
Dissecting the cis-regulatory syntax of transcription initiation

with deep learning

Kelly Cochran1, Melody Yin2, Anika Mantripragada2, Jacob Schreiber3, Georgi K. Marinov3, Sagar
R. Shah4, Haiyuan Yu5, John T. Lis6, and Anshul Kundaje∗1,3

1Department of Computer Science, Stanford University, Stanford, CA, USA
2The Harker School, San Jose, CA, USA

3Department of Genetics, Stanford University, Stanford, CA, USA
4Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University,

Ithaca, NY, USA
5Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY,

USA
6Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA

∗Corresponding author

Abstract

Despite extensive characterization of mammalian Pol II transcription, the DNA sequence deter-
minants of transcription initiation at a third of human promoters and most enhancers remain
poorly understood. We trained and interpreted a neural network called ProCapNet that ac-
curately models base-resolution initiation profiles from PRO-cap experiments using local DNA
sequence. ProCapNet learns sequence motifs with distinct effects on initiation rates and TSS
positioning and uncovers context-specific cryptic initiator elements intertwined within other TF
motifs. ProCapNet annotates predictive motifs in nearly all actively transcribed regulatory el-
ements across multiple cell-lines, revealing a shared cis-regulatory logic across promoters and
enhancers and a highly epistatic sequence syntax of cooperative and competitive motif inter-
actions. ProCapNet models of steady-state RAMPAGE profiles distill initiation signals on par
with models trained directly on PRO-cap profiles. ProCapNet learns a largely cell-type-agnostic
cis-regulatory code of initiation complementing sequence drivers of cell-type-specific chromatin
state critical for accurate prediction of cell-type-specific transcription initiation.

Introduction

Regulation of gene expression is central to development,
cellular differentiation, homeostasis, and response to stim-
uli, while its dysregulation plays a causal role in disease.
Transcription initiation is a pivotal process in gene regula-
tion. The recruitment of the transcriptional machinery and
the kinetics of transcription initiation are regulated by the
coordinated activity of signaling inputs that direct combi-
natorial transcription factor (TF) occupancy and chromatin
states at proximal and distal regulatory elements1,2.

The core components of the transcriptional machinery
in most metazoans, essential for transcribing protein-coding
genes and most lincRNAs, include RNA Polymerase II and
general transcription factors (GTFs), which form the pre-
initiation complex (PIC)3–21. These protein complexes de-
code promoter sequences to precisely recruit and activate
Pol II via interactions with promoter sequence elements,

stabilizing interactions with other PIC proteins, and DNA
unwinding at the transcription start site.

However, our understanding of promoter sequence el-
ements that regulate transcription initiation is incom-
plete. Previously identified core promoter elements22 in-
clude the TATA box23–25, the initiator element (Inr)26–28,
the B recognition element (BRE)29,30, and the “motif
ten” element (MTE)31,32. The contribution of other
sequence-specific TF motifs in regulating initiation is
largely unknown, with some notable exceptions such as
NFY (CCAAT box)33,34, SP135, the ETS family mem-
bers36, and YY137–39. Although some motif spacing con-
straints have been observed in promoters, such as the prefer-
ential positioning of the TATA box ∼30bp upstream of the
Inr40,41, the role of higher-order motif arrangements (syn-
tax) in the regulation of transcription initiation is poorly
understood. Furthermore, it is now established that tran-
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scription is not exclusive to gene promoters but is, in fact,
also widespread at distal enhancers42–48. However, it is un-
clear whether promoters and enhancers harbor distinct or
shared initiation sequence codes.

Experimental efforts to functionally characterize
initiation-relevant sequence elements and cis-regulatory
logic have generally confirmed their importance, although
on a limited scale. Saturated mutagenesis experiments on
genomic sequences are difficult to scale genome-wide and
generally measure only the first-order effects of individual
base mutations49,50, while massively parallel reporter as-
says measuring promoter activity remove the promoter from
its endogenous chromatin and distal enhancer context51,52;
neither approach typically incorporates measurement of
nascent transcription specifically.

To address these limitations, computational methods
have been developed to characterize the sequence basis of
initiation53,54. The first wave of approaches searched for
statistically overrepresented sequence features and enriched
co-occurrence and spatial patterns of features in promot-
ers31,41,55,56. These observational enrichment methods are
inherently limited in that 1) they are often not cell-context
aware, and 2) noting the enrichment of a motif in promoters
or near TSSs neither guarantees that the motif plays any
role at all, nor describes what that role might be: does the
motif’s presence influence the rate of PIC recruitment, the
positioning of the PIC and thereby the choice of TSS, or
both, and how?

Supervised machine learning methods have been pro-
posed as an alternative approach, where computational
models are trained to predict biochemical readouts of tran-
scriptional regulation as a function of the underlying DNA
sequence. Deep neural networks have proven to be par-
ticularly adept at simultaneously learning predictive se-
quence features and their higher-order syntax de novo from
DNA sequence and accurately mapping the learned repre-
sentations to various biochemical readouts, including TF
binding57, RNA splicing58, and chromatin accessibility59.
Model interpretation methods have been developed to in-
fer the impact of individual sequence features, their syntax
and other sequence variation specifically on the experimen-
tal read outs the models are trained on, thereby alleviating
some of the above mentioned issues with enrichment meth-
ods57–59.

Recently, large, multi-task, deep neural networks
trained on steady-state RNA abundance from RNA-seq,
CAGE, or RAMPAGE experiments have achieved impres-
sive predictive performance60–64. However, these models
have provided limited insights into the cis-regulatory code
of initiation partly due to challenges with scalable, robust
interpretation of massive deep learning models, but also
due to the sheer complexity of multiple layers of regulation
between sequence and steady-state gene expression that
these models attempt to learn de novo 65,66. While initi-
ation determines the precise location of the transcription
start site (TSS), the rate of eukaryotic transcription is pre-

dominantly determined by promoter-proximal pausing lim-
iting re-initiation, rather than PIC recruitment rates67, and
post-elongation RNA processing steps (splicing, polyadeny-
lation, etc.) can drastically impact both the products of
transcription and their lifespans68–72. Major differences be-
tween measurements of transcription made by steady-state
assays vs. nascent transcription assays such as GRO-seq73,
PRO-seq/PRO-cap74, CoPRO75, and NET-seq76 highlight
how the composition of the steady-state transcriptome is
determined by much more than the outcome of transcrip-
tion initiation. Any attempts to model steady-state ex-
pression data, therefore, must necessarily model promoter-
proximal pausing, RNA processing, and degradation in or-
der to make accurate predictions. Recent attempts at this
integrated approach have resulted in more accurate models
that continue to pose challenges for robust and scalable in-
terpretation63,64,66. Scaling back to the intermediate goal
of directly modeling transcription initiation with tractable,
interpretable models is, therefore, a potentially promising
approach. A recent study by Dudnyk et al. models base-
resolution initiation profiles using a transparent, additive
neural network architecture initialized with manually cu-
rated motif representations distilled from a larger, long-
context model77. While the rationale for this ad-hoc dual-
model distillation approach is a purported trade-off between
prediction performance and interpretability, it is unclear if
these design choices actually enhance interpretation of the
cis-regulatory sequence code of nascent transcription rel-
ative to well-established alternative approaches for model
interpretation. Additionally, the study 1) models initiation
profiles averaged over diverse cell types, thereby losing con-
text specificity, 2) is limited to the analysis of promoters,
and 3) solely focuses on the shape of initiation profiles, ne-
glecting initiation rates and predictions of overall promoter
strength.

Here, we adopt an alternative approach by develop-
ing ProCapNet, a compact, deep learning model coupled
with a well-established and robust interpretation framework
for deciphering the cis-regulatory sequence code of tran-
scription initiation. ProCapNet accurately models base-
resolution initiation profiles from cell-type-specific PRO-
cap experiments, distinguishing between the rate of initi-
ation and TSS positioning, using local DNA sequence. We
interpret ProCapNet to derive a comprehensive sequence
motif lexicon of transcription initiation that includes known
and novel variants of core promoter motifs and other specific
TF motifs, some of which preferentially impact initiation
rates or TSS positioning. ProCapNet reveals cryptic Inr-
like initiator codes intertwined within motifs of other TFs,
which precisely position initiation events only in specific
sequence contexts. ProCapNet identifies predictive motifs
in nearly all actively transcribed regulatory elements, in-
cluding a shared initiation sequence logic across promot-
ers and enhancers with subtle syntactic differences in motif
density, diversity and affinity, thereby providing a compre-
hensive genome-wide annotation of sequence drivers of ini-
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tiation in 6 ENCODE cell-lines. ProCapNet also reveals
extensive cooperative and competitive effects of motif com-
binations suggestive of a highly epistatic initiation sequence
syntax. Training ProCapNet on steady-state gene expres-
sion profiles from CAGE and RAMPAGE assays enables
de novo distillation of initiation activity that is remark-
ably concordant with predictions from models trained di-
rectly on PRO-cap profiles. Finally, we show that ProCap-
Net learns a largely cell-type-agnostic cis-regulatory code
of initiation that complements sequence drivers of cell-type-
specific chromatin accessibility. We identify chromatin state
modalities critical for predicting the cell-type-specificity of
transcription initiation.

Results

ProCapNet accurately predicts initiation activity
and precise positioning of human TSSs from DNA

sequence

ProCapNet is a convolutional neural network that models
base-resolution transcription initiation profiles, measured
by PRO-cap experiments, in 1 kb genomic segments as
a function of local (2 kb) DNA sequence context (Fig.
1A)74. ProCapNet’s architecture is based on the BPNet
model previously developed to predict base-resolution TF
binding profiles57. We adapted BPNet to PRO-cap read-
outs by increasing the number of parameters and modifying
the loss function to account for the strand specificity of tran-
scription initiation (see Methods). ProCapNet preserves a
key modeling choice introduced in BPNet, to separately pre-
dict the total coverage and shape of base-resolution PRO-
cap read count profiles over each genomic segment. The
coverage of aggregated read-counts (in log scale) over each
segment serves as a proxy for total initiation activity (rate).
A multinomial probability distribution of read-counts over
all bases across both strands of each segment is used to
model the profile shape, which captures solely the strand-
specific positioning of initiation events at putative TSSs.
Explicit separation of total initiation activity from TSS po-
sitioning enables downstream interpretation of the contri-
bution of learned sequence features to these two comple-
mentary properties of initiation profiles.

We trained ProCapNet on genomic segments overlap-
ping PRO-cap peaks and background regions in the hu-
man K562 cell-line, using a 7-fold cross-validation scheme.
Since a vast majority (> 90%) of the PRO-cap peaks di-
rectly overlap or are within 500bp of DNase-seq peaks, we
deliberately used accessible chromatin (DNase-seq peaks)
lacking initiation as background regions to encourage the
model to learn a cis-regulatory code of initiation decou-
pled from chromatin accessibility. We analyze the con-
sequences of this choice later in the manuscript. Visual
inspection of measured and predicted PRO-cap profiles at
the POLA1 promoter and a nearby enhancer highlighted
strong correspondence (Pearson correlations r = 0.87 and
0.95 at the promoter and enhancer, respectively) of lo-

cal maxima and strand specificity (Fig. 1B). System-
atic evaluation of prediction performance across held-out
PRO-cap peaks in cross-validation test sets corroborated
the strong correlation (r = 0.72 ± 0.025 across folds) be-
tween total measured and predicted coverage (log scale),
relative to an upper-bound (r = 0.84) of correlation of
measured coverage across the same peaks between replicate
experiments (Fig. 1C). This correlation remained consis-
tent (r = 0.72 ± 0.015 across folds) across PRO-cap peaks
and non-overlapping, accessible background regions, and
the model’s predictions distinguished PRO-cap peaks from
these background regions with an average precision score of
0.79 ± 0.014 across folds. The gap between model perfor-
mance and replicate concordance, also observed for BPNet
TF binding models57, is to be expected since ProCapNet,
by design, only models the impact of local sequence context
on PRO-cap readouts and hence cannot account for the po-
tential effects of distal regulatory sequences and other non-
sequence-based cis and trans-regulatory factors78. ProCap-
Net’s base-resolution profile shape predictions in PRO-cap
peaks were more similar (mean Jensen-Shannon Distance
(JSD) = 0.69 ± 0.004 across folds, lower JSD indicates
higher similarity) to the measured profile shapes than a
baseline prediction corresponding to the average PRO-cap
profile across all peaks excluding those in the test set (mean
JSD = 0.91; Fig. 1D). However, model performance was
worse than measured profile shape concordance (mean JSD
= 0.51) between pseudo-replicates of the same PRO-cap ex-
periment. Together, these results indicate that ProCapNet
can predict the magnitude and shape of PRO-cap profiles
with substantial accuracy.

Next, we evaluated variability of model performance
across subsets of PRO-cap peaks overlapping different
classes of ENCODE candidate cis-regulatory elements
(cCREs)79. Profile prediction performance at PRO-cap
peaks overlapping candidate distal enhancers was on par
with peaks overlapping candidate promoters, and profile
prediction performance at promoters was not dependent on
the presence of a proximal enhancer nearby (Fig. 1E). The
total coverage prediction performance (r = 0.48) at candi-
date promoters with proximal enhancers was higher than
performance (r = 0.42) at candidate promoters without
proximal enhancers, suggesting that ProCapNet’s coverage
prediction performs best at promoters when a proximal en-
hancer is close enough to be included in the model’s input
sequence (Fig. S1A). Total coverage performance across
candidate distal enhancers was higher (r = 0.57) than per-
formance across both classes of candidate promoters, sug-
gesting that long-range regulatory interactions may have
less influence on initiation at distal enhancers compared to
promoters.

