8817 
(7.73E-89) 

Blood -7.272 
(2.68E-10) 

-4.296 
(5.09E-05) 

0.663 
(0.51) 

0.2176 
(0.828) 

-5.4334 
(6.59E-07) 

-0.5626 
(0.575) 

 
  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2024. ; https://doi.org/10.1101/2024.05.28.596120doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.28.596120
http://creativecommons.org/licenses/by/4.0/


 

 

 49 

 

 
Table	S	6	T-values	and	Bonferroni-corrected	(6	comparisons)	p-values	to	compare	phenotype-prediction	performance	of	mPFMs	vs	spatial	
ICA	(sICA)	and	Schaefer	Parcellation	of	the	same	dimensionality	(100	modes).	Statistically	significant	values	have	been	shown	in	bold	font.	
Supplement	to	Figure	5.	

 
T-value Corrected P-Value 

mPFM > sICA mPFM > Schaefer sICA > Schaefer mPFM vs sICA mPFM vs Schaefer sICA vs Schaefer 

Cognitive 1.261 7.385 7.252 0.212 3.61E-10 6.21E-10 
GMa 15.137 26.991 23.107 8.57E-32 7.90E-59 8.59E-51 
GMt 13.964 33.923 31.499 9.64E-29 2.09E-71 3.06E-67 
WM 12.675 51.843 57.347 1.07E-31 6.96E-192 5.19E-209 

Task-Contrast 14.572 14.496 5.086 1.93E-19 2.38E-19 5.75E-06 
Blood 7.974 17.409 17.33 1.24E-11 3.07E-28 4.04E-28 
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Table	S	7	Names	of	UK	Biobank	Imaging	Derived	Phenotypes	(IDPs)	related	to	GM	area:	148.	Supplement	to	Figure	5.	

IDP # IDP Name IDP # IDP Name 
1 aparc-a2009s_lh_area_G+S-frontomargin 75 aparc-a2009s_rh_area_G+S-frontomargin 
2 aparc-a2009s_lh_area_G+S-occipital-inf 76 aparc-a2009s_rh_area_G+S-occipital-inf 
3 aparc-a2009s_lh_area_G+S-paracentral 77 aparc-a2009s_rh_area_G+S-paracentral 
4 aparc-a2009s_lh_area_G+S-subcentral 78 aparc-a2009s_rh_area_G+S-subcentral 
5 aparc-a2009s_lh_area_G+S-transv-frontopol 79 aparc-a2009s_rh_area_G+S-transv-frontopol 
6 aparc-a2009s_lh_area_G+S-cingul-Ant 80 aparc-a2009s_rh_area_G+S-cingul-Ant 
7 aparc-a2009s_lh_area_G+S-cingul-Mid-Ant 81 aparc-a2009s_rh_area_G+S-cingul-Mid-Ant 
8 aparc-a2009s_lh_area_G+S-cingul-Mid-Post 82 aparc-a2009s_rh_area_G+S-cingul-Mid-Post 
9 aparc-a2009s_lh_area_G-cingul-Post-dorsal 83 aparc-a2009s_rh_area_G-cingul-Post-dorsal 
10 aparc-a2009s_lh_area_G-cingul-Post-ventral 84 aparc-a2009s_rh_area_G-cingul-Post-ventral 
11 aparc-a2009s_lh_area_G-cuneus 85 aparc-a2009s_rh_area_G-cuneus 
12 aparc-a2009s_lh_area_G-front-inf-Opercular 86 aparc-a2009s_rh_area_G-front-inf-Opercular 
13 aparc-a2009s_lh_area_G-front-inf-Orbital 87 aparc-a2009s_rh_area_G-front-inf-Orbital 
14 aparc-a2009s_lh_area_G-front-inf-Triangul 88 aparc-a2009s_rh_area_G-front-inf-Triangul 
15 aparc-a2009s_lh_area_G-front-middle 89 aparc-a2009s_rh_area_G-front-middle 
16 aparc-a2009s_lh_area_G-front-sup 90 aparc-a2009s_rh_area_G-front-sup 
17 aparc-a2009s_lh_area_G-Ins-lg+S-cent-ins 91 aparc-a2009s_rh_area_G-Ins-lg+S-cent-ins 
18 aparc-a2009s_lh_area_G-insular-short 92 aparc-a2009s_rh_area_G-insular-short 
19 aparc-a2009s_lh_area_G-occipital-middle 93 aparc-a2009s_rh_area_G-occipital-middle 
20 aparc-a2009s_lh_area_G-occipital-sup 94 aparc-a2009s_rh_area_G-occipital-sup 
21 aparc-a2009s_lh_area_G-oc-temp-lat-fusifor 95 aparc-a2009s_rh_area_G-oc-temp-lat-fusifor 
22 aparc-a2009s_lh_area_G-oc-temp-med-Lingual 96 aparc-a2009s_rh_area_G-oc-temp-med-Lingual 
23 aparc-a2009s_lh_area_G-oc-temp-med-Parahip 97 aparc-a2009s_rh_area_G-oc-temp-med-Parahip 
24 aparc-a2009s_lh_area_G-orbital 98 aparc-a2009s_rh_area_G-orbital 
25 aparc-a2009s_lh_area_G-pariet-inf-Angular 99 aparc-a2009s_rh_area_G-pariet-inf-Angular 
26 aparc-a2009s_lh_area_G-pariet-inf-Supramar 100 aparc-a2009s_rh_area_G-pariet-inf-Supramar 
27 aparc-a2009s_lh_area_G-parietal-sup 101 aparc-a2009s_rh_area_G-parietal-sup 
28 aparc-a2009s_lh_area_G-postcentral 102 aparc-a2009s_rh_area_G-postcentral 
29 aparc-a2009s_lh_area_G-precentral 103 aparc-a2009s_rh_area_G-precentral 
30 aparc-a2009s_lh_area_G-precuneus 104 aparc-a2009s_rh_area_G-precuneus 
31 aparc-a2009s_lh_area_G-rectus 105 aparc-a2009s_rh_area_G-rectus 
32 aparc-a2009s_lh_area_G-subcallosal 106 aparc-a2009s_rh_area_G-subcallosal 
33 aparc-a2009s_lh_area_G-temp-sup-G-T-transv 107 aparc-a2009s_rh_area_G-temp-sup-G-T-transv 
34 aparc-a2009s_lh_area_G-temp-sup-Lateral 108 aparc-a2009s_rh_area_G-temp-sup-Lateral 
35 aparc-a2009s_lh_area_G-temp-sup-Plan-polar 109 aparc-a2009s_rh_area_G-temp-sup-Plan-polar 
36 aparc-a2009s_lh_area_G-temp-sup-Plan-tempo 110 aparc-a2009s_rh_area_G-temp-sup-Plan-tempo 
37 aparc-a2009s_lh_area_G-temporal-inf 111 aparc-a2009s_rh_area_G-temporal-inf 
38 aparc-a2009s_lh_area_G-temporal-middle 112 aparc-a2009s_rh_area_G-temporal-middle 
39 aparc-a2009s_lh_area_Lat-Fis-ant-Horizont 113 aparc-a2009s_rh_area_Lat-Fis-ant-Horizont 
40 aparc-a2009s_lh_area_Lat-Fis-ant-Vertical 114 aparc-a2009s_rh_area_Lat-Fis-ant-Vertical 
41 aparc-a2009s_lh_area_Lat-Fis-post 115 aparc-a2009s_rh_area_Lat-Fis-post 
42 aparc-a2009s_lh_area_Pole-occipital 116 aparc-a2009s_rh_area_Pole-occipital 
43 aparc-a2009s_lh_area_Pole-temporal 117 aparc-a2009s_rh_area_Pole-temporal 
44 aparc-a2009s_lh_area_S-calcarine 118 aparc-a2009s_rh_area_S-calcarine 
45 aparc-a2009s_lh_area_S-central 119 aparc-a2009s_rh_area_S-central 
46 aparc-a2009s_lh_area_S-cingul-Marginalis 120 aparc-a2009s_rh_area_S-cingul-Marginalis 
47 aparc-a2009s_lh_area_S-circular-insula-ant 121 aparc-a2009s_rh_area_S-circular-insula-ant 
48 aparc-a2009s_lh_area_S-circular-insula-inf 122 aparc-a2009s_rh_area_S-circular-insula-inf 
49 aparc-a2009s_lh_area_S-circular-insula-sup 123 aparc-a2009s_rh_area_S-circular-insula-sup 
50 aparc-a2009s_lh_area_S-collat-transv-ant 124 aparc-a2009s_rh_area_S-collat-transv-ant 
51 aparc-a2009s_lh_area_S-collat-transv-post 125 aparc-a2009s_rh_area_S-collat-transv-post 
52 aparc-a2009s_lh_area_S-front-inf 126 aparc-a2009s_rh_area_S-front-inf 
53 aparc-a2009s_lh_area_S-front-middle 127 aparc-a2009s_rh_area_S-front-middle 
54 aparc-a2009s_lh_area_S-front-sup 128 aparc-a2009s_rh_area_S-front-sup 
55 aparc-a2009s_lh_area_S-interm-prim-Jensen 129 aparc-a2009s_rh_area_S-interm-prim-Jensen 
56 aparc-a2009s_lh_area_S-intrapariet+P-trans 130 aparc-a2009s_rh_area_S-intrapariet+P-trans 
57 aparc-a2009s_lh_area_S-oc-middle+Lunatus 131 aparc-a2009s_rh_area_S-oc-middle+Lunatus 
58 aparc-a2009s_lh_area_S-oc-sup+transversal 132 aparc-a2009s_rh_area_S-oc-sup+transversal 
59 aparc-a2009s_lh_area_S-occipital-ant 133 aparc-a2009s_rh_area_S-occipital-ant 
60 aparc-a2009s_lh_area_S-oc-temp-lat 134 aparc-a2009s_rh_area_S-oc-temp-lat 
61 aparc-a2009s_lh_area_S-oc-temp-med+Lingual 135 aparc-a2009s_rh_area_S-oc-temp-med+Lingual 
62 aparc-a2009s_lh_area_S-orbital-lateral 136 aparc-a2009s_rh_area_S-orbital-lateral 
63 aparc-a2009s_lh_area_S-orbital-med-olfact 137 aparc-a2009s_rh_area_S-orbital-med-olfact 
64 aparc-a2009s_lh_area_S-orbital-H-Shaped 138 aparc-a2009s_rh_area_S-orbital-H-Shaped 
65 aparc-a2009s_lh_area_S-parieto-occipital 139 aparc-a2009s_rh_area_S-parieto-occipital 
66 aparc-a2009s_lh_area_S-pericallosal 140 aparc-a2009s_rh_area_S-pericallosal 
67 aparc-a2009s_lh_area_S-postcentral 141 aparc-a2009s_rh_area_S-postcentral 
68 aparc-a2009s_lh_area_S-precentral-inf-part 142 aparc-a2009s_rh_area_S-precentral-inf-part 
69 aparc-a2009s_lh_area_S-precentral-sup-part 143 aparc-a2009s_rh_area_S-precentral-sup-part 
70 aparc-a2009s_lh_area_S-suborbital 144 aparc-a2009s_rh_area_S-suborbital 
71 aparc-a2009s_lh_area_S-subparietal 145 aparc-a2009s_rh_area_S-subparietal 
72 aparc-a2009s_lh_area_S-temporal-inf 146 aparc-a2009s_rh_area_S-temporal-inf 
73 aparc-a2009s_lh_area_S-temporal-sup 147 aparc-a2009s_rh_area_S-temporal-sup 
74 aparc-a2009s_lh_area_S-temporal-transverse 148 aparc-a2009s_rh_area_S-temporal-transverse 
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Table	S	8	Names	of	UK	Biobank	Imaging	Derived	Phenotypes	(IDPs)	related	to	Grey	Matter	thickness:	148.	Supplement	to	Figure	5.	