We also evaluated variability of model performance
across subsets of PRO-cap peaks overlapping promoters of
housekeeping genes, all protein-coding promoters, lncRNA
promoters, promoters of ribosomal protein genes with TCT
sequences, TATA-containing promoters, GENCODE anno-
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Figure 1: ProCapNet accurately predicts initiation rates and TSS positioning at base-pair resolution. (A)
Design of ProCapNet, which is trained to predict base-resolution initiation events measured by PRO-cap. (B) Measured
data, ProCapNet predictions, and ProCapNet contribution scores (for the profile and counts tasks) for two example PRO-
cap peaks. Names of motifs highlighted by contribution scores are annotated. (C) Counts task performance on PRO-cap
peaks from held out test chromosomes across 7-fold cross-validation. r, Pearson correlation. (D) Profile task performance
on PRO-cap peaks from held out test chromosomes across 7-fold cross validation (higher JSD is worse). The y-axis shows
the cumulative fraction of test peaks. (E) Profile task performance on held-out test peaks, stratified by overlap with
ENCODE-annotated cis-regulatory elements. White dots are medians; the dashed line is the median for all test peaks.
w/, with; w/o, without; Prox., proximal. JSD is normalized per-example to reduce confounding by coverage (see Methods;
higher normalized JSD is worse).
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tations (i.e. in exons, in introns, or intergenic), and areas
of high vs. low unique read mappability. We observed com-
parable profile shape prediction performance across most of
these categories, with the exception of low-mappability sites
which showed a minor deterioration of performance (Fig.
S1B-C).

Finally, we evaluated the performance of ProCapNet ac-
counting for two important attributes of transcription initi-
ation events - directional imbalance and dispersion. Mam-
malian transcription is generally bidirectional, with sub-
stantial variability of directional imbalance of initiation
across transcriptionally active loci47,73,80,81. Initiation can
also vary widely in terms of dispersion: at some loci, all
or nearly all transcription initiates at a single base, while
at other loci initiation can occur across a more dispersed
window, up to 140 bp wide, along one strand22,48,82. We
quantified strand asymmetry of bidirectional initiation us-
ing the Orientation Index (OI), which is the fraction of reads
on the majority strand83. We quantified dispersion of initi-
ation using an entropy-based measure called the Normalized
Shape Index (NSI), such that higher values indicate more
dispersion (modified from Hoskins et al. 201184). Profile
prediction performance of ProCapNet remained consistent
across the spectrum of OI and NSI, with the exception of a
small group of outliers where nearly all initiation occurred
in one direction (OI > 0.9; Fig. S1D). Specifically, nearly
half of the PRO-cap peaks with the most discordant pro-
file predictions (normalized JSD > 0.9, bottom 6%, 1748 of
30,534 peaks; see Methods for JSD normalization details)
were exclusively unidirectional (OI = 1). Compared to all
other PRO-cap peaks, these outlier peaks had on average
an order of magnitude fewer reads, were half as likely to
overlap any annotated TSS, were twice as likely to be in
intergenic regions or gene bodies, and particularly in exons
and UTRs, and rarely overlapped annotated CREs (Fig.
1E; Fig. S1E). These trends suggest that at least some of
these sites may have artefactual origins, such as from RNAs
undergoing internal re-capping. This phenomenon has been
previously reported in CAGE data85; however, the extent
of internal re-capping in PRO-cap-like assays is lesser than
in CAGE due to experimental protocol differences, such as
PRO-cap’s lack of size selection86,87.

In summary, ProCapNet learns a unified, generalizable
mapping of DNA sequence to initiation profiles with largely
consistent predictive performance across diverse strata of
genomic loci.

ProCapNet reveals a comprehensive lexicon of
sequence motifs predictive of transcription

initiation rates and TSS positioning

Next, we used well-established model interpretation meth-
ods to decipher the cis-regulatory sequence features learned
by ProCapNet57. Using the DeepSHAP feature attribu-
tion method, we estimated the contribution of each base
in the sequence of individual PRO-cap peaks to the to-
tal predicted coverage and profile shapes separately88,89.

DeepSHAP contribution scores at the POLA1 promoter
and a nearby enhancer highlighted predictive subsequences
resembling known motifs such as NRF1, SP1, ETS, ATF1,
NFY and Inr, some of which exhibited differential contri-
butions to predicted coverage (initiation rates) and profile
shape (positioning) (Fig. 1B).

We used TF-MODISCO90 to cluster subsequences with
high contribution scores across all PRO-cap peaks into
a lexicon of non-redundant motif models, each with two
complementary representations - a position-weight matrix
(PWM) summarizing positional base frequencies and a
contribution-weight matrix (CWM) summarizing average
contribution scores of each base at each position in the mo-
tif, over all its constituent predictive subsequences (Fig.
2A, columns 1-2). Discovered motifs matched many well-
characterized promoter sequence features, such as two forms
of the TATA box and the Inr element (CANT and TANT),
the TCT sequence, and other TF motifs associated with
promoters and/or active enhancers. Ranking motif CWMs
based on their average contribution score to profile shape
revealed classical core promoter motifs (the TATA box and
Inrs) having the strongest influence on TSS positioning, fol-
lowed by NFY and the TCT sequence, and then the remain-
ing TF motifs (Fig. 2A, column 3).

While most TF-MODISCO motifs could be mapped to
known initiation elements and associated TF motifs, some
esoteric motifs were also discovered. Nineteen esoteric mo-
tifs had unusually long (≥15-bp) PFMs with high base
specificity across the entire motif, and at least 60% of the se-
quences supporting each of these these patterns overlapped
annotated transposable repeat elements (Table S1), which
have been previously associated with regulatory activity
and TF binding (Fig. S2A)57,91. The CWMs of these
motifs highlighted shorter segments with high contribution
scores suggestive of initiation sequence features embedded
within these repeats. A second set of predictive GC-rich
repetitive motifs were found downstream of initiation sum-
mits, corresponding to where the downstream promoter re-
gion (DPR) has previously been identified92 (Fig. S2B).
Some of these resembled CGG repeats, which have been
characterized as structural features in the 5’-UTRs of some
genes93–96. No single motif emerged as a definitive marker
for this region’s role in initiation, suggesting that the tran-
scription machinery’s preference for the DPR might be non-
specific or challenging to represent as a single motif.

We annotated predictive instances of all discovered TF-
MODISCO motifs in all PRO-cap peaks as subsequences
with high sequence match scores to the discovered motifs
as well as high contribution scores57. For all but one motif,
over half of the sequence matches were filtered due to low
contribution scores, and for 9 of 15 motifs, at least 75% of
sequence matches were filtered (Table S2). Thus, contribu-
tion scores are crucial to identify motif instances that are ex-
plicitly used by the models to predict initiation rates and/or
positioning, thereby potentially eliminating spurious false
positives – especially for short motifs like the Inr57. De-
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Figure 2: ProCapNet contribution scores highlight a refined set of canonical promoter motifs. (A) Recur-
rent high-scoring sequence features predictive of initiation identified by TF-MODISCO. PWM: Position-Weight Matrix;
CWM: Contribution-Weight Matrix (base frequencies weighted by contribution scores). Columns 1-2 show motifs at
normalized heights for visual clarity, while CWM weight (column 3) indicates the magnitude of the motif’s overall contri-
bution, equal to the actual y-axis scale of the CWM. PWMs, CWMs, and CWM weights shown here are from the profile
task’s TF-MODISCO output. Average profiles are centered on motif instances, aligned to the same orientation as the
PWM/CWM. (B) Identified motif instances relative to PRO-cap peak summits. Uni., unidirectional; Bi., bidirectional
(divergent transcription); Pos., positive-strand. Red vs. blue indicates motif orientation, and gray lines indicate PRO-cap
summits (omitted from CA-Inr plot because it overlaps the motif hits). (C) Subpatterns found by TF-MODISCO for the
NRF1 and ETS motifs that suggest Inr-like secondary roles.
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spite the improved filtering induced by contribution scores,
we identified predictive motif instances in a vast majority
(99.7%, 30,433/30,534) of all PRO-cap peaks and almost all
(99.96%, 16,953/16,960) PRO-cap peaks overlapping pro-
moters, substantially improving the coverage of motif an-
notation of promoters over previous efforts22 (Fig. 2A,
columns 6-7). 28% of the small number (101) of PRO-cap
peaks without motif annotations had all reads mapping to
only one strand, suggesting they may be artefactual internal
recapping events (Fig. S1E). PRO-cap peaks on average
contained six predictive motif instances that matched on av-
erage three unique motifs (Fig. S2C). While 96% of peaks
contained ten or fewer predictive motif instances, inclusive
of homotypic motif multiplicity, 99% harbored instances
matching less than seven unique motifs. The most preva-
lent motifs across all PRO-cap peaks were the SP1/BRE,
ETS, CA-Inr, NFY, and NRF1 motifs. These motifs along
with THAP11 were also the most likely to have higher mo-
tif density in peaks (Fig. 2A, last column). The rarest
motif by far was the TCT sequence, which was identified
predominantly in the promoters of ribosomal protein (RP)
genes as previously reported22, but was also found at pro-
moters of non-RP genes such as EEF1A1 and H3C14-15 as
well as at enhancers (Fig. 1B).

Next, to understand how initiation events (TSSs) posi-
tion relative to predictive instances of each motif in PRO-
cap peaks, we separately averaged strand-specific measured
and predicted PRO-cap profiles centered at all predictive in-
stances of each motif, accounting for motif orientation (Fig.
2A, columns 4-5). Average observed and predicted pro-
files were remarkably similar at base resolution, confirming
the high predictive performance of the model. The average
profiles at both Inr motifs and the TCT sequence indicate
that nearly all initiation nearby an Inr/TCT instance occurs
directly at the Inr/TCT sequence. Consistent with previ-
ous observations, the TATA box shows a strong spacing
constraint of ∼30 bp relative to punctate initiation events
at TSSs40,41,56 (due to the reverse-complement symmetry
of the TATA motif, the orientation of single instances is dif-
ficult to disambiguate). The average profiles at most other
motifs show broadly distributed downstream initiation and
exhibit reverse-complement symmetry, suggesting that the
contribution of these motifs may not be orientation-specific.
The exception is the YY1 motif, with the bulk of initiation
sites in the average profile positioned upstream and biased
very strongly towards one strand. We corroborated these
positional patterns by also analyzing the positional distri-
bution of predictive motif instances relative to initiation
events (summits of peaks) for both unidirectional (single-
stranded or sense transcription only) and bidirectional (di-
vergent sense and antisense transcription) PRO-cap peaks
(Fig. 2B). As expected, the Inr is found precisely at the
summits, the TATA box is enriched just around 30bp up-
stream of summits, and YY1 is enriched within a window
about 30bp wide just downstream of summits; all three mo-
tifs are strongly biased towards being in an orientation con-

sistent with what strand the PRO-cap signal summit is on.
Finally, to quantify the differential impact of different

motifs on TSS positioning and initiation rates, we com-
pared the frequency of predictive instances of each motif
in all peaks identified using contribution scores relative to
the total predicted coverage versus predicted profile shapes
(Fig. 2A, columns 6-7). Consistent with the previous
results, Inr, TCT, and TATA box motif instances influ-
enced TSS positioning more frequently; conversely, ETS,
ZBTB33, ATF1, and NRF1 instances influenced initiation
rates more frequently.

ProCapNet reveals cryptic, context-specific
initiator codes intertwined within other TF motifs

TF-MODISCO automatically refines each of the reported
motifs into higher-resolution submotifs that exhibit subtle
differences in base frequencies or contribution scores. We
identified several intriguing submotifs of the ETS, YY1,
NRF1, AP1, and ATF1 motifs, typically associated with
less precise initiation profiles than Inr elements, that ap-
peared to function as potent initiators (Fig. 2C, Fig. S3).
These submotifs showed higher contribution scores at a sub-
set of bases within the larger TF motif that matched or par-
tially matched the CA-Inr’s consensus sequence CANT (for
example, the subsequence AGTG within the ETS consen-
sus sequence CCGGAAGTG). Interestingly, the measured
PRO-cap signal at predictive instances of these submotifs
was overwhelmingly concentrated directly over the motif,
resembling the highly positioned initiation events observed
at canonical Inr motifs. The orientation of the Inr-like sub-
motifs also correctly aligned with the strand of the initia-
tion spike. For ETS and YY1, the two reported submotifs
featured initiation on opposite strands, owing to opposite
orientations of two distinct Inr-like subsequences, while for
AP1 and ATF1, initiation was only reported on one strand;
NRF1 is reverse-complement-symmetric, but has two dis-
tinct submotifs highlighting different Inr-like subsequences.
These insights from the measured PRO-cap profiles were re-
capitulated by ProCapNet’s predicted profiles, showcasing
the model’s ability to accurately discern the context-specific
usage of these cryptic, non-canonical initiation codes inter-
twined within TF motifs. Thus, ProCapNet reveals that
motifs of several TFs can perform dual roles in initiation
based on local sequence context, with most canonical motif
instances regulating broadly distributed initiation profiles
but others acting as cryptic initiators regulating precisely
positioned TSSs.