IDP # IDP Name IDP # IDP Name 
1  aparc-a2009s_lh_thickness_G+S-frontomargin, 75 aparc-a2009s_rh_thickness_G+S-frontomargin, 
2  aparc-a2009s_lh_thickness_G+S-occipital-inf, 76  aparc-a2009s_rh_thickness_G+S-occipital-inf, 
3  aparc-a2009s_lh_thickness_G+S-paracentral, 77  aparc-a2009s_rh_thickness_G+S-paracentral, 
4  aparc-a2009s_lh_thickness_G+S-subcentral, 78  aparc-a2009s_rh_thickness_G+S-subcentral, 
5  aparc-a2009s_lh_thickness_G+S-transv-frontopol, 79  aparc-a2009s_rh_thickness_G+S-transv-frontopol, 
6  aparc-a2009s_lh_thickness_G+S-cingul-Ant, 80  aparc-a2009s_rh_thickness_G+S-cingul-Ant, 
7  aparc-a2009s_lh_thickness_G+S-cingul-Mid-Ant, 81  aparc-a2009s_rh_thickness_G+S-cingul-Mid-Ant, 
8  aparc-a2009s_lh_thickness_G+S-cingul-Mid-Post, 82  aparc-a2009s_rh_thickness_G+S-cingul-Mid-Post, 
9  aparc-a2009s_lh_thickness_G-cingul-Post-dorsal, 83  aparc-a2009s_rh_thickness_G-cingul-Post-dorsal, 
10  aparc-a2009s_lh_thickness_G-cingul-Post-ventral, 84  aparc-a2009s_rh_thickness_G-cingul-Post-ventral, 
11  aparc-a2009s_lh_thickness_G-cuneus, 85  aparc-a2009s_rh_thickness_G-cuneus, 
12  aparc-a2009s_lh_thickness_G-front-inf-Opercular, 86  aparc-a2009s_rh_thickness_G-front-inf-Opercular, 
13  aparc-a2009s_lh_thickness_G-front-inf-Orbital, 87  aparc-a2009s_rh_thickness_G-front-inf-Orbital, 
14  aparc-a2009s_lh_thickness_G-front-inf-Triangul, 88  aparc-a2009s_rh_thickness_G-front-inf-Triangul, 
15  aparc-a2009s_lh_thickness_G-front-middle, 89  aparc-a2009s_rh_thickness_G-front-middle, 
16  aparc-a2009s_lh_thickness_G-front-sup, 90  aparc-a2009s_rh_thickness_G-front-sup, 
17  aparc-a2009s_lh_thickness_G-Ins-lg+S-cent-ins, 91  aparc-a2009s_rh_thickness_G-Ins-lg+S-cent-ins, 
18  aparc-a2009s_lh_thickness_G-insular-short, 92  aparc-a2009s_rh_thickness_G-insular-short, 
19  aparc-a2009s_lh_thickness_G-occipital-middle, 93  aparc-a2009s_rh_thickness_G-occipital-middle, 
20  aparc-a2009s_lh_thickness_G-occipital-sup, 94  aparc-a2009s_rh_thickness_G-occipital-sup, 
21  aparc-a2009s_lh_thickness_G-oc-temp-lat-fusifor, 95  aparc-a2009s_rh_thickness_G-oc-temp-lat-fusifor, 
22  aparc-a2009s_lh_thickness_G-oc-temp-med-Lingual, 96  aparc-a2009s_rh_thickness_G-oc-temp-med-Lingual, 
23  aparc-a2009s_lh_thickness_G-oc-temp-med-Parahip, 97  aparc-a2009s_rh_thickness_G-oc-temp-med-Parahip, 
24  aparc-a2009s_lh_thickness_G-orbital, 98  aparc-a2009s_rh_thickness_G-orbital, 
25  aparc-a2009s_lh_thickness_G-pariet-inf-Angular, 99  aparc-a2009s_rh_thickness_G-pariet-inf-Angular, 
26  aparc-a2009s_lh_thickness_G-pariet-inf-Supramar, 100  aparc-a2009s_rh_thickness_G-pariet-inf-Supramar, 
27  aparc-a2009s_lh_thickness_G-parietal-sup, 101  aparc-a2009s_rh_thickness_G-parietal-sup, 
28  aparc-a2009s_lh_thickness_G-postcentral, 102  aparc-a2009s_rh_thickness_G-postcentral, 
29  aparc-a2009s_lh_thickness_G-precentral, 103  aparc-a2009s_rh_thickness_G-precentral, 
30  aparc-a2009s_lh_thickness_G-precuneus, 104  aparc-a2009s_rh_thickness_G-precuneus, 
31  aparc-a2009s_lh_thickness_G-rectus, 105  aparc-a2009s_rh_thickness_G-rectus, 
32  aparc-a2009s_lh_thickness_G-subcallosal, 106  aparc-a2009s_rh_thickness_G-subcallosal, 
33  aparc-a2009s_lh_thickness_G-temp-sup-G-T-transv, 107  aparc-a2009s_rh_thickness_G-temp-sup-G-T-transv, 
34  aparc-a2009s_lh_thickness_G-temp-sup-Lateral, 108  aparc-a2009s_rh_thickness_G-temp-sup-Lateral, 
35  aparc-a2009s_lh_thickness_G-temp-sup-Plan-polar, 109  aparc-a2009s_rh_thickness_G-temp-sup-Plan-polar, 
36  aparc-a2009s_lh_thickness_G-temp-sup-Plan-tempo, 110  aparc-a2009s_rh_thickness_G-temp-sup-Plan-tempo, 
37  aparc-a2009s_lh_thickness_G-temporal-inf, 111  aparc-a2009s_rh_thickness_G-temporal-inf, 
38  aparc-a2009s_lh_thickness_G-temporal-middle, 112  aparc-a2009s_rh_thickness_G-temporal-middle, 
39  aparc-a2009s_lh_thickness_Lat-Fis-ant-Horizont, 113  aparc-a2009s_rh_thickness_Lat-Fis-ant-Horizont, 
40  aparc-a2009s_lh_thickness_Lat-Fis-ant-Vertical, 114  aparc-a2009s_rh_thickness_Lat-Fis-ant-Vertical, 
41  aparc-a2009s_lh_thickness_Lat-Fis-post, 115  aparc-a2009s_rh_thickness_Lat-Fis-post, 
42  aparc-a2009s_lh_thickness_Pole-occipital, 116  aparc-a2009s_rh_thickness_Pole-occipital, 
43  aparc-a2009s_lh_thickness_Pole-temporal, 117  aparc-a2009s_rh_thickness_Pole-temporal, 
44  aparc-a2009s_lh_thickness_S-calcarine, 118  aparc-a2009s_rh_thickness_S-calcarine, 
45  aparc-a2009s_lh_thickness_S-central, 119  aparc-a2009s_rh_thickness_S-central, 
46  aparc-a2009s_lh_thickness_S-cingul-Marginalis, 120  aparc-a2009s_rh_thickness_S-cingul-Marginalis, 
47  aparc-a2009s_lh_thickness_S-circular-insula-ant, 121  aparc-a2009s_rh_thickness_S-circular-insula-ant, 
48  aparc-a2009s_lh_thickness_S-circular-insula-inf, 122  aparc-a2009s_rh_thickness_S-circular-insula-inf, 
49  aparc-a2009s_lh_thickness_S-circular-insula-sup, 123  aparc-a2009s_rh_thickness_S-circular-insula-sup, 
50  aparc-a2009s_lh_thickness_S-collat-transv-ant, 124  aparc-a2009s_rh_thickness_S-collat-transv-ant, 
51  aparc-a2009s_lh_thickness_S-collat-transv-post, 125  aparc-a2009s_rh_thickness_S-collat-transv-post, 
52  aparc-a2009s_lh_thickness_S-front-inf, 126  aparc-a2009s_rh_thickness_S-front-inf, 
53  aparc-a2009s_lh_thickness_S-front-middle, 127  aparc-a2009s_rh_thickness_S-front-middle, 
54  aparc-a2009s_lh_thickness_S-front-sup, 128  aparc-a2009s_rh_thickness_S-front-sup, 
55  aparc-a2009s_lh_thickness_S-interm-prim-Jensen, 129  aparc-a2009s_rh_thickness_S-interm-prim-Jensen, 
56  aparc-a2009s_lh_thickness_S-intrapariet+P-trans, 130  aparc-a2009s_rh_thickness_S-intrapariet+P-trans, 
57  aparc-a2009s_lh_thickness_S-oc-middle+Lunatus, 131  aparc-a2009s_rh_thickness_S-oc-middle+Lunatus, 
58  aparc-a2009s_lh_thickness_S-oc-sup+transversal, 132  aparc-a2009s_rh_thickness_S-oc-sup+transversal, 
59  aparc-a2009s_lh_thickness_S-occipital-ant, 133  aparc-a2009s_rh_thickness_S-occipital-ant, 
60  aparc-a2009s_lh_thickness_S-oc-temp-lat, 134  aparc-a2009s_rh_thickness_S-oc-temp-lat, 
61  aparc-a2009s_lh_thickness_S-oc-temp-med+Lingual, 135  aparc-a2009s_rh_thickness_S-oc-temp-med+Lingual, 
62  aparc-a2009s_lh_thickness_S-orbital-lateral, 136  aparc-a2009s_rh_thickness_S-orbital-lateral, 
63  aparc-a2009s_lh_thickness_S-orbital-med-olfact, 137  aparc-a2009s_rh_thickness_S-orbital-med-olfact, 
64  aparc-a2009s_lh_thickness_S-orbital-H-Shaped, 138  aparc-a2009s_rh_thickness_S-orbital-H-Shaped, 
65  aparc-a2009s_lh_thickness_S-parieto-occipital, 139  aparc-a2009s_rh_thickness_S-parieto-occipital, 
66  aparc-a2009s_lh_thickness_S-pericallosal, 140  aparc-a2009s_rh_thickness_S-pericallosal, 
67  aparc-a2009s_lh_thickness_S-postcentral, 141  aparc-a2009s_rh_thickness_S-postcentral, 
68  aparc-a2009s_lh_thickness_S-precentral-inf-part, 142  aparc-a2009s_rh_thickness_S-precentral-inf-part, 
69  aparc-a2009s_lh_thickness_S-precentral-sup-part, 143  aparc-a2009s_rh_thickness_S-precentral-sup-part, 
70  aparc-a2009s_lh_thickness_S-suborbital, 144  aparc-a2009s_rh_thickness_S-suborbital, 
71  aparc-a2009s_lh_thickness_S-subparietal, 145  aparc-a2009s_rh_thickness_S-subparietal, 
72  aparc-a2009s_lh_thickness_S-temporal-inf, 146  aparc-a2009s_rh_thickness_S-temporal-inf, 
73  aparc-a2009s_lh_thickness_S-temporal-sup, 147  aparc-a2009s_rh_thickness_S-temporal-sup, 
74  aparc-a2009s_lh_thickness_S-temporal-transverse, 148  aparc-a2009s_rh_thickness_S-temporal-transverse, 
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Table	S	9	Names	of	UK	Biobank	Imaging	Derived	Phenotypes	(IDPs)	related	to	White	Matter:	453.	Supplement	to	Figure	5.	