Promoters and enhancers share a common
initiation sequence logic, with differences in
initiation driven by differential motif density,

diversity, and affinity

Given ProCapNet’s robust prediction performance across
both promoters and distal enhancers (Fig. 1E), we used
the model to investigate whether the two classes of CREs

7

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2024. ; https://doi.org/10.1101/2024.05.28.596138doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.28.596138
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3: Enhancers and promoters display differential motif complexity. (A) PCA embeddings of internal
model representations of sequences at PRO-cap peaks overlapping promoters or distal enhancers. (B) Distributions of the
number of identified motif instances in peaks overlapping either promoters or distal enhancers. (C) Fraction of PRO-cap
peaks containing at least one instance of a motif, overall vs. in peaks overlapping either promoters or distal enhancers (*
= p < 0.005, ** = p < 10−19, two-sided Fisher’s Exact test). (D) Identified motif instance strengths (cosine similarity
to the motif CWM) across PRO-cap peaks overlapping promoters and distal enhancers (* = p < 10−2, ** = p < 10−4,
two-sided Mann-Whitney U test). (E) Counts task predictions made on held-out PRO-cap peaks by ProCapNet (y-axis)
vs. a re-trained version ProCapNet that only saw promoter sequences during training.

encode shared or distinct initiation sequence logic. First, we
compared promoter and distal enhancer sequences based on
internal embeddings of the trained ProCapNet model (see
Methods). The first two principal components explained
88% of the variance across the embedded space and neatly
separated the two classes of elements, indicating that Pro-
CapNet’s latent space is able to distinguish between pro-
moters and enhancers despite not being explicitly trained
to do so (Fig. 3A).

A comparative analysis of predictive motifs instances in
PRO-cap peaks in promoters and distal enhancers further
revealed that enhancers have fewer initiation-associated mo-
tifs and less motif diversity than promoters on average (Fig.
3B). Promoters were significantly (p < 10−19, two-sided
Mann-Whitney U test) enriched for the SP1/BRE, ETS,
NFY, NRF1, ATF1, THAP11, YY1, ZBTB33 motifs and
the TANT form of the Inr motif; while enhancers were sig-
nificantly enriched for AP1 and TATA box motifs (Fig.
3C). While similar motif enrichments have been reported
using CAGE signal at enhancers97, our analyses suggest ad-
ditional TF and core promoter motifs. Logistic regression

models using motif density or simply motif presence were
able to discriminate promoter and enhancer PRO-cap peaks
with high (82%) accuracy, further supporting motif density
and identity as key properties of initiation syntax differen-
tiating the two classes of elements. Motif instances in pro-
moters were also more likely to have stronger match scores
to motif CWMs (which we use as a reasonable surrogate
measure of affinity98) compared to those in enhancers, with
high affinity instances of ZBTB33, NRF1, ETS, SP1/BRE,
and YY1 particularly depleted in enhancers (Fig. 3D).
Our results indicate that overall lower initiation activity
at enhancers relative to promoters can be attributed to a
combination of syntactic features including lower motif di-
versity, density, and affinity, especially of the most common
initiator and activator motifs, despite the two classes of el-
ements sharing the same motif lexicon (Fig. 2A).

Next, we directly tested whether the cis-regulatory logic
of initiation learned from promoters would generalize to en-
hancers. We retrained ProCapNet models only on promoter
PRO-cap peaks, using the same cross-validation set up as
the original model trained on all types of peaks, and then
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compared their predictions at all held-out PRO-cap peaks
(including enhancers) to those from the corresponding orig-
inal models (Supplementary Table S3). Profile shape and
total coverage predictions from the two models were highly
concordant (r = 0.88, 0.92 respectively), and approached
prediction concordance (r = 0.9, 0.98 for shape and cov-
erage) of replicate ProCapNet models trained on identical
data with different random seeds. The minor miscalibration
of coverage predictions at enhancers between the two mod-
els (Fig. 3E), as evidenced by the kink in the scatter plot,
likely stems from the promoter-only model having to ex-
trapolate PRO-cap signal values outside its training range
when predicting signal at enhancers, since the promoters
that it was trained on have much higher PRO-cap signals
than enhancers on average. These results imply strong gen-
eralization of the cis-regulatory logic learned by promoter-
only models to enhancers.

We then explicitly tested whether the predictive se-
quence features identified in PRO-cap peaks by the
promoter-only ProCapNet models were consistent with
those derived from the original models. Similarity (r =
0.84) of contribution scores to profile shape predictions from
both models across all PRO-cap peaks approached the up-
per bound (r = 0.92) derived from replicate models, sug-
gesting that initiation positioning logic learned at promot-
ers generalizes to enhancers. However, coverage contribu-
tion score similarity (r = 0.69) was lower, reflecting the
miscalibration of total coverage predictions discussed above.

Overall, these results suggest that initiation events at
promoters and enhancers are regulated by a shared and
generalizable cis-regulatory code, with higher motif den-
sity, diversity, and affinity collectively resulting in stronger
initiation at promoters.

Initiation is regulated by complex cis-regulatory
logic involving epistatic cooperation and

competition across motifs and TSSs

Having established a unified motif lexicon of initiation at
promoters and enhancers, we then explored the complex-
ity of cis-regulatory logic learned by ProCapNet by asking
whether motifs contribute to initiation via independent, ad-
ditive effects, or whether higher-order syntax-mediated in-
teraction effects play a significant role. An exploratory ex-
amination of initiation rates (coverage in log scale) relative
to total motif counts and unique motif counts showed a non-
linear relationship, with coverage saturating at around 10
and 6 motif instances respectively (Fig. S2D). A linear
model of coverage (log scale) as a function of the num-
ber of predictive instances of each motif explained a small
(R2 = 0.25) fraction of variance relative to ProCapNet
(R2 = 0.57). Linear models that only used binary pres-
ence/absence of predictive motif instances or simply the
total number of predictive motif instances in each sequence
also fared poorly (R2 = 0.23, 0.12 respectively). These
results suggest that ProCapNet learns more complex regu-
latory logic than afforded by a simple additive model over

motif counts and that the identity of motifs also matters.

Next, using the MYC promoter as a case study, we
explicitly investigated the interplay between initiation-
predictive motif instances at and across multiple TSSs with
an in-silico motif mutagenesis approach (see Methods)57.
The measured and predicted PRO-cap profiles at the MYC
promoter highlight two distinct TSSs with strong, well-
positioned initiation signal on the same strand (Fig. 4).
Each TSS is ∼30 bp downstream of a predictive TATA
box adjacent to an upstream predictive SP1/BRE motif.
While the downstream TSS aligns with a predictive canon-
ical TA-Inr instance, the contribution scores under the up-
stream TSS highlight a putative low affinity Inr instance.
ProCapNet also accurately predicts a very weak, cryptic
antisense TSS between the two primary sense TSSs, which
aligns with a putative low-affinity CA-Inr motif instance
containing a C-mismatch at the T in the consensus sequence
CANT (reverse-complemented).

We used ProCapNet to predict the effects of ablating in-
dividual motif instances on nearby initiation signal. We also
re-calculated base-resolution contribution scores for each
mutated sequence to estimate the impact of motif ablation
on contribution scores of other nearby motifs to reveal pu-
tative cooperative or competitive motif interactions99 (Fig.
4). Ablating the downstream TA-Inr or TATA box resulted
in near-complete loss (98% and 95%, respectively) of initi-
ation at the downstream TSS and a dramatic reduction of
contribution scores of all other motifs near the downstream
TSS, indicative of strong local cooperative interactions be-
tween these two motifs that are essential for initiation ac-
tivity and positioning. Ablating the TATA box near the
upstream TSS had an analogous strong localized effect on
its activity (97% of predicted initiation lost). In contrast,
ablating the SP1/BRE motif near the downstream TSS only
partially reduced its activity (by 30%), suggesting a more
minor, auxiliary role of the SP1/BRE motif in regulating
initiation activity.

Next, we substituted the Inr motif near the downstream
TSS with a TCT sequence and observed minor changes to
the predicted profile shape at the the TSS without signifi-
cant loss of predicted local initiation activity (17% decrease
within ±2 bp around the TSS), suggesting some degree
of in-context interchangeability between the direct TSS-
positioning Inr and TCT motifs.

To examine the potential effects of single nucleotide
changes, we corrected a mismatch (G to A) in the low affin-
ity CA-Inr motif at the cryptic antisense TSS, which more
than doubled its predicted activity. However, this increased
activity at the antisense TSS with the repaired Inr motif was
still lower than activity at the two sense TSSs, which have
additional TATA and SP1/BRE motifs enhancing local ac-
tivity.

Having quantified localized effects of motif perturba-
tions, we then investigated whether these perturbations re-
sulted in any epistatic effects across the TSSs in the pro-
moter. Ablating the TA-Inr or TATA box at the down-
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Figure 4: In-silico experimentation enables precise investigation of the epistatic interactions between ini-
tiation motifs. The measured PRO-cap data and original ProCapNet prediction and contribution scores (profile task)
at the primary MYC promoter are shown, followed by the model prediction and scores generated from sequences with a
single sequence feature modified from the original sequence (indicated by the black boxes). All model predictions, and all
score tracks, are plotted on the same y-axis scales.

stream sense TSS resulted in a 44% and 47% increase, re-
spectively, in predicted activity at the upstream TSS. In
contrast, ablating the TATA box at the upstream TSS did
not impact predicted activity at the downstream TSS. Fur-
ther, repair of the weak CA-Inr motif at the cryptic anti-
sense TSS which increased its predicted activity resulted in
a 30% decrease in predicted activity of the upstream sense
TSS, but no change at the downstream TSS. These results
suggest a potential complex redistribution phenomenon,
where initiation events shift between nearby favorable sites
in response to sequence alterations. The redistribution im-
plies asymmetric competition between the TSSs, with the
downstream sense TSS being most dominant, likely due to
its strong canonical Inr, TATA box, and SP1/BRE motifs.

To comprehensively explore these redistribution effects
due to motif and TSS epistasis, we expanded our in-silico
motif ablation experiments, targeting individual predictive

motif instances in all PRO-cap peaks to predict effects on
the total coverage and shape of PRO-cap profiles on both
strands (Fig. 5A; see Methods). Visual inspection of a
few candidate loci and motifs highlighted diverse redistri-
bution trends (Fig. 5B). For example, Inr ablation often
led to loss of initiation at its coincident TSS, while YY1
motif ablation less precisely led to initiation loss within a
small window upstream of the motif on the reverse strand,
and CTCF motif disruption showed more complex redistri-
bution of initiation from downstream of the motif to up-
stream.

We then systematically estimated effect sizes on total
initiation activity (fold-change coverage over entire peak
region) of all individual instances of each motif in all PRO-
cap peaks (Fig. 5C, bottom). Inr, TATA box, and TCT
motif instances had negligible median effect sizes with rel-
atively tight distributions, reaffirming the primary role of
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Figure 5: Systematic simulated motif disruption reveals motif contributions to both initiation rate and
TSS positioning. (A) Schematic of the motif ablation process. (B) Example loci where individual motif instances were
repeatedly ablated and the effect on ProCapNet predictions was estimated for each ablation. (C) The distribution of
measured PRO-cap reads across all identified motif instances in PRO-cap peaks (top) vs. the predicted effects of ablating
those motifs (bottom). FC, fold-change in predicted reads. Black bars indicate medians. (D) ProCapNet profile task
predictions before vs. after motif ablation, aggregated (median) across all instances of each motif. Dashed line indicates
where y = 0.
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these motifs in localizing initiation at coincident TSSs; the
SP1/BRE motif also fell into this category (Fig. 2A-B).
The resilience of initiation activity to disruption of indi-
vidual TSS positioning motifs suggests a redistribution of
initiation signal from TSSs at the disrupted motifs to other
locations within peaks (Fig. 5B). In contrast, ablation
of ATF1, ETS, and THAP11 motif instances showed the
greatest median decrease (∼15%) in total initiation rates,
underscoring their roles as consistently strong activators.
Notably, for most motifs besides the positioning motifs,
effect size distributions were skewed, with long tails to-
wards deleterious effects, particularly for ETS, ZBTB33,
and NRF1, indicating that individual instances of these
motifs can be quite essential for initiation activity at some
PRO-cap peaks. The substantial variation of effect sizes
of instances of each motif across peaks further highlights
extensive context-dependent epistatic interactions amongst
motifs. Juxtaposing the distributions of effect sizes from
these counterfactual motif ablation experiments with the
observational distributions of measured initiation activity
across peaks containing the same motif instances revealed
substantial differences in relative ranks of motifs based on
their median hypothetical contributions (Fig. 5C, top).
For example, the AP1 motif ranks lower based on the me-
dian observational activity compared to counterfactual ab-
lation effects. However, the observational initiation rates
in peaks containing AP1 motifs are confounded with the
3-fold higher prevalence of AP1 in distal enhancers, which
generally exhibit lower initiation activity than promoters
due to more complex motif-driven differences beyond AP1
presence alone (Fig. 3). Hence, model-based counterfac-
tual analyses are critical for dissecting the role of motifs
while accounting for context-dependent effects on initiation
rates.

Next, we assessed the impact of ablating individual mo-
tif instances on TSS positioning across entire peak regions.
For each motif, we compared median predicted profile prob-
ability distributions (normalized by coverage) centered at
predictive motif instances before and after their ablation
in all peaks, accounting for motif orientation (Fig. 5D).
As expected, ablating positioning motifs (Inrs, TATA, and
TCT) led to precise loss of TSSs at their respective sites;
similarly, ablation of the YY1 motif resulted in strand-
specific loss of initiation within a 50-bp window upstream.
Normalized profile probability predictions (that sum to 1
across 1kb and both strands) imply that a loss in probabil-
ity density at one location necessitates redistribution else-
where. However, the absence of concentrated redistributed
density in the post-motif-ablation median profiles indicates
that these positioning motifs typically don’t shift TSSs to
or from any specific location, but rather focus initiation ac-
tivity at one location that would otherwise be broadly dis-
persed across the sequence. Other motifs showed broader
effects on TSS positioning, generally within ±150 bp of
the motif instance, suggesting a local but less precise influ-
ence on initiation sites. The median profiles for these mo-

tifs showed reverse-complement symmetry, suggesting they
enhance TSS positioning downstream, peaking 50-100 bp
away, on both strands evenly. After ablation, these median
profiles became flatter, hinting at a general role for these
motifs in focusing TSSs with less positional specificity com-
pared to Inrs or TATA boxes. For some motifs, the profile
effects indicate a specific redirection of initiation from up-
stream of the motif on each strand. This effect is most pro-
nounced for the NFY motif: ablation typically leads to both
reduced TSS density 50-150 bp downstream and increased
density 0-50 bp upstream. This aligns with experimental
evidence in mice, showing that NFY loss causes upstream
transcription shifts due to altered nucleosome positioning at
promoter boundaries100. Similar weaker redistribution ef-
fects are also observed for CTCF, SP1/BRE, NRF1, ATF1,
and ZBTB33, with a modest increase in predicted TSS den-
sity within 50 bp upstream of the motif post-ablation. This
suggests that additional TFs may also help focus TSS po-
sitioning downstream by mechanisms such as nucleosome
positioning that inhibiting initiation upstream. Like NFY,
CTCF101, BANP (which binds to the ZBTB33/Kaiso mo-
tif)102, and ATF1 (in yeast)103 have all been implicated in
nucleosome repositioning previously. CTCF has also been
implicated in TSS redistribution via blocking of antisense
transcription104, which aligns with our observed increase in
antisense transcription downstream of the motif upon abla-
tion.

Finally, to understand the relationship between effect
sizes of motif disruption on initiation rates versus TSS po-
sitioning, we compared the JSD between profile predictions
pre- and post-ablation to corresponding fold-changes of pre-
dicted initiation rates across all instances of each motif
(Fig. S4). The correlation between effect sizes on initi-
ation activity and profile shapes varied across motifs (ab-
solute Spearman r between 0.05 and 0.42), suggesting that
for some motifs, the contributions of a motif instance to
positioning and activity are loosely coupled, while for other
motifs, individual instances may contribute to both inde-
pendently.

Collectively, these results suggest that initiation rates
and TSS positioning in transcribed regulatory elements are
orchestrated by complex, non-additive cis-regulatory logic
involving cooperative and competitive epistasis across con-
stellations of positioning and activating motifs and associ-
ated TSSs.

ProCapNet distills transcription initiation activity
from steady-state RAMPAGE / CAGE expression

profiles

The analyses presented above focused on ProCapNet mod-
els of nascent RNA PRO-cap profiles because we wanted
to isolate the local cis-regulatory sequence code specific to
transcription initiation, bypassing the need to model addi-
tional RNA processing events like Pol II pausing, splicing
and degradation, which affect steady-state RNA abundance
measured by alternative TSS profiling assays such as CAGE
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Figure 6: Models trained on RAMPAGE data can learn PRO-cap signal similar to ProCapNet. (A) Rela-
tionship between total PRO-cap signal and total RAMPAGE signal within PRO-cap peaks. r, Pearson correlation. (B)
Counts task performance of RAMPAGE-Net on RAMPAGE peaks from held-out test chromosomes (C) Counts predic-
tions from RAMPAGE-Net vs. predictions from ProCapNet within PRO-cap peaks. (D) Same as C, but with measured
PRO-cap signal on the y-axis. (E) PRO-cap and RAMPAGE signal, ProCapNet and RAMPAGE-Net model predictions,
contribution scores from both models, and 100-way PhyloP sequence conservation scores105 for an example promoter. (F)
Position-probability matrix (PPM) and position-weight matrix (PWM) summarizing all sequences where TSSs (5’ read
ends) were identified by PRO-cap (left) or RAMPAGE (right), weighted by the number of reads at each TSS. (G) Pearson
correlations between contribution scores from ProCapNet and RAMPAGE-Net for the profile and counts tasks across 1kb
windows over all PRO-cap peaks.

and RAMPAGE68,71. However, since initiation does con-
tribute to CAGE/RAMPAGE measurements, as evidenced
by the moderate positive correlation (r = 0.67) between
PRO-cap and RAMPAGE coverage across PRO-cap peaks
in K562 (Fig. 6A), we decided to explore what ProCapNet

might learn if trained on RAMPAGE profiles.

Hence, we trained neural networks (called RAMPAGE-
Net) directly on base-resolution RAMPAGE profiles from
RAMPAGE peaks and accessible background regions in
K562, with the same architecture and cross-validation set
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up as for ProCapNet. RAMPAGE-Net’s prediction perfor-
mance of total RAMPAGE coverage (r = 0.45) and pro-
file shape (normalized JSD = 0.70) at held-out RAMPAGE
peaks was notably worse than ProCapNet’s prediction per-
formances at held-out PRO-cap peaks (r = 0.71, normal-
ized JSD = 0.45 for coverage and shape respectively), sug-
gesting that steady-state transcription profiles are more dif-
ficult to predict than initiation activity from local sequence
context (Fig. 6B).

Direct comparison of PRO-cap predictions from Pro-
CapNet to RAMPAGE predictions from RAMPAGE-Net
at all PRO-cap peaks revealed a remarkably high corre-
lation (r = 0.96) between total predicted PRO-cap and
RAMPAGE coverage from the two models (Fig. 6C),
far surpassing the correlation (r = 0.67) between measured
PRO-cap and RAMPAGE signals. Despite numerous PRO-
cap peaks lacking measured RAMPAGE signal (Fig. 6A),
RAMPAGE-Net imputed RAMPAGE coverage at these re-
gions, with RAMPAGE-Net coverage predictions across all
PRO-cap peaks correlating highly with measured PRO-cap
(r = 0.69) (Fig. 6D). These results suggest that the pro-
portion of RAMPAGE signal that RAMPAGE-Net is able
to explain from local sequence context is in fact the initi-
ation component of steady-state RNA abundance. Other
components of steady-state RAMPAGE signal that relate
to post-initiation RNA processing steps, such as splicing
and transcript stability, are regulated by sequences further
away from the TSS (e.g. splice sites and 3’-UTRs). Hence,
the restriction of sequence context local to the TSS appears
to implicitly enable RAMPAGE-Net to distill initiation ac-
tivity de novo, on par with ProCapNet trained explicitly on
nascent RNA PRO-cap profiles.

However, despite moderate (or high) concordance of
measured (or predicted) total coverage between PRO-cap
and RAMPAGE, measured (and predicted) PRO-cap and
RAMPAGE profile shapes often disagree on precise TSS po-
sitioning, as seen at the HNRNPH1 promoter (Fig. 6E).
We turned to DeepSHAP sequence contribution scores from
ProCapNet and RAMPAGE-Net to their respective profile
shape and coverage predictions to resolve the sequence ba-
sis of these disagreements. At the HNRNPH1 promoter,
ProCapNet’s profile-shape contribution scores highlight a
canonical reverse-complement CA-Inr (ANTG) motif direc-
tionally aligned with a strong sense-strand PRO-cap ini-
tiation event (putative TSS), which is supported by high
PhyloP sequence conservation scores105. In contrast, the
RAMPAGE profile suggests a different putative sense TSS,
offset from the PRO-cap TSS, aligned with a direction-
ally discordant high scoring CAG motif on the + strand
which is not supported by sequence conservation. Thus,
the sequence features derived from the models provide
more coherent support for the PRO-cap TSS at this locus.
Position-frequency matrices of sequences aligned across all
TSSs identified by PRO-cap and RAMPAGE respectively
also show PRO-cap TSSs most commonly aligning with
the Inr sequences CANT and TANT (Fig. 6F), match-

ing previously reported Inr consensus sequences106, includ-
ing adenine as the canonical start nucleotide107, whereas
RAMPAGE TSSs favor a non-canonical guanine start.
This discrepancy is further reflected in the lower similar-
ity of profile shape contribution scores from ProCapNet
and RAMPAGE-Net compared to the similarity of total
coverage contribution scores (Fig. 6G), which provides
a sequence basis for the models’ higher similarity in pre-
dicted overall initiation signals over precise TSS position-
ing. These TSS positioning discrepancies between PRO-cap
and RAMPAGE may stem from differences in the experi-
mental protocols. In PRO-cap, the 5’ cap of transcripts
is removed prior to adapter ligation, while RAMPAGE re-
tains the G-cap and incorporates additional Gs at the 5’-end
during a later template switching step. Sequence features
derived from the models provide more convincing support
for PRO-cap TSSs than RAMPAGE TSSs.

ProCapNet predicts similar initiation activity
across diverse cell-contexts by learning a shared
initiation sequence code with few context-specific

features

Our analyses presented above were restricted to ProCapNet
models in the K562 cell-line. To understand the generaliz-
ability of the models to other cell contexts, we expanded
our study by training separate ProCapNet models on addi-
tional ENCODE PRO-cap datasets from the A673, Caco-
2, CALU3, MCF10A, and HUVEC cell-lines. ProCapNet
models from these other cell-lines performed on par with the
K562 model for both coverage and profile shape prediction
across peaks in each cell-line (Fig. 7A). Slight differences
in performance metrics across cell-lines likely reflect varia-
tions in data quality, exemplified by the highest and lowest
coverage prediction correlations being in MCF10A and HU-
VEC, which also had the largest and smallest numbers of
peaks, respectively.

While these performance evaluations compare measured
and predicted PRO-cap profiles across PRO-cap peaks in
each cell-line, they do not evaluate the predictions of the
model from one cell-line on PRO-cap peaks in other cell-
lines. Hence, we first investigated ProCapNet’s ability to
predict cell-type-specific TSS positioning in PRO-cap peaks
common to multiple cell-lines. We re-examined the MYC
promoter as a case study, since the downstream TSS showed
consistent activity across all cell-lines, while the upstream
TSS was uniquely active in K562 (Fig. S 5A). ProCap-
Net models from all cell-lines except K562 accurately pre-
dicted the dominance of the downstream TSS as well as
the minimal activity of the upstream TSS and the anti-
sense cryptic TSS. Profile contribution scores from these
non-K562 models also highlighted only the motifs that posi-
tion the downstream TSS, with no cell-type-specific motifs
noted, suggesting potential differential trans-regulation of
the K562-specific upstream TSS learned by the models. To
generalize this observation, for all PRO-cap peaks with at
least 50 supporting reads in two or more cell-lines, we tested
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Figure 7: ProCapNet performance and predictions are highly consistent across cell types. (A) ProCapNet
performance when trained and tested in all available cell types. (B) Comparison of measured PRO-cap signal (top right
triangle) and ProCapNet counts predictions (bottom left triangle) across cell type pairs, plus same-cell ProCapNet pre-
dictions vs. measured PRO-cap (diagonal) with peaks active in other cell types included. (C) Goodness-of-fit of linear
models of K562 PRO-cap data, using combinations of ProCapNet predictions and various experimental measurements of
chromatin state. (D) Examples of how histone modification or DNase-seq signal is distributed across cell-union PRO-cap
peaks, with respect to K562 PRO-cap and ProCapNet predictions. (E) Goodness-of-fit of linear models of PRO-cap
data in one cell type, using combinations of ProCapNet predictions from another cell type and experimentally measured
chromatin state signals. 15
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whether measured PRO-cap profile shapes in each cell-line
were more similar to predicted profile shapes from ProCap-
Net models of the same cell-line compared to predictions
from other cell-lines. Measured TSS profiles correlated bet-
ter with predicted TSS profiles from the same cell-line than
predictions from other cell-lines 80% of the time, confirming
ProCapNet’s ability to learn cell-type-specific TSS position-
ing. These results also emphasize the importance of train-
ing cell-type-specific models to discern cell-type specificity
of TSSs, and highlights a significant limitation of previous
cell-type-agnostic models trained on profiles averaged over
diverse cell types77 (Supplemental Note).

Next, we assessed if ProCapNet models from the diverse
cell-lines could also accurately predict cell-type-specific ini-
tiation activity. For each pair of cell-lines, we compared
measured coverage and predicted coverage across the union
of peaks from all cell-lines. For all cell-line pairs, the corre-
lation between predicted PRO-cap coverage (r = 0.8−0.97)
(Fig. 7B, lower triangle) was much higher than the
correlation between measured coverage (r = 0.5 − 0.71)
(Fig. 7B, upper triangle), suggesting that ProCapNet
models trained in different cell-lines make largely cell-type-
invariant predictions of initiation activity. ProCapNet mod-
els trained in each cell-line showed a predisposition to pre-
dict initiation activity at regions that are inactive in that
cell-line but active in others (Fig. 7B, diagonal), despite
accurate predictions of activity across peaks within each
cell-line (Fig. 7A).

To further investigate the sequence determinants of
these largely cell-type-invariant initiation activity predic-
tions from models trained in different cell-lines, we com-
pared TF-MODISCO motifs derived from each cell-line’s
models. All K562 motifs were identified in all other cell
types, except for the TCT sequence, which was found in 4
of the 6 cell-lines, and the TATA box, for which the two
subtypes were merged into one in half of the cell-lines (Fig.
S5B). Motif prevalence was also highly consistent across
all cell-lines. Some cell-line-specific motifs were also iden-
tified, including some ubiquitous nuclear factors and some
cell-type-specific TFs. For example, the motif for EWS-
FLI, a marker oncogenic factor specific to Ewing sarcoma,
was exclusively found by TF-MODISCO in the A673 Sar-
coma line108 (Fig. S5C). Similarly, motifs of HNF4 and
FOX TFs, which have specific functional roles in colorec-
tal tissue, were exclusively found by TF-MODISCO in the
Caco-2 colorectal cancer cell-line109–111. Hence, ProCapNet
models trained in different cell-lines learn a predominantly
shared cis-regulatory code and a few cell-type-specific mo-
tifs, resulting in largely cell-type-invariant predictions of
initiation activity.