IDP # IDP Name IDP # IDP Name 
1 IDP_T2_FLAIR_BIANCA_WMH_volume 78 IDP_dMRI_ProbtrackX_FA_unc_r 
2 IDP_T2_FLAIR_BIANCA_periventWMH_volume 79 IDP_dMRI_TBSS_MO_Middle_cerebellar_peduncle 
3 IDP_T2_FLAIR_BIANCA_deepWMH_volume 80 IDP_dMRI_TBSS_MO_Pontine_crossing_tract 
4 IDP_dMRI_TBSS_FA_Middle_cerebellar_peduncle 81 IDP_dMRI_TBSS_MO_Genu_of_corpus_callosum 
5 IDP_dMRI_TBSS_FA_Pontine_crossing_tract 82 IDP_dMRI_TBSS_MO_Body_of_corpus_callosum 
6 IDP_dMRI_TBSS_FA_Genu_of_corpus_callosum 83 IDP_dMRI_TBSS_MO_Splenium_of_corpus_callosum 
7 IDP_dMRI_TBSS_FA_Body_of_corpus_callosum 84 IDP_dMRI_TBSS_MO_Fornix 
8 IDP_dMRI_TBSS_FA_Splenium_of_corpus_callosum 85 IDP_dMRI_TBSS_MO_Corticospinal_tract_R 
9 IDP_dMRI_TBSS_FA_Fornix 86 IDP_dMRI_TBSS_MO_Corticospinal_tract_L 
10 IDP_dMRI_TBSS_FA_Corticospinal_tract_R 87 IDP_dMRI_TBSS_MO_Medial_lemniscus_R 
11 IDP_dMRI_TBSS_FA_Corticospinal_tract_L 88 IDP_dMRI_TBSS_MO_Medial_lemniscus_L 
12 IDP_dMRI_TBSS_FA_Medial_lemniscus_R 89 IDP_dMRI_TBSS_MO_Inferior_cerebellar_peduncle_R 
13 IDP_dMRI_TBSS_FA_Medial_lemniscus_L 90 IDP_dMRI_TBSS_MO_Inferior_cerebellar_peduncle_L 
14 IDP_dMRI_TBSS_FA_Inferior_cerebellar_peduncle_R 91 IDP_dMRI_TBSS_MO_Superior_cerebellar_peduncle_R 
15 IDP_dMRI_TBSS_FA_Inferior_cerebellar_peduncle_L 92 IDP_dMRI_TBSS_MO_Superior_cerebellar_peduncle_L 
16 IDP_dMRI_TBSS_FA_Superior_cerebellar_peduncle_R 93 IDP_dMRI_TBSS_MO_Cerebral_peduncle_R 
17 IDP_dMRI_TBSS_FA_Superior_cerebellar_peduncle_L 94 IDP_dMRI_TBSS_MO_Cerebral_peduncle_L 
18 IDP_dMRI_TBSS_FA_Cerebral_peduncle_R 95 IDP_dMRI_TBSS_MO_Anterior_limb_of_internal_capsule_R 
19 IDP_dMRI_TBSS_FA_Cerebral_peduncle_L 96 IDP_dMRI_TBSS_MO_Anterior_limb_of_internal_capsule_L 
20 IDP_dMRI_TBSS_FA_Anterior_limb_of_internal_capsule_R 97 IDP_dMRI_TBSS_MO_Posterior_limb_of_internal_capsule_R 
21 IDP_dMRI_TBSS_FA_Anterior_limb_of_internal_capsule_L 98 IDP_dMRI_TBSS_MO_Posterior_limb_of_internal_capsule_L 
22 IDP_dMRI_TBSS_FA_Posterior_limb_of_internal_capsule_R 99 IDP_dMRI_TBSS_MO_Retrolenticular_part_of_internal_capsule_R 
23 IDP_dMRI_TBSS_FA_Posterior_limb_of_internal_capsule_L 100 IDP_dMRI_TBSS_MO_Retrolenticular_part_of_internal_capsule_L 
24 IDP_dMRI_TBSS_FA_Retrolenticular_part_of_internal_capsule_R 101 IDP_dMRI_TBSS_MO_Anterior_corona_radiata_R 
25 IDP_dMRI_TBSS_FA_Retrolenticular_part_of_internal_capsule_L 102 IDP_dMRI_TBSS_MO_Anterior_corona_radiata_L 
26 IDP_dMRI_TBSS_FA_Anterior_corona_radiata_R 103 IDP_dMRI_TBSS_MO_Superior_corona_radiata_R 
27 IDP_dMRI_TBSS_FA_Anterior_corona_radiata_L 104 IDP_dMRI_TBSS_MO_Superior_corona_radiata_L 
28 IDP_dMRI_TBSS_FA_Superior_corona_radiata_R 105 IDP_dMRI_TBSS_MO_Posterior_corona_radiata_R 
29 IDP_dMRI_TBSS_FA_Superior_corona_radiata_L 106 IDP_dMRI_TBSS_MO_Posterior_corona_radiata_L 
30 IDP_dMRI_TBSS_FA_Posterior_corona_radiata_R 107 IDP_dMRI_TBSS_MO_Posterior_thalamic_radiation_R 
31 IDP_dMRI_TBSS_FA_Posterior_corona_radiata_L 108 IDP_dMRI_TBSS_MO_Posterior_thalamic_radiation_L 
32 IDP_dMRI_TBSS_FA_Posterior_thalamic_radiation_R 109 IDP_dMRI_TBSS_MO_Sagittal_stratum_R 
33 IDP_dMRI_TBSS_FA_Posterior_thalamic_radiation_L 110 IDP_dMRI_TBSS_MO_Sagittal_stratum_L 
34 IDP_dMRI_TBSS_FA_Sagittal_stratum_R 111 IDP_dMRI_TBSS_MO_External_capsule_R 
35 IDP_dMRI_TBSS_FA_Sagittal_stratum_L 112 IDP_dMRI_TBSS_MO_External_capsule_L 
36 IDP_dMRI_TBSS_FA_External_capsule_R 113 IDP_dMRI_TBSS_MO_Cingulum_cingulate_gyrus_R 
37 IDP_dMRI_TBSS_FA_External_capsule_L 114 IDP_dMRI_TBSS_MO_Cingulum_cingulate_gyrus_L 
38 IDP_dMRI_TBSS_FA_Cingulum_cingulate_gyrus_R 115 IDP_dMRI_TBSS_MO_Cingulum_hippocampus_R 
39 IDP_dMRI_TBSS_FA_Cingulum_cingulate_gyrus_L 116 IDP_dMRI_TBSS_MO_Cingulum_hippocampus_L 
40 IDP_dMRI_TBSS_FA_Cingulum_hippocampus_R 117 IDP_dMRI_TBSS_MO_Fornix_cres+Stria_terminalis_R 
41 IDP_dMRI_TBSS_FA_Cingulum_hippocampus_L 118 IDP_dMRI_TBSS_MO_Fornix_cres+Stria_terminalis_L 
42 IDP_dMRI_TBSS_FA_Fornix_cres+Stria_terminalis_R 119 IDP_dMRI_TBSS_MO_Superior_longitudinal_fasciculus_R 
43 IDP_dMRI_TBSS_FA_Fornix_cres+Stria_terminalis_L 120 IDP_dMRI_TBSS_MO_Superior_longitudinal_fasciculus_L 
44 IDP_dMRI_TBSS_FA_Superior_longitudinal_fasciculus_R 121 IDP_dMRI_TBSS_MO_Superior_fronto-occipital_fasciculus_R 
45 IDP_dMRI_TBSS_FA_Superior_longitudinal_fasciculus_L 122 IDP_dMRI_TBSS_MO_Superior_fronto-occipital_fasciculus_L 
46 IDP_dMRI_TBSS_FA_Superior_fronto-occipital_fasciculus_R 123 IDP_dMRI_TBSS_MO_Uncinate_fasciculus_R 
47 IDP_dMRI_TBSS_FA_Superior_fronto-occipital_fasciculus_L 124 IDP_dMRI_TBSS_MO_Uncinate_fasciculus_L 
48 IDP_dMRI_TBSS_FA_Uncinate_fasciculus_R 125 IDP_dMRI_TBSS_MO_Tapetum_R 
49 IDP_dMRI_TBSS_FA_Uncinate_fasciculus_L 126 IDP_dMRI_TBSS_MO_Tapetum_L 
50 IDP_dMRI_TBSS_FA_Tapetum_R 127 IDP_dMRI_ProbtrackX_MO_ar_l 
51 IDP_dMRI_TBSS_FA_Tapetum_L 128 IDP_dMRI_ProbtrackX_MO_ar_r 
52 IDP_dMRI_ProbtrackX_FA_ar_l 129 IDP_dMRI_ProbtrackX_MO_atr_l 
53 IDP_dMRI_ProbtrackX_FA_ar_r 130 IDP_dMRI_ProbtrackX_MO_atr_r 
54 IDP_dMRI_ProbtrackX_FA_atr_l 131 IDP_dMRI_ProbtrackX_MO_cgc_l 
55 IDP_dMRI_ProbtrackX_FA_atr_r 132 IDP_dMRI_ProbtrackX_MO_cgc_r 
56 IDP_dMRI_ProbtrackX_FA_cgc_l 133 IDP_dMRI_ProbtrackX_MO_cgh_l 
57 IDP_dMRI_ProbtrackX_FA_cgc_r 134 IDP_dMRI_ProbtrackX_MO_cgh_r 
58 IDP_dMRI_ProbtrackX_FA_cgh_l 135 IDP_dMRI_ProbtrackX_MO_cst_l 
59 IDP_dMRI_ProbtrackX_FA_cgh_r 136 IDP_dMRI_ProbtrackX_MO_cst_r 
60 IDP_dMRI_ProbtrackX_FA_cst_l 137 IDP_dMRI_ProbtrackX_MO_fma 
61 IDP_dMRI_ProbtrackX_FA_cst_r 138 IDP_dMRI_ProbtrackX_MO_fmi 
62 IDP_dMRI_ProbtrackX_FA_fma 139 IDP_dMRI_ProbtrackX_MO_ifo_l 
63 IDP_dMRI_ProbtrackX_FA_fmi 140 IDP_dMRI_ProbtrackX_MO_ifo_r 
64 IDP_dMRI_ProbtrackX_FA_ifo_l 141 IDP_dMRI_ProbtrackX_MO_ilf_l 
65 IDP_dMRI_ProbtrackX_FA_ifo_r 142 IDP_dMRI_ProbtrackX_MO_ilf_r 
66 IDP_dMRI_ProbtrackX_FA_ilf_l 143 IDP_dMRI_ProbtrackX_MO_mcp 
67 IDP_dMRI_ProbtrackX_FA_ilf_r 144 IDP_dMRI_ProbtrackX_MO_ml_l 
68 IDP_dMRI_ProbtrackX_FA_mcp 145 IDP_dMRI_ProbtrackX_MO_ml_r 
69 IDP_dMRI_ProbtrackX_FA_ml_l 146 IDP_dMRI_ProbtrackX_MO_ptr_l 
70 IDP_dMRI_ProbtrackX_FA_ml_r 147 IDP_dMRI_ProbtrackX_MO_ptr_r 
71 IDP_dMRI_ProbtrackX_FA_ptr_l 148 IDP_dMRI_ProbtrackX_MO_slf_l 
72 IDP_dMRI_ProbtrackX_FA_ptr_r 149 IDP_dMRI_ProbtrackX_MO_slf_r 
73 IDP_dMRI_ProbtrackX_FA_slf_l 150 IDP_dMRI_ProbtrackX_MO_str_l 
74 IDP_dMRI_ProbtrackX_FA_slf_r 151 IDP_dMRI_ProbtrackX_MO_str_r 
75 IDP_dMRI_ProbtrackX_FA_str_l 152 IDP_dMRI_ProbtrackX_MO_unc_l 
76 IDP_dMRI_ProbtrackX_FA_str_r 153 IDP_dMRI_ProbtrackX_MO_unc_r 
77 IDP_dMRI_ProbtrackX_FA_unc_l 154 IDP_dMRI_TBSS_MD_Middle_cerebellar_peduncle 
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Table	S	10	Names	of	UK	Biobank	Imaging	Derived	Phenotypes	(IDPs)	related	to	White	Matter-continued:	453.	Supplement	to	Figure	5.	