Cell-type specificity of initiation activity is
strongly influenced by local chromatin state

ProCapNet’s predictive motifs often exclude key regulators
of cell-type-specific chromatin accessibility and active his-
tone modifications, such as the motifs of GATA1 and TAL1

in K562112,113. This decoupling of sequence determinants of
initiation from chromatin state might stem from our train-
ing set design, which included PRO-cap peaks and accessi-
ble, but transcriptionally inactive background regions from
each cell-line. But it is more likely to be a consequence of
ProCapNet’s exclusion of distal regulatory sequences, cru-
cial for accurate prediction of cell-type-specific chromatin
state, and, by extension, cell-type-specific initiation activ-
ity62,63. To further understand the relationship between
chromatin state and initiation, we tested whether explicit
incorporation of various chromatin state markers might im-
prove prediction of initiation activity and its cell-type speci-
ficity.

We examined how ProCapNet predictions relate to chro-
matin state by fitting linear models to initiation activity in
K562 using combinations of ProCapNet’s initiation activ-
ity predictions, measured chromatin accessibility, and/or
ChIP-seq histone modifications in K562 as inputs. We re-
port the adjusted R2

adj of the linear models, which corrects
for the number of input predictors and training data points.
We first tested this strategy using PRO-cap peaks in K562
and later expanded to a combined set of peaks from all cell
types.

Restricting to PRO-cap peaks in K562, linear models us-
ing ProCapNet predictions alone had an R2

adj of 0.57, while
a linear model using all chromatin markers achieved an
R2

adj of 0.71. Combining chromatin markers with ProCap-

Net predictions elevated the R2
adj to 0.73 (Fig. 7C, top).

Thus, chromatin state is strongly associated with initiation
activity in active PRO-cap peaks. The chromatin markers
with the strongest marginal association with PRO-cap ac-
tivity were H3K4me3, H3K9ac, and DNase-seq, consistent
with prior studies (Fig. 7C, top, light bars)48. However,
no individual chromatin marker outperformed ProCapNet
alone.

Next, to assess which chromatin markers complement
the local initiation logic learned by ProCapNet, we fit lin-
ear models to predict measured PRO-cap using both in-
dividual chromatin markers and ProCapNet predictions as
input. Chromatin markers with stronger marginal associ-
ation with PRO-cap activity did not always correspond to
greater improvement over ProCapNet alone (Fig. 7C, top,
dark bars). H3K27ac and H3K9ac were the most comple-
mentary, followed by DNase-seq, H3K4me3, and H3K4me2.
Other histone modifications and ATAC-seq showed minimal
additional improvement over ProCapNet predictions alone.
Further, no single chromatin marker, when combined with
ProCapNet, matches the performance of all of them com-
bined.

Expanding the analysis to PRO-cap peaks active in any
of the cell-lines clarified the importance of local chromatin
state for cell-type-specific initiation activity in K562. The
most complementary chromatin signals in K562, identi-
fied in the above analysis, each showed distinct patterns of
higher signal in PRO-cap peaks active in K562 compared to
peaks inactive in K562 but active in other cell-lines (Fig.
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7D). Linear models trained to fit PRO-cap activity in K562
from different combinations of inputs over this expanded set
of PRO-cap peaks showed that models based on ProCap-
Net predictions alone had substantially lower R2

adj (0.45)
than models that included all chromatin markers (0.86; Fig.
7C, bottom). For all chromatin markers except H3K4me1,
H3K9me3, and H3K9me1, marginal associations with mea-
sured PRO-cap reads were also greater than associations
estimated over K562 PRO-cap peaks. Further, most linear
models trained on the expanded peak set that combined
ProCapNet predictions with individual chromatin markers
had higher R2

adj than a model using ProCapNet predic-
tions alone (Fig. 7C, bottom, dark bars). H3K9ac
and H3K27ac were top contributors, followed by H3K4me2,
H3K4me3, and chromatin accessibility; these models only
marginally outperformed models that only used chromatin
markers (Fig. 7C, bottom, light bars).

Finally, for each pair of cell-lines, we tested how well
integrating chromatin markers in a target cell-line with
ProCapNet predictions from models trained on a different
reference cell-line could fit PRO-cap activity in the target
cell-line by adjusting model predictions for cell-type-specific
peaks. We performed this analysis for all cell type pairs
for which shared chromatin marker datasets were available
(K562, A673, Caco-2, and HUVEC). First, ProCapNet pre-
dictions were less accurate in fitting measured PRO-cap sig-
nals when the model was trained in a different cell type, con-
firming that ProCapNet captures some degree of cell-type
specificity (Fig. 7E). While all target-cell-line chromatin-
augmented ProCapNet models showed improvements over
using ProCapNet alone, the extent of improvement var-
ied significantly depending on the chromatin markers in-
corporated and the cell-line pairs. H3K4me3, H3K27ac,
and DNase-seq provided the largest gains in R2

adj , whereas
H3K27me3, H3K9me3, and H3K36me3 provided marginal
improvements. Models that combined reference ProCapNet
predictions with all chromatin markers from the target cell-
line had the best fits (average R2

adj > 0.8), generally outper-
forming models that used any single marker, although mod-
els augmented with H3K27ac alone were marginally worse
than the model augmented with all markers.

Collectively, these results suggest that local chromatin
state is critical for predicting cell-type-specific and differ-
ential initiation activity at regulatory elements across cell
types and less relevant for predicting initiation across re-
gions that are active in a specific cell type. ProCapNet
learns a cis-regulatory code of initiation that partially com-
plements cell-type-specific sequence drivers of local chro-
matin state. Hence, ProCapNet’s predictions tend to be
more consistent across cell types without explicit integra-
tion of cell-type-specific chromatin state.

Discussion

ProCapNet is a compact neural network based on the ver-
satile BPNet architecture that effectively models transcrip-

tion initiation rates and positioning of initiation events from
sparse, base-resolution PRO-cap profiles, using only local
DNA sequence context. Despite the significant influence
of distal regulatory elements on transcription, ProCapNet’s
effectiveness at predicting initiation profiles suggests that
local sequence context encodes a substantial component of
the cis-regulatory logic of initiation.

Querying ProCapNet models with a suite of well-
established, robust model interpretation methods enabled
identification and systematic analysis of cis-regulatory se-
quence features and their higher-order syntax that predict
initiation across the human genome, addressing several cru-
cial questions about the role of sequence in transcription
initiation regulation in cis.

ProCapNet’s multi-scale approach to modeling initia-
tion rate and profile shapes separately enables delineation of
the specific contributions of both known and novel variants
of initiation motifs and general transcription factor (TF)
motifs to initiation rate and transcription start site (TSS)
positioning, both individually and in combination. While
some motifs primarily specify TSS positioning, others mod-
ulate initiation activity more broadly, and some influence
both aspects depending on the sequence context. Each mo-
tif contributes uniquely to TSS positioning and can shift
initiation upstream or downstream of its location.

These findings align with several previous observations
of the role of different TFs and motifs in initiation. First,
earlier work has proposed that bidirectional, divergent tran-
scription is the product of two opposite-oriented core pro-
moter motif sets80,114,115; indeed, ProCapNet attributes its
accurate predictions in divergent PRO-cap peaks to oppo-
site core promoter motif sets, providing supervised confir-
mation of this model (Fig. 2B). Second, Core et al. 201448

described two groups of TFs that bind within divergent TSS
pairs: central-binding factors, responsible for overall activa-
tion of transcriptionally active regions, and TSS-proximal
TFs, which include GTFs and which bind much closer to
where initiation events are positioned; interpretation of Pro-
CapNet revealed motif contributions that can be cleanly
categorized into these two groups, with the latter describing
core promoter motifs and YY1, and the former describing
the remaining TF motifs. Third, TATA boxes, Inrs, and
TCT sequences have been implicated in TSS positioning
previously40,56. ProCapNet precisely quantifies the posi-
tioning contributions of these motifs, but beyond that, it
represents a unified model of how TATA boxes, initiator el-
ements, and other TF motifs combinatorially contribute to
positioning, including at regions of dispersed transcription,
where TATA boxes and other motifs are less common22.

While ProCapNet robustly recovered motifs tradition-
ally associated with transcription, such as the TATA box
and Inr element, it provided limited evidence for the GC-
rich DPR element as previously reported92. Although Pro-
CapNet highlighted general GC-rich features downstream
of TSSs, that no single representative motif was discovered
suggests that the contribution of the DPR may be more
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general than a lone PWM could effectively represent (i.e.,
the sequence composition of the DPR does impact initia-
tion, but there is no discrete DPR motif). The DPR could
also play more of a role in downstream regulatory processes,
such as promoter-proximal pausing, RNA stability, splic-
ing, etc. than in initiation. In particular, because the re-
gion downstream of the TSS is by definition transcribed, it
might influence abundance measurements by RNA-seq or
CAGE/RAMPAGE more than nascent transcription read-
outs such as PRO-cap. Hence, predictive sequence models
such as ProCapNet trained directly on nascent RNA initia-
tion profiles may be better suited to characterizing the role
of the DPR and any other motif in initiation specifically.

ProCapNet also highlighted the surprising ability of spe-
cific instances of the NRF1, ETS, YY1, AP1, and ATF1
motifs to act as context-dependent initiators via cryptic Inr
sequences intertwined within these motifs. This dual func-
tionality has been previously reported for YY1 and ETS,
but not for NRF1, AP1, or ATF138,116. The alternative
initiator functionality of these motifs is predictable from
sequence alone, yet the sequence of the TF motif instances
that directly initiate transcription are not conspicuously dif-
ferent from those of their canonical counterparts, suggesting
that local sequence context of motif instances is crucial in
determining when this secondary functionality is activated.
This finding raises several mechanistic questions, including
whether or not the TFs that typically bind these motifs
also bind to instances that function as Inrs, whether this
binding influences the recruitment of general transcription
factors, and whether these TFs remain engaged with the
promoter when components of the pre-initiation complex,
which interact directly with Inr elements, are assembled
(as has been shown for YY138). One potential model is
that an equilibrium between binding of the TF and bind-
ing of the PIC at these sites serves to maintain accessibility
of the core promoter. This set of TFs also overlaps with
those previously identified as having an initiation-centric
role in promoters that are less responsive to enhancers (pri-
marily housekeeping genes), suggesting a potential role for
dual-initiator functionality in enhancer-promoter compati-
bility52.

ProCapNet improved genome-wide annotations of mo-
tifs involved in initiation across all classes of transcribed
regulatory elements. We detected at least two initiation
motifs in nearly every active promoter in the K562 PRO-
cap datasets and in 98% of PRO-cap peaks overall. This
finding significantly revises previous estimates of initiation
relevant motifs in promoters and reinforces the view that
local sequence context encodes a substantial component of
the cis-regulatory logic that regulates initiation at all hu-
man promoters. Differences in nascent transcription be-
tween promoters and enhancers could be clearly attributed
to syntactic variations in motif density, diversity and affin-
ity, rather than distinct motif lexicons, supporting the hy-
pothesis that enhancers and promoters form a functional
continuum i.e. many enhancers, in addition to influencing

distal promoter activity, also act as weak promoters on their
own47,48,117,118.

Systematic in-silico motif ablation studies with ProCap-
Net models at individual loci and genome-wide highlighted
complex, modular rules of epistatic motif syntax and com-
petitive interactions among transcription start sites (TSSs),
with significant predicted redistribution of initiation activ-
ity upon motif perturbations. These model-based counter-
factual analyses proved critical for dissecting the role of mo-
tifs, accounting for context-dependent effects on initiation
rates and positioning. Overall, these findings emphasize
the extensive intricate interplay of cooperative and com-
petitive mechanisms among motifs and TSSs, shaping the
transcription initiation landscape across promoters and en-
hancers. These results especially highlight the advantage
of supervised deep learning models that can learn de novo,
nonlinear predictive representations and contextual epista-
sis from raw sequence, relative to traditional computational
approaches for sequence analysis that rely on unsupervised
statistical over-representation of individual features often
confounded by extensive non-causal correlations between
features.

ProCapNet’s architecture can also be used, as-is, to
model alternative TSS profiling assays such as CAGE and
RAMPAGE that measure steady-state mRNA abundance.
Despite the significant contribution of RNA processing to
RAMPAGE signals, which cannot be learned from local
promoter sequence context, these RAMPAGE-Net models
effectively distill out the initiation portion of the signal
driven by promoter syntax, which is remarkably concor-
dant with initiation activity predictions from ProCapNet
models trained on PRO-cap data. Hence, initiation activ-
ity attributed to local sequence and the underlying sequence
syntax could be potentially imputed from widely available
RAMPAGE or CAGE data in diverse cell contexts119,120.
However, comparative analysis of performance and interpre-
tation of RAMPAGE-Net and ProCapNet models helped
us identify systematic differences in TSS precision between
RAMPAGE and PRO-cap measurements potentially linked
to experimental or mapping artifacts in the RAMPAGE ex-
periments we modeled. Hence, interpretable sequence mod-
els also serve as a powerful lens to decipher subtle idiosyn-
crasies present in different experimental assays.

Predictive sequence models trained on initiation pro-
files could inadvertently learn sequence drivers of upstream
processes, such as TF binding and chromatin accessibility,
that indirectly influence initiation. To focus ProCapNet on
sequence determinants of initiation decoupled from these
upstream processes, we explicitly included during training
transcriptionally inactive but accessible background regions
from the training cell-type context. Subsequent interpre-
tation of ProCapNet models trained in diverse cell-lines
showed that they often do not learn key cell-type-specific
drivers of chromatin accessibility (e.g. GATA1 in K562) and
instead learn a partially complementary cis-regulatory code
of initiation that is largely cell-type-invariant. ProCapNet
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models learn motifs exclusive to initiation (e.g. TATA boxes
and Inrs), as well as TF motifs (e.g. NRF1, YY1, and AP1)
that also influence accessibility, but in a cell-type-invariant
manner112. However, cell-type-specific motifs (e.g. EWS-
FLI in A673, HNF4 and FOX in Caco-2) are occasionally
learned by ProCapNet, raising interesting questions about
the precise mechanism by which these rare cell-type-specific
motifs influence initiation. The largely cell-type-invariant
code learned by ProCapNet results in imperfect predic-
tion of cell-type-specific initiation activity. Post-hoc in-
tegration of ProCapNet with chromatin accessibility and
histone modifications, individually or collectively, resulted
in substantial improvement of cell-type-specific predictions,
highlighting the critical role of chromatin state for cell-
type-specific initiation activity48,78. These results empha-
size the importance of training set design, complementary
performance evaluation strategies, and thorough model in-
terpretation for developing models that balance interpre-
tation goals with prediction performance, and to identify
strategies to enhance both. Our findings also suggest that
initiation assays and associated predictive models like Pro-
CapNet will likely improve prioritization and interpretation
of noncoding variants that disrupt sequence syntax exclu-
sive to initiation. A recent study already demonstrates
that ProCapNet complements analogous models of chro-
matin accessibility112 and outperforms a state-of-the-art,
long-context sequence model of gene expression62 at pre-
dicting and explaining the effects of engineered sequence
edits in enhancers and promoters on gene expression121.

ProCapNet offers several advantages over the recent
Puffin model, which also aims to predict base-resolution
PRO-cap and CAGE profiles averaged over diverse biosam-
ples from local sequence77 (Supplemental Note). Puffin
is constrained to learn a restricted set of motifs curated
from a larger, long-context model using an ad-hoc, iter-
ative distillation approach. Puffin also uses an explicitly
additive neural network architecture, based on an unveri-
fied assumption that motif instances impact initiation in-
dependently and additively. Puffin emphasizes this hand-
crafted, transparent model design for direct interpretation
of model parameters, suggesting that it enhances the dis-
covery of initiation syntax. We systematically benchmarked
ProCapNet against Puffin to understand their pros and cons
(Supplemental Note). First, we found that ProCapNet
outperforms Puffin at prediction, benefiting significantly
from being a cell-type-specific model. Second, all motifs and
their positional preferences identified by Puffin are indepen-
dently discovered by ProCapNet (except the U1 snRNP,
which is a post-initiation RNA processing regulator). How-
ever, ProCapNet discovers several important properties of
the initiation code missed by Puffin due to its constrained
design. Puffin does not identify several ProCapNet motifs
predicted to influence initiation including ubiquitous motifs
such as CTCF and several cell-type-specific motifs (Fig. S
5B). Puffin’s additive model does not accommodate motif
epistasis, severely limiting its ability to accurately identify

active instances of Inr motifs and decipher cryptic, context-
specific initiator codes intertwined within other TF motifs.
The critical role of motif epistasis in initiation as highlighted
by ProCapNet is strongly supported by other recent in-
dependent computational and experimental studies122,123.
Furthermore, while Puffin’s training scheme is based off the
assumption that aggregating data across many cell types is
necessary to learn the relationship between sequence and
initiation, ProCapNet’s accuracy refutes that claim, and
we show how data aggregation can even lead to mislead-
ing model predictions. Unlike Puffin, ProCapNet models
and interprets sequence drivers of overall initiation activity
levels in addition to TSS positioning. Finally, our study
provides a unified analysis of the cis-regulatory code of ini-
tiation at all transcribed regulatory elements, including en-
hancers, while Puffin is restricted to promoters. In sum-
mary, the Puffin model does not offer any advantages over
well-established post-hoc interpretation methods applied to
unconstrained, black-box architectures such as ProCapNet,
and in fact hinders the ability to discover important syn-
tactic properties of the initiation code.

Going forward, ProCapNet can be extended to address
some key limitations. First, our current study explicitly
focuses on quantifying the influence of local sequence con-
text on initiation activity and positioning and dissecting
the influence of predictive local sequence features and their
higher-order syntax. While ProCapNet can explain a sub-
stantial component of initiation activity, it will be critical
to incorporate the influence of distal regulatory elements to
further improve predictive performance and cell-type speci-
ficity. However, the key challenge is to design long-context
models that incorporate these enhancements without sac-
rificing model stability and interpretability62–64. Second,
incorporation of sequence drivers of chromatin state will
also be critical to improve model performance. While our
current integrative models incorporate experimental mea-
sures of chromatin state, future efforts could jointly train
and interpret sequence models of chromatin accessibility,
histone marks, and initiation activity to enhance predic-
tion performance while preserving modular interpretabil-
ity of sequence drivers of the different readouts112. Third,
while we focused on isolating regulation of initiation alone,
initiation is not independent of promoter-proximal pausing
in humans67; even PRO-cap measurements of initiation ac-
tivity can be underestimates of the initiation capacity of
a promoter if pausing is the true limiting step. Thus, it’s
possible that the model’s overall activity predictions could
be improved by taking pause rates at individual loci into
consideration. Finally, ProCapNet has enabled robust dis-
covery of several novel hypotheses about the cis-regulatory
code of initiation at individual loci and globally; experimen-
tal validation will be critical to verify them.

Nevertheless, ProCapNet and its future extensions could
be used to address several other interesting questions, such
as the subtle differences between specific classes of regu-
latory elements, including promoters of housekeeping vs.
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cell-type-specific genes and lncRNAs. These models could
be used to improve the base-pair precision of transcrip-
tion start site annotations, systematically screen for non-
coding genetic variants in rare and common diseases that
impact transcription initiation in diverse cell contexts, and
study the evolution of the cis-regulatory code of initiation
across species. The models could also be used to optimize
design of synthetic promoters, benefiting experimental re-
porter library designs and gene therapy payloads. Finally,
sequence models of initiation coupled with analogous mod-
els of TF binding, chromatin accessibility, histone modi-
fications, RNA processing, stability, and abundance could
reveal the complex interplay between partially overlapping
layers of the cis-regulatory code of transcriptional regula-
tion. As these models evolve, they will continue to enhance
our understanding of the genome, human biology, and dis-
ease.

Methods

PRO-cap datasets

Uniformly processed PRO-cap peak calls and UMI-filtered
read alignments for all replicate experiments were down-
loaded from the ENCODE portal for all cell-lines: K562
(accession ID ENCSR261KBX) for the main ProCap-
Net model, as well as A673 (ENCSR046BCI), Caco-
2 (ENCSR100LIJ), Calu3 (ENCSR935RNW), HUVEC
(ENCSR098LLB), and MCF10A (ENCSR799DGV) for the
additional cell-line models124. Unidirectional and bidirec-
tional peak calls were combined into a single peak set. The
first read in read pairs was filtered out of the read align-
ments, and only the single base at the 5’ end of the second
read (corresponding to the 5’ end of nascent RNAs, or the
TSS) was retained as a data point for each read. Data was
then merged across replicates but kept separate by strand.

Other datasets

All other experimental datasets were downloaded from the
ENCODE portal124. For model training, peak calls of
DNase hypersensitive sites for each cell-line were obtained
from accession IDs ENCSR000EKS, ENCSR789VGQ,
ENCSR114QAK, ENCSR255STJ, ENCSR366NBE,
ENCSR000EOQ for K562, MCF10A, A673, Caco-2, Calu3,
and HUVEC, respectively.

For analysis of model performance and motif in-
stances across candidate cis-regulatory elements (cCREs),
we downloaded cell-type-specific ENCODE annotations
(ENCSR301FDP)79.

For analysis of quantitative chromatin state, we used
processed ENCODE data: specifically, fold-change over
control ChIP-seq tracks for histone modifications, read-
depth normalized signal tracks for DNase-seq, and fold-
change over control tracks for ATAC-seq. ENCODE ac-
cession IDs for most experiments are in Supplementary

Table S4; we also used the following datasets only avail-
able in K562: ATAC-seq (ENCSR868FGK), H3K4me2
(ENCSR000AKT), H3K79me2 (ENCSR000APD), H3K9ac
(ENCSR000AKV), and H3K9me1 (ENCSR000AKW).

For RAMPAGE data (ENCSR000AER), we obtained
base-resolution experimental signal by taking the read 1
5’ ends from the alignment bam files and merged the “tran-
scription start site” peak calls from each replicate to create
our peak set.

The GRCh38 genome sequence and gene annota-
tion (v41) were downloaded from GENCODE125. For
mappability-aware training and assessment of how model
performance varies with mappability, we used the
k36 multi-read hg38 Umap track downloaded from
https://bismap.hoffmanlab.org/126. Tracks of 100-way
PhyloP sequence conservation105 were obtained from the
UCSC genome browser127.

ProCapNet model design

ProCapNet architecture is adapted from the BPNet model,
previously described in Avsec et al. 202157. ProCapNet
takes as input 2,114 bp of sequence and outputs 1) a vec-
tor representing the probability of an initiation event being
observed at each base on both strands within a 1,000-bp
window and 2) a scalar representing the total log-count of
initiation events (PRO-cap reads) within the same window
(Figure 1A). ProCapNet differs from BPNet in the follow-
ing ways. First, while BPNet’s predictions are conditioned
on an experimental control track, ProCapNet does not in-
tegrate information from experimental controls, since none
exist for PRO-cap. Second, ProCapNet’s sequence input
is of size 2,114 bp and the output is 1 kb, whereas BP-
Net’s input sequences and output predictions are both 1kb
wide; ProCapNet’s increased input size removes the need to
pad input sequences with zeros to allow convolutional fil-
ters to scan at the sequence edges. This change avoids any
artefacts at the borders of predictions arising as a result of
zero-padding.

Third, the ProCapNet counts task predicts the log of
the number of PRO-cap reads with 5’ ends mapping within
a 1,000-bp window, summed over both strands, while BP-
Net makes one prediction per strand. A similar modifica-
tion is made to the profile task: while the profile heads of
both models make base pair-resolution predictions across
both strands, BPNet treats the strands as two independent
prediction tasks and applies a softmax to each strand indi-
vidually, whereas ProCapNet applies the softmax function
across the predictions for both strands, as if they are one
array. These modifications to strand representation allow
the ProCapNet profile task to learn to predict asymmetry
in read allocation across strands, while the counts task pre-
dicts overall rate of initiation across either strand. ProCap-
Net is trained using the same loss functions as BPNet for
both profile and counts tasks (MSE and a multinomial loss,
respectively), but because the predictions are represented as
combined across strands for ProCapNet, each loss is calcu-
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lated once per input sequence, rather than once per strand
per input sequence.

Fourth, ProCapNet implements a mappability-masked
training scheme, incorporating information about which
bases are not uniquely mappable by PRO-cap-length se-
quencing reads into the profile task loss function. Specifi-
cally, any base that is not entirely uniquely mappable, ac-
cording to 36-mer multi-read annotation tracks produced
by the Umap software126, is assigned a loss weight of zero,
to avoid penalizing the model for any incorrect predictions
at bases at which the measured PRO-cap data may be in-
accurate. This approach is only implemented during train-
ing; all reported performance metrics include performance
on bases that are not uniquely mappable. Models trained
with this approach had extremely similar performance to
those trained without it, but contribution scores showed
mild qualitative improvement.

Finally, all post-training ProCapNet predictions were
generated by taking the average of the model output for
both the forward strand sequence and its reverse comple-
ment, to increase robustness of predictions128.

The following model architecture hyperparameters were
tuned to optimize performance, according to the validation
set for the first fold K562 model:

1. Eight dilated convolutional layers (9 convolutional
layers total);

2. 512 filters per convolutional layer, for all convolutional
layers;

3. size-21 filters in the first convolutional layer;

4. size-75 filters in the deconvolutional layer;

5. counts task weight (lambda) of 100.

ProCapNet model training

ProCapNet was trained and evaluated using 7-fold cross-
validation split by chromosome, with no overlap between
training, validation, and test sets. Seven folds were chosen,
rather than five, because using additional folds increases the
size of the training set for each fold. All downstream analy-
ses, excluding those where models were being evaluated on
held-out test sets, used predictions and contribution scores
averaged across the 7-fold models.

The set of training examples for the main ProCap-
Net model consisted of all PRO-cap peaks in the hu-
man K562 cell-line as well as background K562 DNase-
hypersensitive sites, sampled randomly without replace-
ment from the training set chromosomes. Background
DNase-hypersensitive sites were at least 500bp away from
the center of any PRO-cap peak and were resampled inde-
pendently for each training epoch. A 7:1 ratio of PRO-cap
peaks to DNase-hypersensitive sites was enforced within
batches of size 32. We employed two forms of data aug-
mentation: first, training examples were randomly reverse-
complemented with 0.5 probability, and second, each exam-

ple was centered ±200bp from the center of the PRO-cap
peak (or DNase-hypersensitive site), with the offset selected
with uniform probability. All models were trained using
early stopping (patience of 10 epochs) which monitored the
overall loss on the fold validation set.

For ProCapNet models trained in other cell-lines, the
training set consisted of PRO-cap peaks and DNase-
hypersensitive sites for that cell-line. For the version of Pro-
CapNet trained on only promoters, the training set only in-
cluded PRO-cap peaks with a center that fell within 500bp
of an ENCODE-annotated candidate promoter. DNase-
hypersensitive sites were not used in training Promoter-
ProCapNet, as they could include enhancers without high
initiation signal.

RAMPAGE-Net was trained identically to ProCapNet,
including with 7-fold cross-validation by chromosome and
with the same architecture, but to predict RAMPAGE sig-
nals in K562 and using RAMPAGE peaks. The training
dataset consisted of all RAMPAGE peaks from the train-
ing chromosomes plus background regions of DNase peaks
that did not overlap RAMPAGE peaks.