IDP # IDP Name IDP # IDP Name 
155 IDP_dMRI_TBSS_MD_Pontine_crossing_tract 232 IDP_dMRI_TBSS_ICVF_Body_of_corpus_callosum 
156 IDP_dMRI_TBSS_MD_Genu_of_corpus_callosum 233 IDP_dMRI_TBSS_ICVF_Splenium_of_corpus_callosum 
157 IDP_dMRI_TBSS_MD_Body_of_corpus_callosum 234 IDP_dMRI_TBSS_ICVF_Fornix 
158 IDP_dMRI_TBSS_MD_Splenium_of_corpus_callosum 235 IDP_dMRI_TBSS_ICVF_Corticospinal_tract_R 
159 IDP_dMRI_TBSS_MD_Fornix 236 IDP_dMRI_TBSS_ICVF_Corticospinal_tract_L 
160 IDP_dMRI_TBSS_MD_Corticospinal_tract_R 237 IDP_dMRI_TBSS_ICVF_Medial_lemniscus_R 
161 IDP_dMRI_TBSS_MD_Corticospinal_tract_L 238 IDP_dMRI_TBSS_ICVF_Medial_lemniscus_L 
162 IDP_dMRI_TBSS_MD_Medial_lemniscus_R 239 IDP_dMRI_TBSS_ICVF_Inferior_cerebellar_peduncle_R 
163 IDP_dMRI_TBSS_MD_Medial_lemniscus_L 240 IDP_dMRI_TBSS_ICVF_Inferior_cerebellar_peduncle_L 
164 IDP_dMRI_TBSS_MD_Inferior_cerebellar_peduncle_R 241 IDP_dMRI_TBSS_ICVF_Superior_cerebellar_peduncle_R 
165 IDP_dMRI_TBSS_MD_Inferior_cerebellar_peduncle_L 242 IDP_dMRI_TBSS_ICVF_Superior_cerebellar_peduncle_L 
166 IDP_dMRI_TBSS_MD_Superior_cerebellar_peduncle_R 243 IDP_dMRI_TBSS_ICVF_Cerebral_peduncle_R 
167 IDP_dMRI_TBSS_MD_Superior_cerebellar_peduncle_L 244 IDP_dMRI_TBSS_ICVF_Cerebral_peduncle_L 
168 IDP_dMRI_TBSS_MD_Cerebral_peduncle_R 245 IDP_dMRI_TBSS_ICVF_Anterior_limb_of_internal_capsule_R 
169 IDP_dMRI_TBSS_MD_Cerebral_peduncle_L 246 IDP_dMRI_TBSS_ICVF_Anterior_limb_of_internal_capsule_L 
170 IDP_dMRI_TBSS_MD_Anterior_limb_of_internal_capsule_R 247 IDP_dMRI_TBSS_ICVF_Posterior_limb_of_internal_capsule_R 
171 IDP_dMRI_TBSS_MD_Anterior_limb_of_internal_capsule_L 248 IDP_dMRI_TBSS_ICVF_Posterior_limb_of_internal_capsule_L 
172 IDP_dMRI_TBSS_MD_Posterior_limb_of_internal_capsule_R 249 IDP_dMRI_TBSS_ICVF_Retrolenticular_part_of_internal_capsule_R 
173 IDP_dMRI_TBSS_MD_Posterior_limb_of_internal_capsule_L 250 IDP_dMRI_TBSS_ICVF_Retrolenticular_part_of_internal_capsule_L 
174 IDP_dMRI_TBSS_MD_Retrolenticular_part_of_internal_capsule_R 251 IDP_dMRI_TBSS_ICVF_Anterior_corona_radiata_R 
175 IDP_dMRI_TBSS_MD_Retrolenticular_part_of_internal_capsule_L 252 IDP_dMRI_TBSS_ICVF_Anterior_corona_radiata_L 
176 IDP_dMRI_TBSS_MD_Anterior_corona_radiata_R 253 IDP_dMRI_TBSS_ICVF_Superior_corona_radiata_R 
177 IDP_dMRI_TBSS_MD_Anterior_corona_radiata_L 254 IDP_dMRI_TBSS_ICVF_Superior_corona_radiata_L 
178 IDP_dMRI_TBSS_MD_Superior_corona_radiata_R 255 IDP_dMRI_TBSS_ICVF_Posterior_corona_radiata_R 
179 IDP_dMRI_TBSS_MD_Superior_corona_radiata_L 256 IDP_dMRI_TBSS_ICVF_Posterior_corona_radiata_L 
180 IDP_dMRI_TBSS_MD_Posterior_corona_radiata_R 257 IDP_dMRI_TBSS_ICVF_Posterior_thalamic_radiation_R 
181 IDP_dMRI_TBSS_MD_Posterior_corona_radiata_L 258 IDP_dMRI_TBSS_ICVF_Posterior_thalamic_radiation_L 
182 IDP_dMRI_TBSS_MD_Posterior_thalamic_radiation_R 259 IDP_dMRI_TBSS_ICVF_Sagittal_stratum_R 
183 IDP_dMRI_TBSS_MD_Posterior_thalamic_radiation_L 260 IDP_dMRI_TBSS_ICVF_Sagittal_stratum_L 
184 IDP_dMRI_TBSS_MD_Sagittal_stratum_R 261 IDP_dMRI_TBSS_ICVF_External_capsule_R 
185 IDP_dMRI_TBSS_MD_Sagittal_stratum_L 262 IDP_dMRI_TBSS_ICVF_External_capsule_L 
186 IDP_dMRI_TBSS_MD_External_capsule_R 263 IDP_dMRI_TBSS_ICVF_Cingulum_cingulate_gyrus_R 
187 IDP_dMRI_TBSS_MD_External_capsule_L 264 IDP_dMRI_TBSS_ICVF_Cingulum_cingulate_gyrus_L 
188 IDP_dMRI_TBSS_MD_Cingulum_cingulate_gyrus_R 265 IDP_dMRI_TBSS_ICVF_Cingulum_hippocampus_R 
189 IDP_dMRI_TBSS_MD_Cingulum_cingulate_gyrus_L 266 IDP_dMRI_TBSS_ICVF_Cingulum_hippocampus_L 
190 IDP_dMRI_TBSS_MD_Cingulum_hippocampus_R 267 IDP_dMRI_TBSS_ICVF_Fornix_cres+Stria_terminalis_R 
191 IDP_dMRI_TBSS_MD_Cingulum_hippocampus_L 268 IDP_dMRI_TBSS_ICVF_Fornix_cres+Stria_terminalis_L 
192 IDP_dMRI_TBSS_MD_Fornix_cres+Stria_terminalis_R 269 IDP_dMRI_TBSS_ICVF_Superior_longitudinal_fasciculus_R 
193 IDP_dMRI_TBSS_MD_Fornix_cres+Stria_terminalis_L 270 IDP_dMRI_TBSS_ICVF_Superior_longitudinal_fasciculus_L 
194 IDP_dMRI_TBSS_MD_Superior_longitudinal_fasciculus_R 271 IDP_dMRI_TBSS_ICVF_Superior_fronto-occipital_fasciculus_R 
195 IDP_dMRI_TBSS_MD_Superior_longitudinal_fasciculus_L 272 IDP_dMRI_TBSS_ICVF_Superior_fronto-occipital_fasciculus_L 
196 IDP_dMRI_TBSS_MD_Superior_fronto-occipital_fasciculus_R 273 IDP_dMRI_TBSS_ICVF_Uncinate_fasciculus_R 
197 IDP_dMRI_TBSS_MD_Superior_fronto-occipital_fasciculus_L 274 IDP_dMRI_TBSS_ICVF_Uncinate_fasciculus_L 
198 IDP_dMRI_TBSS_MD_Uncinate_fasciculus_R 275 IDP_dMRI_TBSS_ICVF_Tapetum_R 
199 IDP_dMRI_TBSS_MD_Uncinate_fasciculus_L 276 IDP_dMRI_TBSS_ICVF_Tapetum_L 
200 IDP_dMRI_TBSS_MD_Tapetum_R 277 IDP_dMRI_ProbtrackX_ICVF_ar_l 
201 IDP_dMRI_TBSS_MD_Tapetum_L 278 IDP_dMRI_ProbtrackX_ICVF_ar_r 
202 IDP_dMRI_ProbtrackX_MD_ar_l 279 IDP_dMRI_ProbtrackX_ICVF_atr_l 
203 IDP_dMRI_ProbtrackX_MD_ar_r 280 IDP_dMRI_ProbtrackX_ICVF_atr_r 
204 IDP_dMRI_ProbtrackX_MD_atr_l 281 IDP_dMRI_ProbtrackX_ICVF_cgc_l 
205 IDP_dMRI_ProbtrackX_MD_atr_r 282 IDP_dMRI_ProbtrackX_ICVF_cgc_r 
206 IDP_dMRI_ProbtrackX_MD_cgc_l 283 IDP_dMRI_ProbtrackX_ICVF_cgh_l 
207 IDP_dMRI_ProbtrackX_MD_cgc_r 284 IDP_dMRI_ProbtrackX_ICVF_cgh_r 
208 IDP_dMRI_ProbtrackX_MD_cgh_l 285 IDP_dMRI_ProbtrackX_ICVF_cst_l 
209 IDP_dMRI_ProbtrackX_MD_cgh_r 286 IDP_dMRI_ProbtrackX_ICVF_cst_r 
210 IDP_dMRI_ProbtrackX_MD_cst_l 287 IDP_dMRI_ProbtrackX_ICVF_fma 
211 IDP_dMRI_ProbtrackX_MD_cst_r 288 IDP_dMRI_ProbtrackX_ICVF_fmi 
212 IDP_dMRI_ProbtrackX_MD_fma 289 IDP_dMRI_ProbtrackX_ICVF_ifo_l 
213 IDP_dMRI_ProbtrackX_MD_fmi 290 IDP_dMRI_ProbtrackX_ICVF_ifo_r 
214 IDP_dMRI_ProbtrackX_MD_ifo_l 291 IDP_dMRI_ProbtrackX_ICVF_ilf_l 
215 IDP_dMRI_ProbtrackX_MD_ifo_r 292 IDP_dMRI_ProbtrackX_ICVF_ilf_r 
216 IDP_dMRI_ProbtrackX_MD_ilf_l 293 IDP_dMRI_ProbtrackX_ICVF_mcp 
217 IDP_dMRI_ProbtrackX_MD_ilf_r 294 IDP_dMRI_ProbtrackX_ICVF_ml_l 
218 IDP_dMRI_ProbtrackX_MD_mcp 295 IDP_dMRI_ProbtrackX_ICVF_ml_r 
219 IDP_dMRI_ProbtrackX_MD_ml_l 296 IDP_dMRI_ProbtrackX_ICVF_ptr_l 
220 IDP_dMRI_ProbtrackX_MD_ml_r 297 IDP_dMRI_ProbtrackX_ICVF_ptr_r 
221 IDP_dMRI_ProbtrackX_MD_ptr_l 298 IDP_dMRI_ProbtrackX_ICVF_slf_l 
222 IDP_dMRI_ProbtrackX_MD_ptr_r 299 IDP_dMRI_ProbtrackX_ICVF_slf_r 
223 IDP_dMRI_ProbtrackX_MD_slf_l 300 IDP_dMRI_ProbtrackX_ICVF_str_l 
224 IDP_dMRI_ProbtrackX_MD_slf_r 301 IDP_dMRI_ProbtrackX_ICVF_str_r 
225 IDP_dMRI_ProbtrackX_MD_str_l 302 IDP_dMRI_ProbtrackX_ICVF_unc_l 
226 IDP_dMRI_ProbtrackX_MD_str_r 303 IDP_dMRI_ProbtrackX_ICVF_unc_r 
227 IDP_dMRI_ProbtrackX_MD_unc_l 304 IDP_dMRI_TBSS_OD_Middle_cerebellar_peduncle 
228 IDP_dMRI_ProbtrackX_MD_unc_r 305 IDP_dMRI_TBSS_OD_Pontine_crossing_tract 
229 IDP_dMRI_TBSS_ICVF_Middle_cerebellar_peduncle 306 IDP_dMRI_TBSS_OD_Genu_of_corpus_callosum 
230 IDP_dMRI_TBSS_ICVF_Pontine_crossing_tract 307 IDP_dMRI_TBSS_OD_Body_of_corpus_callosum 
231 IDP_dMRI_TBSS_ICVF_Genu_of_corpus_callosum 308 IDP_dMRI_TBSS_OD_Splenium_of_corpus_callosum 
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Table	S	11	Names	of	UK	Biobank	Imaging	Derived	Phenotypes	(IDPs)	related	to	White	Matter-continued:	453.	Supplement	to	Figure	5.	