ProCapNet was implemented and trained in
PyTorch 1.12.1129 using the Adam optimizer130

(learning_rate = 0.0005).

Quantifying profile task performance

The Jensen-Shannon Distance (JSD) metric was used to
measure how similar each ProCapNet profile task predic-
tion was to the distribution of the measured PRO-cap data.
JSD was calculated using the scipy jensenshannon function
(base = 2). Because PRO-cap peaks with lower read cover-
age produce higher (worse) JSD values due to the inherently
stochastically sampled nature of sequencing reads, and be-
cause model predictions are real-valued numbers and not
whole read counts, it was necessary to normalize the JSD
metric to remove this skew. We generated two pseudo-
replicates for each PRO-cap dataset by splitting the reads
randomly into two groups and then used the JSD calcu-
lated by comparing the two pseudo-replicates at each PRO-
cap peak as the upper bound. We next calculated a lower
bound JSD that corresponds to if the model predicted a
perfectly flat (uniform) read distribution. Actual measured
vs. model-predicted JSD values were then min-max nor-
malized, individually for each example, using these bounds.

Quantifying initiation directionality and dispersion

The Orientation Index83 (OI), which measures the strand
asymmetry of PRO-cap data within a given region, was cal-
culated by dividing the maximum number of reads on either
strand by the sum of the reads on both strands. The Nor-
malized Shape Index (NSI), modified from Hoskins et al.
201184, measures the dispersion of PRO-cap data within a
given region and was calculated as the Shannon entropy of
read positions divided by the natural log-log of the read
counts, to reduce skew from differences in coverage. Both
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metrics were calculated using reads found within a 1,000-bp
window centered on each PRO-cap peak.

cCRE, promoter class, and gene region
identification

Annotations of candidate promoters and enhancers in K562
were downloaded from ENCODE (ENCSR301FDP)79.
These annotations were curated using orthogonal experi-
mental measurements to PRO-cap, including chromatin ac-
cessibility and histone modifications. PRO-cap peaks were
labeled as promoters or enhancers according to whether
their center was within 500bp of one or more annotated
“promoter-like signature” or “distal enhancer-like signa-
ture” candidate elements, respectively. Promoter PRO-cap
peaks also within 500 bp of “proximal enhancer-like signa-
ture” candidate elements were labeled as promoters with
proximal enhancers.

For the purposes of stratifying model performance
across promoter classes and gene regions, the stratifica-
tions were defined as follows. Promoters with TATA boxes
were defined as promoter PRO-cap peaks that also con-
tained an identified instance of either of the TATA box
motifs identified by TF-MODISCO. RP-TCT promoters
were defined as PRO-cap peaks that fell within regions
from 800bp upstream to 700bp downstream of the TSSs of
all 84 GENCODE-annotated canonical ribosomal protein
genes, filtered for close matches to the sequence TCTT.
Housekeeping promoters were defined as in Bergman et al.
202252. Protein-coding and lncRNA promoter labels corre-
sponded to GENCODE annotations of gene function.

PRO-cap peaks were stratified into genic, intergenic, in-
tronic, and exonic regions according to cell-type-agnostic
GENCODE annotations. First, all peaks that fell within
windows upstream 300 bp to downstream 200 bp from any
annotated TSS were labeled ”At TSS”. Second, all peaks
that were not already labeled ”At TSS” were labeled as be-
ing in a gene body if their center was located within any
GENCODE transcript, or as intergenic otherwise. Third,
every peak in a gene body, but not ”At TSS”, was further
stratified by whether it fell within any annotated exon (and
if so, whether it fell within any annotated UTR); otherwise
it was labeled intronic.

For performance stratification across mappability bins,
the overall mappability of each PRO-cap peak was defined
as the fraction of bases within a 1 kb window centered on
the peak that were 100% mappable according to 36-mer
multi-read Umap annotation tracks126.

Contribution scoring and score clustering

Contribution scores were generated for all bases in
each sequence in the training and validation set using
DeepSHAP88, as implemented in PyTorch Captum v0.5.0.
DeepSHAP is an extension of DeepLIFT89 that approxi-
mates SHAP values by contrasting the model’s prediction
for a given sequence against predictions for a set of “back-

ground” reference sequences. We used 25 dinucleotide shuf-
fles of the sequence being scored as the reference sequence
set. Because DeepSHAP relies on having a single scalar
value to represent model outputs, the output of the profile
head was summarized as follows: the logits (profile head
output pre-softmax) were mean-normalized per-sequence,
and then the dot product between the normalized logits and
the post-softmax profile head output was computed. This is
equivalent to weighting the logits by the per-base predicted
probabilities of TSS positioning, and then summing over
the 1,000-bp output window and both strands. For every
sequence scored, we took the average of the per-nucleotide,
per-base scores (a 4-bases by 2,114-positions sized array)
across the forward strand sequence and its reverse comple-
ment to improve the robustness of the scores.

To aggregate contribution scores over multiple instances
for motif discovery, a performance-improved version of the
TF-MODISCO algorithm90, tf-modiscolite v2.0.0, was ap-
plied to the DeepSHAP scores from the central 1,000 bp of
all scored sequences. The parameters used for tf-modiscolite
were:

max_seqlets_per_metacluster = 1000000,

sliding_window_size = 20,

flank_size = 5,

target_seqlet_fdr = 0.05,

n_leiden_runs = 50.

TF-MODISCO patterns were matched to known TFmo-
tifs by querying the JASPAR database131 of all vertebrate
motifs for matches to CWMs using the TOMTOM tool132

from the MEME suite133 and manual curation.

Motif instance calling

To identify individual instances of the sequence patterns
reported by TF-MODISCO, the following procedure was
applied: first, all sequence positions within ±1057 bp of
each PRO-cap peak center were scored via convolutional
scanning of each motif’s CWM. Second, all positions were
scored again by scanning each CWM across the task-
specific DeepSHAP contribution scores. Third, we filtered
for hits with both high sequence-match scores and high
contribution-match scores, with thresholds set manually for
each motif by human inspection to ensure proper match
fidelity. Overlaps between hits were resolved by choos-
ing the motif instance with the largest contribution-match
score multiplied by the motif’s length. Downstream anal-
yses used the set of hits based on the profile task-derived
CWMs and contribution scores because they were qualita-
tively cleaner than CWMs and hits specific to the counts
task; hits from the counts task reported in Fig. 2A were
derived from counts task contribution scores, but used the
profile task-derived CWMs for scanning to allow for fair
comparison of motif hit counts across tasks.

22

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2024. ; https://doi.org/10.1101/2024.05.28.596138doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.28.596138
http://creativecommons.org/licenses/by-nc/4.0/


Principal components analysis on model
embeddings of promoters and enhancers

Model embeddings were defined as the outputs of the global
average pooling layer, which follows the final dilated con-
volution layer that is shared between the profile and counts
task heads. embeddings were generated for all K562 PRO-
cap peaks, and principal component analysis was run on
this dataset using the PCA module in scikit-learn v1.1.2.
PRO-cap peaks annotated as overlapping candidate pro-
moters and distal enhancers were then projected into the
PCA space.

Linear and logistic regression models

All linear models were fit using the ordinary least squares
(OLS) function with default parameters from the statsmod-
els v.0.13.2 Python package. For all linear models, the same
7-fold cross-validation scheme was applied for model fitting
vs. evaluation. An intercept term was added during fitting,
and the adjusted R2 on held-out PRO-cap peaks, averaged
across folds, was reported.

For linear models fit using chromatin state information,
scalar values for accessibility and histone mark signals were
calculated per PRO-cap peak by taking the mean of the
log of fold-change over control values within a 1-kb window
centered on the peak center. For models using chromatin
state information that were fit with multiple input features
(including models using ProCapNet predictions plus one
chromatin state signal), all possible second-order interac-
tion terms were included in the model.

Logistic regression models for cCRE category classifi-
cation were fit using the LogisticRegression module from
scikit-learn v1.1.2. Accuracy values reported are averages
across the held-out cCRE-overlapping peaks from 7-fold
cross-validation.

Effects of motif ablation on predicted PRO-cap
coverage and profile shape

Motif ablation in the analysis of MYC promoter epistasis
was performed manually: the sequence corresponding to the
motif was replaced by a sequence of equal length designed
by hand to no longer match that motif, nor create a match
to any other ProCapNet-learned motif. All predictions and
contribution scores shown are the average of outputs from
each of the models trained across 7 folds.

For the systematic analysis of motif ablation across all
peaks, the following process was performed at every in-
stance of each motif identified in a PRO-cap peak. First,
model predictions were generated for both the original se-
quence centered at the peak and 25 sequences where the
motif instance was replaced with random nucleotides to de-
stroy the motif, with the rest of the sequence remaining
intact (Fig. 5B). The random nucleotides were sampled
with probabilities matching the frequencies of bases in the
motif and within pm50 bp of flanking sequence around the
motif. Second, to summarize the effect of ablation for the

counts task, the fold-change was calculated between the un-
perturbed sequence counts prediction and each of the per-
turbed sequence counts predictions, and the median fold-
change across repeated ablations was reported (Fig. 5C,
bottom). Third, to summarize the effect of ablation on
the profile task, the median model prediction after abla-
tion was computed over all ablations, and then the median
was taken across all instances of the motif. Profiles were
centered on the motif instances and corrected according to
motif orientation (if a motif was in the reverse orientation,
the predictions were reversed).

Software and data availability

Code to download and preprocess all data, train ProCap-
Net, and reproduce all downstream analyses is available at
https://github.com/kundajelab/ProCapNet/.

ProCapNet models, predictions at PRO-cap peaks,
contribution scores, TF-MODISCO outputs, and model
training files are available through the ENCODE por-
tal, with accession IDs ENCSR740IPL, ENCSR072YCM,
ENCSR182QNJ, ENCSR797DEF, ENCSR801ECP,
ENCSR860TYZ for K562, A673, Caco-2, Calu3, HUVEC,
and MCF10A, respectively. See Table S5 for a complete
list of the data available.
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Supplementary Materials

Supplementary Tables

Supplementary Table 1: Overlap of TF-MODISCO patterns resembling transposable elements with annotated repeats.

TE Pattern Repeat Overlap Most Common Repeat Family Frac. Repeat Overlap Matching Family

Profile TE Pattern 1 82% ERV1 (LTR) 100%
Profile TE Pattern 2 84% ERVL-MaLR (LTR) 97%
Profile TE Pattern 3 81% ERV1 (LTR) 100%
Profile TE Pattern 4 91% ERV1 (LTR) 99%
Profile TE Pattern 5 75% Alu (SINE) 93%
Profile TE Pattern 6 81% ERVL-MaLR (LTR) 100%
Profile TE Pattern 7 70% ERV1 (LTR) 100%
Profile TE Pattern 8 78% Alu (SINE) 94%
Profile TE Pattern 9 67% ERV1 (LTR) 93%

Counts TE Pattern 1 96% ERV1 (LTR) 100%
Counts TE Pattern 2 82% L1 (LINE) 97%
Counts TE Pattern 3 82% ERVL-MaLR (LTR) 98%
Counts TE Pattern 4 73% L1 (LINE) 96%
Counts TE Pattern 5 95% ERVL-MaLR (LTR) 96%
Counts TE Pattern 6 91% Alu (SINE) 97%
Counts TE Pattern 7 85% ERV1 (LTR) 86%
Counts TE Pattern 8 73% ERVL-MaLR (LTR) 90%
Counts TE Pattern 9 82% ERV1 (LTR) 93%
Counts TE Pattern 10 61% Alu (SINE) 94%

Supplementary Table 2: Specificity of motif instances identified using contribution scores of the ProCapNet profile
task.

Motif Hits From Sequence Scanning Hits After Score Filtering Fraction of Sequence Hits Retained

SP1/BRE 451541 92744 0.21
CA-Inr 8304122 56605 0.01
ETS 86478 23814 0.28
NFY 145277 19495 0.13
NRF1 124318 36430 0.29
ATF1 64902 5789 0.09
TATA 126943 7436 0.06
THAP11 6224 2318 0.37
YY1 2586 1398 0.54
AP1 61128 11630 0.19
TA-Inr 4812930 25569 0.01
CTCF 2109 1019 0.48
ZBTB33 8202 2536 0.31
TCT 701749 423 < 0.01
TATATA 299303 14659 0.05
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Supplementary Table 3: Comparison of model predictions and contribution scores between replicate ProCapNets and
Promoter-ProCapNet. Values in parentheses indicate standard deviations across folds.

Models Compared Replicate ProCapNets ProCapNet vs. Promoter-ProCapNet
Mean Correlation Pearson r Spearman r Pearson r Spearman r

Counts Predictions 0.976 (0.005) 0.974 (0.005) 0.916 (0.015) 0.941 (0.011)
Profile Predictions 0.898 (0.004) 0.943 (0.002) 0.881 (0.006) 0.930 (0.006)
Counts Contribution Scores 0.844 (0.018) 0.807 (0.020) 0.692 (0.033) 0.659 (0.030)
Profile Contribution Scores 0.875 (0.005) 0.775 (0.007) 0.840 (0.010) 0.726 (0.021)

Supplementary Table 4: Additional datasets used in chromatin state analysis for the K562, A673, Caco-2, and HUVEC
cell types.