IDP # IDP Name IDP # IDP Name 
309 IDP_dMRI_TBSS_OD_Fornix 386 IDP_dMRI_TBSS_ISOVF_Corticospinal_tract_L 
310 IDP_dMRI_TBSS_OD_Corticospinal_tract_R 387 IDP_dMRI_TBSS_ISOVF_Medial_lemniscus_R 
311 IDP_dMRI_TBSS_OD_Corticospinal_tract_L 388 IDP_dMRI_TBSS_ISOVF_Medial_lemniscus_L 
312 IDP_dMRI_TBSS_OD_Medial_lemniscus_R 389 IDP_dMRI_TBSS_ISOVF_Inferior_cerebellar_peduncle_R 
313 IDP_dMRI_TBSS_OD_Medial_lemniscus_L 390 IDP_dMRI_TBSS_ISOVF_Inferior_cerebellar_peduncle_L 
314 IDP_dMRI_TBSS_OD_Inferior_cerebellar_peduncle_R 391 IDP_dMRI_TBSS_ISOVF_Superior_cerebellar_peduncle_R 
315 IDP_dMRI_TBSS_OD_Inferior_cerebellar_peduncle_L 392 IDP_dMRI_TBSS_ISOVF_Superior_cerebellar_peduncle_L 
316 IDP_dMRI_TBSS_OD_Superior_cerebellar_peduncle_R 393 IDP_dMRI_TBSS_ISOVF_Cerebral_peduncle_R 
317 IDP_dMRI_TBSS_OD_Superior_cerebellar_peduncle_L 394 IDP_dMRI_TBSS_ISOVF_Cerebral_peduncle_L 
318 IDP_dMRI_TBSS_OD_Cerebral_peduncle_R 395 IDP_dMRI_TBSS_ISOVF_Anterior_limb_of_internal_capsule_R 
319 IDP_dMRI_TBSS_OD_Cerebral_peduncle_L 396 IDP_dMRI_TBSS_ISOVF_Anterior_limb_of_internal_capsule_L 
320 IDP_dMRI_TBSS_OD_Anterior_limb_of_internal_capsule_R 397 IDP_dMRI_TBSS_ISOVF_Posterior_limb_of_internal_capsule_R 
321 IDP_dMRI_TBSS_OD_Anterior_limb_of_internal_capsule_L 398 IDP_dMRI_TBSS_ISOVF_Posterior_limb_of_internal_capsule_L 
322 IDP_dMRI_TBSS_OD_Posterior_limb_of_internal_capsule_R 399 IDP_dMRI_TBSS_ISOVF_Retrolenticular_part_of_internal_capsule_R 
323 IDP_dMRI_TBSS_OD_Posterior_limb_of_internal_capsule_L 400 IDP_dMRI_TBSS_ISOVF_Retrolenticular_part_of_internal_capsule_L 
324 IDP_dMRI_TBSS_OD_Retrolenticular_part_of_internal_capsule_R 401 IDP_dMRI_TBSS_ISOVF_Anterior_corona_radiata_R 
325 IDP_dMRI_TBSS_OD_Retrolenticular_part_of_internal_capsule_L 402 IDP_dMRI_TBSS_ISOVF_Anterior_corona_radiata_L 
326 IDP_dMRI_TBSS_OD_Anterior_corona_radiata_R 403 IDP_dMRI_TBSS_ISOVF_Superior_corona_radiata_R 
327 IDP_dMRI_TBSS_OD_Anterior_corona_radiata_L 404 IDP_dMRI_TBSS_ISOVF_Superior_corona_radiata_L 
328 IDP_dMRI_TBSS_OD_Superior_corona_radiata_R 405 IDP_dMRI_TBSS_ISOVF_Posterior_corona_radiata_R 
329 IDP_dMRI_TBSS_OD_Superior_corona_radiata_L 406 IDP_dMRI_TBSS_ISOVF_Posterior_corona_radiata_L 
330 IDP_dMRI_TBSS_OD_Posterior_corona_radiata_R 407 IDP_dMRI_TBSS_ISOVF_Posterior_thalamic_radiation_R 
331 IDP_dMRI_TBSS_OD_Posterior_corona_radiata_L 408 IDP_dMRI_TBSS_ISOVF_Posterior_thalamic_radiation_L 
332 IDP_dMRI_TBSS_OD_Posterior_thalamic_radiation_R 409 IDP_dMRI_TBSS_ISOVF_Sagittal_stratum_R 
333 IDP_dMRI_TBSS_OD_Posterior_thalamic_radiation_L 410 IDP_dMRI_TBSS_ISOVF_Sagittal_stratum_L 
334 IDP_dMRI_TBSS_OD_Sagittal_stratum_R 411 IDP_dMRI_TBSS_ISOVF_External_capsule_R 
335 IDP_dMRI_TBSS_OD_Sagittal_stratum_L 412 IDP_dMRI_TBSS_ISOVF_External_capsule_L 
336 IDP_dMRI_TBSS_OD_External_capsule_R 413 IDP_dMRI_TBSS_ISOVF_Cingulum_cingulate_gyrus_R 
337 IDP_dMRI_TBSS_OD_External_capsule_L 414 IDP_dMRI_TBSS_ISOVF_Cingulum_cingulate_gyrus_L 
338 IDP_dMRI_TBSS_OD_Cingulum_cingulate_gyrus_R 415 IDP_dMRI_TBSS_ISOVF_Cingulum_hippocampus_R 
339 IDP_dMRI_TBSS_OD_Cingulum_cingulate_gyrus_L 416 IDP_dMRI_TBSS_ISOVF_Cingulum_hippocampus_L 
340 IDP_dMRI_TBSS_OD_Cingulum_hippocampus_R 417 IDP_dMRI_TBSS_ISOVF_Fornix_cres+Stria_terminalis_R 
341 IDP_dMRI_TBSS_OD_Cingulum_hippocampus_L 418 IDP_dMRI_TBSS_ISOVF_Fornix_cres+Stria_terminalis_L 
342 IDP_dMRI_TBSS_OD_Fornix_cres+Stria_terminalis_R 419 IDP_dMRI_TBSS_ISOVF_Superior_longitudinal_fasciculus_R 
343 IDP_dMRI_TBSS_OD_Fornix_cres+Stria_terminalis_L 420 IDP_dMRI_TBSS_ISOVF_Superior_longitudinal_fasciculus_L 
344 IDP_dMRI_TBSS_OD_Superior_longitudinal_fasciculus_R 421 IDP_dMRI_TBSS_ISOVF_Superior_fronto-occipital_fasciculus_R 
345 IDP_dMRI_TBSS_OD_Superior_longitudinal_fasciculus_L 422 IDP_dMRI_TBSS_ISOVF_Superior_fronto-occipital_fasciculus_L 
346 IDP_dMRI_TBSS_OD_Superior_fronto-occipital_fasciculus_R 423 IDP_dMRI_TBSS_ISOVF_Uncinate_fasciculus_R 
347 IDP_dMRI_TBSS_OD_Superior_fronto-occipital_fasciculus_L 424 IDP_dMRI_TBSS_ISOVF_Uncinate_fasciculus_L 
348 IDP_dMRI_TBSS_OD_Uncinate_fasciculus_R 425 IDP_dMRI_TBSS_ISOVF_Tapetum_R 
349 IDP_dMRI_TBSS_OD_Uncinate_fasciculus_L 426 IDP_dMRI_TBSS_ISOVF_Tapetum_L 
350 IDP_dMRI_TBSS_OD_Tapetum_R 427 IDP_dMRI_ProbtrackX_ISOVF_ar_l 
351 IDP_dMRI_TBSS_OD_Tapetum_L 428 IDP_dMRI_ProbtrackX_ISOVF_ar_r 
352 IDP_dMRI_ProbtrackX_OD_ar_l 429 IDP_dMRI_ProbtrackX_ISOVF_atr_l 
353 IDP_dMRI_ProbtrackX_OD_ar_r 430 IDP_dMRI_ProbtrackX_ISOVF_atr_r 
354 IDP_dMRI_ProbtrackX_OD_atr_l 431 IDP_dMRI_ProbtrackX_ISOVF_cgc_l 
355 IDP_dMRI_ProbtrackX_OD_atr_r 432 IDP_dMRI_ProbtrackX_ISOVF_cgc_r 
356 IDP_dMRI_ProbtrackX_OD_cgc_l 433 IDP_dMRI_ProbtrackX_ISOVF_cgh_l 
357 IDP_dMRI_ProbtrackX_OD_cgc_r 434 IDP_dMRI_ProbtrackX_ISOVF_cgh_r 
358 IDP_dMRI_ProbtrackX_OD_cgh_l 435 IDP_dMRI_ProbtrackX_ISOVF_cst_l 
359 IDP_dMRI_ProbtrackX_OD_cgh_r 436 IDP_dMRI_ProbtrackX_ISOVF_cst_r 
360 IDP_dMRI_ProbtrackX_OD_cst_l 437 IDP_dMRI_ProbtrackX_ISOVF_fma 
361 IDP_dMRI_ProbtrackX_OD_cst_r 438 IDP_dMRI_ProbtrackX_ISOVF_fmi 
362 IDP_dMRI_ProbtrackX_OD_fma 439 IDP_dMRI_ProbtrackX_ISOVF_ifo_l 
363 IDP_dMRI_ProbtrackX_OD_fmi 440 IDP_dMRI_ProbtrackX_ISOVF_ifo_r 
364 IDP_dMRI_ProbtrackX_OD_ifo_l 441 IDP_dMRI_ProbtrackX_ISOVF_ilf_l 
365 IDP_dMRI_ProbtrackX_OD_ifo_r 442 IDP_dMRI_ProbtrackX_ISOVF_ilf_r 
366 IDP_dMRI_ProbtrackX_OD_ilf_l 443 IDP_dMRI_ProbtrackX_ISOVF_mcp 
367 IDP_dMRI_ProbtrackX_OD_ilf_r 444 IDP_dMRI_ProbtrackX_ISOVF_ml_l 
368 IDP_dMRI_ProbtrackX_OD_mcp 445 IDP_dMRI_ProbtrackX_ISOVF_ml_r 
369 IDP_dMRI_ProbtrackX_OD_ml_l 446 IDP_dMRI_ProbtrackX_ISOVF_ptr_l 
370 IDP_dMRI_ProbtrackX_OD_ml_r 447 IDP_dMRI_ProbtrackX_ISOVF_ptr_r 
371 IDP_dMRI_ProbtrackX_OD_ptr_l 448 IDP_dMRI_ProbtrackX_ISOVF_slf_l 
372 IDP_dMRI_ProbtrackX_OD_ptr_r 449 IDP_dMRI_ProbtrackX_ISOVF_slf_r 
373 IDP_dMRI_ProbtrackX_OD_slf_l 450 IDP_dMRI_ProbtrackX_ISOVF_str_l 
374 IDP_dMRI_ProbtrackX_OD_slf_r 451 IDP_dMRI_ProbtrackX_ISOVF_str_r 
375 IDP_dMRI_ProbtrackX_OD_str_l 452 IDP_dMRI_ProbtrackX_ISOVF_unc_l 
376 IDP_dMRI_ProbtrackX_OD_str_r 453 IDP_dMRI_ProbtrackX_ISOVF_unc_r 
377 IDP_dMRI_ProbtrackX_OD_unc_l   
378 IDP_dMRI_ProbtrackX_OD_unc_r   
379 IDP_dMRI_TBSS_ISOVF_Middle_cerebellar_peduncle   
380 IDP_dMRI_TBSS_ISOVF_Pontine_crossing_tract   
381 IDP_dMRI_TBSS_ISOVF_Genu_of_corpus_callosum   
382 IDP_dMRI_TBSS_ISOVF_Body_of_corpus_callosum   
383 IDP_dMRI_TBSS_ISOVF_Splenium_of_corpus_callosum   
384 IDP_dMRI_TBSS_ISOVF_Fornix   
385 IDP_dMRI_TBSS_ISOVF_Corticospinal_tract_R   
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Table	S	12	Names	of	UK	Biobank	Non-Imaging	Derived	Phenotypes	(nIDPs)	related	to	Blood	and	Heart	Health:	77.	Supplement	to	Figure	5.	

nIDP # nIDP Name nIDP # nIDP Name 
1 Pulse rate, automated reading (0.0), 39  Stroke volume during PWA (2.1), 
2  Pulse rate, automated reading (0.1), 40  Mean arterial pressure during PWA (2.0), 
3  Pulse rate, automated reading (2.0), 41  Mean arterial pressure during PWA (2.1), 
4  Pulse rate, automated reading (2.1), 42  Ventricular rate (2.0), 
5  Diastolic blood pressure, automated reading (0.0), 43  P duration (2.0), 
6  Diastolic blood pressure, automated reading (0.1), 44  QRS duration (2.0), 
7  Diastolic blood pressure, automated reading (2.0), 45  Systolic brachial blood pressure (2.0), 
8  Diastolic blood pressure, automated reading (2.1), 46  Diastolic brachial blood pressure (2.0), 
9  Systolic blood pressure, automated reading (0.0), 47  Cardiac index during PWA (2.0), 
10  Systolic blood pressure, automated reading (0.1), 48  Cardiac index during PWA (2.1), 
11  Systolic blood pressure, automated reading (2.0), 49  Pulse wave Arterial Stiffness index (0.0), 
12  Systolic blood pressure, automated reading (2.1), 50  Pulse wave Arterial Stiffness index (2.0), 
13  Pulse rate (0.0), 51  PQ interval (2.0), 
14  Pulse rate (2.0), 52  QT interval (2.0), 
15  Pulse wave reflection index (0.0), 53  QTC interval (2.0), 
16  Pulse wave reflection index (2.0), 54  RR interval (2.0), 
17  Pulse wave peak to peak time (0.0), 55  PP interval (2.0), 
18  Pulse wave peak to peak time (2.0), 56  P axis (2.0), 
19  Heart rate during PWA (2.0), 57  R axis (2.0), 
20  Heart rate during PWA (2.1), 58  T axis (2.0), 
21  Peripheral pulse pressure during PWA (2.0), 59  QRS num (2.0), 
22  Central systolic blood pressure during PWA (2.0), 60  LV ejection fraction (2.0), 
23  Central pulse pressure during PWA (2.0), 61  LV end diastolic volume (2.0), 
24  Number of beats in waveform average for PWA (2.0), 62  LV end systolic volume (2.0), 
25  Number of beats in waveform average for PWA (2.1), 63  LV stroke volume (2.0), 
26  Central augmentation pressure during PWA (2.0), 64  Cardiac output (2.0), 
27  Central augmentation pressure during PWA (2.1), 65  Average heart rate (2.0), 
28  Augmentation index for PWA (2.0), 66  Minimum carotid IMT (intima-medial thickness) at 120 degrees  (2.0), 
29  Augmentation index for PWA (2.1), 67  Mean carotid IMT (intima-medial thickness) at 120 degrees  (2.0), 
30  Cardiac output during PWA (2.0), 68  Maximum carotid IMT (intima-medial thickness) at 120 degrees  (2.0), 
31  Cardiac output during PWA (2.1), 69  Minimum carotid IMT (intima-medial thickness) at 150 degrees  (2.0), 
32  End systolic pressure during PWA (2.0), 70  Mean carotid IMT (intima-medial thickness) at 150 degrees  (2.0), 
33  End systolic pressure during PWA (2.1), 71  Maximum carotid IMT (intima-medial thickness) at 150 degrees  (2.0), 
34  End systolic pressure index during PWA (2.0), 72  Minimum carotid IMT (intima-medial thickness) at 210 degrees  (2.0), 
35  End systolic pressure index during PWA (2.1), 73  Mean carotid IMT (intima-medial thickness) at 210 degrees  (2.0), 
36  Total peripheral resistance during PWA (2.0), 74  Maximum carotid IMT (intima-medial thickness) at 210 degrees  (2.0), 
37  Total peripheral resistance during PWA (2.1), 75  Minimum carotid IMT (intima-medial thickness) at 240 degrees  (2.0), 
38  Stroke volume during PWA (2.0), 76 Mean carotid IMT (intima-medial thickness) at 240 degrees  (2.0), 
  77 Maximum carotid IMT (intima-medial thickness) at 240 degrees  (2.0) 
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Table	S	13	Names	of	UK	Biobank	Non-Imaging	Derived	Phenotypes	(nIDPs)	related	to	Cognition:	68.	Supplement	to	Figure	5.	

nIDP # nIDP Name 
1 Number of incorrect matches in round (0.1) 
2  Number of incorrect matches in round (0.2) 
3  Number of incorrect matches in round (2.1) 
4  Number of incorrect matches in round (2.2) 
5  Number of incorrect matches in round (2.3) 
6  Number of times snap-button pressed (0.0) 
7  Number of times snap-button pressed (0.1) 
8  Number of times snap-button pressed (0.2) 
9  Number of times snap-button pressed (0.3) 
10  Number of times snap-button pressed (0.4) 
11  Number of times snap-button pressed (0.10) 
12  Number of times snap-button pressed (0.11) 
13  Number of times snap-button pressed (2.0) 
14  Number of times snap-button pressed (2.1) 
15  Number of times snap-button pressed (2.2) 
16  Number of times snap-button pressed (2.3) 
17  Number of times snap-button pressed (2.4) 
18  Number of times snap-button pressed (2.5) 
19  Number of times snap-button pressed (2.7) 
20  Number of times snap-button pressed (2.10) 
21  Number of times snap-button pressed (2.11) 
22  Prospective memory result (0.0) 
23  Prospective memory result (2.0) 
24  FI8 : chained arithmetic (2.0) 
25  FI9 : concept interpolation (2.0) 
26  Duration to complete numeric path (trail #1) (2.0) 
27  Mean time to correctly identify matches (2.0) 
28  Number of incorrect matches in round (0.0) 
29  Time elapsed (2.0) 
30  Time elapsed (2.1) 
31  Time elapsed (2.2) 
32  Time elapsed (2.3) 
33  Time elapsed (2.4) 
34  Time elapsed (2.5) 
35  Time elapsed (2.6) 
36  Time elapsed (2.7) 
37  Time elapsed (2.8) 
38  Digits entered correctly (2.0) 
39  Digits entered correctly (2.1) 
40  Digits entered correctly (2.2) 
41  Digits entered correctly (2.3) 
42  Digits entered correctly (2.4) 
43  Digits entered correctly (2.5) 
44  Digits entered correctly (2.6) 
45  Digits entered correctly (2.7) 
46  Total errors traversing numeric path (trail #1) (2.0) 
47  Mean time to correctly identify matches (0.0) 
48  Fluid intelligence score (0.0) 
49  Fluid intelligence score (2.0) 
50  Duration to complete numeric path (trail #1) (0.0) 
51  Duration to complete alphanumeric path (trail #2) (0.0) 
52  Digits entered correctly (2.8) 
53  Maximum digits remembered correctly (2.0) 
54  Attempted fluid intelligence (FI) test. (2.0) 
55  FI1 : numeric addition test (0.0) 
56  FI1 : numeric addition test (2.0) 
57  FI3 : word interpolation (0.0) 
58  FI3 : word interpolation (2.0) 
59  FI4 : positional arithmetic (0.0) 
60  FI4 : positional arithmetic (2.0) 
61  FI5 : family relationship calculation (0.0) 
62  FI5 : family relationship calculation (2.0) 
63  FI6 : conditional arithmetic (0.0) 
64  FI6 : conditional arithmetic (2.0) 
65  FI7 : synonym (0.0) 
66  FI7 : synonym (2.0) 
67  Duration to complete alphanumeric path (trail #2) (2.0) 
68  Number of puzzles correctly solved (2.0) 
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Table	S	14	Names	of	Human	Connectome	Project	Non-Imaging	Derived	Phenotypes	(nIDPs)	used	in	CCA.	Supplement	to	Figure	5.	

nIDP # nIDP Name nIDP # nIDP Name 
1 PicVocab_Unadj 80 ASR_Witd_Pct 
2 PicVocab_AgeAdj 81 IWRD_TOT 
3 PMAT24_A_CR 82 PainInterf_Tscore 
4 DDisc_AUC_200 83 MMSE_Score 
5 THC 84 SSAGA_Alc_12_Frq_Drk 
6 LifeSatisf_Unadj 85 Odor_Unadj 
7 ListSort_AgeAdj 86 SSAGA_Alc_D4_Ab_Sx 
8 ReadEng_Unadj 87 SSAGA_Mj_Use 
9 SCPT_SPEC 88 ASR_Aggr_Raw 
10 ReadEng_AgeAdj 89 SSAGA_Mj_Ab_Dep 
11 ListSort_Unadj 90 DSM_Somp_Raw 
12 DDisc_AUC_40K 91 FearSomat_Unadj 
13 Avg_Weekday_Any_Tobacco_7days 92 SSAGA_Alc_12_Drinks_Per_Day 
14 Num_Days_Used_Any_Tobacco_7days 93 Mars_Log_Score 
15 Total_Any_Tobacco_7days 94 SelfEff_Unadj 
16 PicSeq_AgeAdj 95 SCPT_SEN 
17 FamHist_Fath_DrgAlc 96 NEOFAC_N 
18 PicSeq_Unadj 97 SSAGA_Agoraphobia 
19 Avg_Weekday_Cigarettes_7days 98 ASR_Intn_T 
20 Avg_Weekend_Any_Tobacco_7days 99 AngHostil_Unadj 
21 Total_Cigarettes_7days 100 Num_Days_Drank_7days 
22 Dexterity_AgeAdj 101 SSAGA_Times_Used_Cocaine 
23 Avg_Weekend_Cigarettes_7days 102 Loneliness_Unadj 
24 Dexterity_Unadj 103 ASR_Intn_Raw 
25 Times_Used_Any_Tobacco_Today 104 SSAGA_Alc_Hvy_Drinks_Per_Day 
26 PSQI_Score 105 MeanPurp_Unadj 
27 AngAggr_Unadj 106 DSM_Avoid_Pct 
28 Taste_AgeAdj 107 NEOFAC_E 
29 ASR_Rule_Raw 108 Total_Beer_Wine_Cooler_7days 
30 Taste_Unadj 109 DSM_Avoid_Raw 
31 ASR_Thot_Raw 110 Avg_Weekday_Wine_7days 
32 EVA_Denom 111 Flanker_AgeAdj 
33 SSAGA_TB_Still_Smoking 112 ASR_Anxd_Pct 
34 FamHist_Fath_None 113 Avg_Weekend_Beer_Wine_Cooler_7days 
35 ASR_Thot_Pct 114 SSAGA_Alc_D4_Ab_Dx 
36 PercStress_Unadj 115 Total_Drinks_7days 
37 ProcSpeed_AgeAdj 116 SSAGA_Alc_Hvy_Max_Drinks 
38 ASR_Rule_Pct 117 FearAffect_Unadj 
39 ProcSpeed_Unadj 118 Total_Wine_7days 
40 DSM_Antis_Raw 119 Avg_Weekday_Drinks_7days 
41 ER40_CR 120 ER40SAD 
42 NEOFAC_A 121 Flanker_Unadj 
43 ASR_Crit_Raw 122 ER40FEAR 
44 VSPLOT_TC 123 Avg_Weekday_Beer_Wine_Cooler_7days 
45 NEOFAC_O 124 SSAGA_Times_Used_Illicits 
46 ER40ANG 125 Avg_Weekend_Drinks_7days 
47 VSPLOT_OFF 126 SSAGA_Alc_D4_Dp_Sx 
48 SSAGA_Times_Used_Stimulants 127 NEOFAC_C 
49 ASR_Soma_Pct 128 Total_Hard_Liquor_7days 
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