Cell Type K562 A673 Caco-2 HUVEC

DNase-seq ENCSR000EKS ENCSR114QAK ENCSR255STJ ENCSR000EOQ
H3K27me3 ENCSR000AKQ ENCSR747BYL ENCSR000DQL ENCSR000AKK
H3K4me1 ENCSR000AKS ENCSR521IZK ENCSR061UOM ENCSR000AKL
H3K27ac ENCSR000AKP ENCSR714TJD NA ENCSR000ALB
H3K9me3 ENCSR000APE ENCSR988EGR ENCSR401WUV ENCSR000ATB
H3K36me3 ENCSR000AKR ENCSR581PUR ENCSR000DQK ENCSR000ALC
H3K4me3 ENCSR668LDD ENCSR435FGK ENCSR000DQM ENCSR000AKN

Supplementary Table 5: ENC- IDs for ProCapNet data available through the ENCODE portal.

Data K562 A673 Caco-2 Calu3 HUVEC MCF10A

all data SR740IPL SR072YCM SR182QNJ SR797DEF SR801ECP SR860TYZ
training and test regions tar FF033LJA FF611RQM FF603POZ FF571XHE FF065FTI FF941RDG
models tar FF976FHE FF508EUP FF575XTL FF180BYW FF822XKO FF568EGA
observed signal (+ strand) bigWig FF798GNW FF484JMU FF290ILU FF726ZFO FF515GWR FF460DXE
observed signal (- strand) bigWig FF662SHP FF248NRG FF674WYH FF694ACJ FF932EJP FF466PYB
predicted signal (+ strand) bigWig FF810TSX FF245QOS FF781NNR FF297DYW FF522DPN FF413SKO
predicted signal (- strand) bigWig FF977ZRF FF568EMG FF512NRZ FF726MZN FF130FIR FF751HYG
profile contribution scores bigWig FF105JTF FF395XCX FF566GOV FF369BLK FF090ECF FF117LHD
profile contribution scores tar FF407PRC FF993LJR FF925QDB FF530ZUR FF846XLY FF282QWJ
counts contribution scores bigWig FF399XSL FF496KXS FF773CZW FF255ZJK FF142HSZ FF898JHY
counts contribution scores tar FF186EVD FF205ATX FF674PEC FF838EMK FF956VWD FF220LKE
predicted + scored regions bed FF271LOH FF605QYF FF594CPW FF420WIU FF145VXT FF187MYU
motifs tar FF804ZPG FF630EMW FF982OZL FF083YAU FF276YTU FF589NBY
motif instances bed FF070AVM FF358WWO FF935ACF FF075CBM FF139KSH FF693EHJ
motif instances bigBed FF624OCH FF890XJG FF214LNU FF351WJS FF479KIM FF264QWB
motifs report tar FF608IHS FF710OHX FF702DZH FF832NQX FF316GZQ FF145DCV
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Supplementary Figures

Supplementary Figure 1: Model performance across stratifications of PRO-cap peaks. (A) Predicted and
measured overall PRO-cap signal on held-out test peaks across all model folds, colored by various categories of CRE
(cis-regulatory element). (B) ProCapNet profile task performance distributions across various subsets of PRO-cap peaks.
Dev. Reg., developmentally regulated (non-housekeeping); RP-TCT, ribosomal protein gene promoters with TCT-like
sequences. Dashed line indicates the median for all peaks; white dots indicate individual group medians. (C) ProCapNet
profile task performance distributions for fully mappable (100% umap track coverage of 1), mostly mappable (umap track
coverage of 1 between 70 and 100%), and least mappable (umap track coverage of 1 less than 70%) PRO-cap peaks.
(D) Profile task performance as a function of strand asymmetry (Orientation Index) and dispersion of TSSs (Normalized
Shape Index; see Methods for detailed definitions). (E) Statistics across all PRO-cap peaks vs. the subset of PRO-cap
peaks where ProCapNet profile task performance, measured by normalized JSD, was greater than 0.9.
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Supplementary Figure 2: Additional TF-MODISCO results and motif complexity in PRO-cap peaks. (A)
Patterns resembling putative transposable elements (TEs) found by TF-MODISCO for the ProCapNet profile task (left)
and counts task (right). (B) GC-rich patterns found by TF-MODISCO in the downstream promoter region (DPR) that
were highlighted by high contribution scores for the ProCapNet profile task.(C) Histogram of motif instances identified in
PRO-cap peaks, either including or not including homotypic motif multiplicity. (D) Distribution of PRO-cap read counts
at peaks with increasing motif instances. Black lines indicate median values.
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Supplementary Figure 3: Inr-like TSS positioning secondary functions identified by TF-MODISCO subpat-
terns for several motifs. PWM/CWM representations and average profiles are shown for 1) the set of highest-scoring
motif instances used in subclustering by TF-MODISCO, and 2) each subcluster derived from those highest-scoring in-
stances where an Inr-like submotif was emphasized in the CWM and the average profile indicated direct initiation activity.
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Supplementary Figure 4: Predicted effects of motif ablation on TSS positioning (x-axis) vs. overall
initiation activity (y-axis). r, Spearman correlation. Dashed line indicates a fold-change of 1.
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Supplementary Figure 5: Example predictions and discovered motifs from models trained on all available
cell types. (A) Measured PRO-cap and ProCapNet predictions and profile task contribution scores at theMYC promoter,
across all cell types. (B) Motif hit counts across all cell types. (C) Position-weight matrix (PWM) and contribution-weight
matrix (CWM) representations of novel motifs discovered in cell types beyond K562. The SNAI CWM’s orientation
indicates negative contribution scores, suggestive of repression.
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Supplementary Note: Comparison to the Puffin Model

The Puffin model1, like ProCapNet, aims to predict base-
resolution initiation profiles from local DNA sequence, al-
though the two models take different approaches toward
achieving this goal.

Puffin uses an innovative strategy to build and train a
highly constrained and transparent neural network archi-
tecture with directly interpretable parameters1. Puffin’s
design enables one to “read-off” many interesting proper-
ties of the initiation code from the model parameters and
activations. However, there are several ad-hoc aspects to
how the Puffin architecture is handcrafted and trained. The
model is designed to learn motifs in its first convolution
layer such that the identity and length of motifs is explicitly
constrained based on a set of motifs curated from the larger,
long-context, black-box Puffin-D model. These constraints
are iteratively refined via multiple rounds of training and
ad-hoc curation. Some motifs are given special consider-
ation without clear justification. For example, Inrs and
tri-nucleotide patterns are incorporated in later layers com-
pared to other motifs. Baked into the Puffin architecture is
a strong assumption that motif instances impact initiation
independently and additively in a position-specific manner.
While this strategy appears to converge to models that learn
reproducible features, it is unclear how these specific choices
of constraints, relative to equally plausible alternatives, af-
fect performance and other downstream conclusions. Also,
it is unclear if these design choices are in fact necessary for
enhancing discovery of the cis-regulatory code of initiation.

In contrast, ProCapNet is based on the “black-box”
BPNet neural network architecture, which places no ex-
plicit constraints on the number or properties of motifs
and higher-order syntax that the model can learn. Our
model architecture is “black-box” in terms of model param-
eters not being directly interpretable. However, we show
that well-established post-hoc model interpretation meth-
ods such as DeepLIFT, TF-MODISCO and in silico coun-
terfactual perturbation experiments provide deep insights
into the cis-regulatory code of initiation learned by the
model. Further, model training and post-hoc interpreta-
tion approaches do not require manual intervention or ad-
hoc curation, making ProCapNet’s strategy inherently more
replicable and scalable. For example, ProCapNet can easily
be trained on PRO-cap data from diverse cell types without
any manual intervention, since the model can automatically
adapt to learning cell-type-specific features and syntax as
needed. Puffin, on the other hand, would require sepa-
rate, semi-manual motif curation and architecture tweaks
for each cell type. Our approach is based on the philosophy
that constraining architectures based on incomplete prior

knowledge carries the risk of overriding the model’s ability
to learn novel sequence features and syntax, thereby po-
tentially hindering a faithful explanation of its predictions.
This effectiveness of this paradigm is strongly supported by
several prior applications of BPNet and its derivatives to
TF binding and chromatin accessibility profiles2,3.
Here, we present a direct comparison of Puffin to Pro-

CapNet to understand pros and cons of each approach. We
discuss these and other differences between ProCapNet and
Puffin and their consequences on predictive performance
and interpretation in more detail below. We specifically re-
strict our comparisons to the Puffin PRO-cap model, rather
than the larger Puffin-D model, since (1) Puffin is contex-
tually equivalent to ProCapNet, and (2) the Puffin study
exclusively uses the Puffin model for all downstream anal-
yses of the cis-regulatory code of initiation.

ProCapNet slightly outperforms Puffin at
predicting initiation profiles from Puffin’s

cell-type-agnostic, aggregated dataset

To assess if Puffin’s design choices result in any predic-
tive performance advantage over ProCapNet, we re-trained
ProCapNet on Puffin’s dataset, which consists of cell-type-
agnostic profiles averaged over a large collection of cell
types. We used the exact set of genomic regions used to
train Puffin, and then evaluated both models on Puffin’s
test set. We chose to re-train ProCapNet on the Puffin
dataset, rather than re-training Puffin on cell-type-specific
data, due to the difficulties of replicating Puffin’s complex,
iterative model design and training approach, discussed
above. ProCapNet slightly outperformed Puffin, with av-
erage JSDs of 0.58 vs. 0.61 (lower is better), respectively
(Fig. S6A). Thus, Puffin does not provide any prediction
performance advantage over ProCapNet.

ProCapNet significantly outperforms Puffin at
predicting and interpreting cell-type-specific TSSs

Unlike Puffin, which is trained on merged PRO-cap profiles
aggregated across diverse cell contexts, ProCapNet models
are trained specifically for each cell context. This approach
enables ProCapNet to capture both shared and unique mo-
tifs, including those not accounted for by Puffin, such as
CTCF, certain Inr variants, and all the other cell-type-
specific ProCapNet motifs (Fig. S5B).

Since ProCapNet (like Puffin) only models local sequence
context, it cannot capture the cell-type-specific influence
of distal regulatory elements, resulting in largely cell-type-
invariant predictions of initiation activity (Fig. 7). How-
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Supplementary Figure 6: Puffin vs. ProCapNet TSS positioning predictive performance benchmarks, and
Puffin interpretation at the MYC locus. (A) Predictive performance on Puffin’s test set for Puffin vs. a version of
ProCapNet re-trained on Puffin’s training data. (B) Predictive performance for Puffin vs. the K562-trained ProCapNet
on K562 PRO-cap across all peaks (using cross-validation for ProCapNet). “Other-Cell-Type ProCapNet” refers to the
A673-trained ProCapNet. (C) Puffin’s aggregate, cell-type-merged data (“Agg. Data”), Puffin predictions, Puffin ISM
contribution scores, and Puffin-derived motif activation scores for relevant motifs at the MYC promoter. Dashed vertical
lines indicate the two PRO-cap sense TSSs. (D) Measured K562 PRO-cap, model predictions, and ISM contribution scores
from Puffin and ProCapNet at the GPR160 promoter.

ever, ProCapNet is still able to predict cell-type-specific
positioning of TSSs, which Puffin inherently cannot (Fig.
S5A).

We systematically compared the performance of Puf-
fin’s cell-type-agnostic model to cell-type-specific ProCap-
Net models at predicting cell-type-specific PRO-cap pro-
files. Initial benchmarks against K562 PRO-cap profiles
demonstrated that ProCapNet models trained on K562 pro-
files substantially outperformed Puffin, highlighting the im-
portance of cell-type-specific training (Fig. S6B). These
evaluations were performed across all K562 PRO-cap peaks
using the original cross-validation scheme used for ProCap-
Net. This set up causes some inadvertent train-test leakage
in favor of Puffin, since some of the peak sequences in Pro-
CapNet’s test sets are present in Puffin’s original training
set, although Puffin is trained on aggregated profiles. Even
when ProCapNet was trained on disparate cell-line data

(A673, which is a sarcoma cell-line), it still surpassed Puf-
fin at predicting K562 PRO-cap profiles, indicating superior
transferability of cell-type-specific models over aggregated
models (Fig. S6B). Aggregating profiles across cell types
may introduce unexpected artefacts, resulting in predictions
that are out-of-distribution with respect to profiles from any
cell type.

These issues with prediction of cell-type-specific profiles
introduce further downstream challenges with interpreta-
tion. For example, at the MYC promoter, the upstream
TSS is specifically active in K562 but not in all the other
ENCODE cell-lines with PRO-cap data. ProCapNet mod-
els from various cell types accurately predict the cell-type-
specific activity of this TSS, with sequence contribution
scores derived from each model reflecting the differential
influence of motifs around this TSS (Fig. S5A). In con-
trast, the K562-specific upstream TSS shows weak signal
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in the aggregated profiles used to train Puffin and in Puf-
fin’s predictions (Fig. S6C). Aggregation thus obscures
the true distribution of activity of TSSs across cell types,
especially for strong but cell-type-specific TSSs, making it
unclear whether a TSS’s weak aggregate activity reflects
uniform low activity across all cell types or high activity in
only a few. Similarly, interpreting sequence features derived
from cell-type-agnostic models introduces ambiguity. For
instance, if a motif contributes to initiation at the upstream
TSS with weak aggregate activity, it’s unclear whether the
motif generally has a weak effect or if its impact is cell-type-
specific. Only models trained on cell-type-specific datasets
can circumvent this issue, providing outputs and interpre-
tations that accurately reflect the transcriptional state and
its underlying sequence drivers in specific cell contexts.

Motif epistasis learned by ProCapNet improves
prediction and interpretation of initiation over

Puffin’s additive model

Puffin employs a transparent model architecture where mo-
tifs are forced to contribute independently and additively
to TSS positioning. ProCapNet’s architecture does not im-
pose explicit additive constraints, giving the model the flex-
ibility to learn epistatic interactions if needed. Our post-
hoc model interpretation methods show that ProCapNet
indeed learns complex epistatic interactions among motifs
and TSSs, which appear to be crucial for accurate predic-
tion of transcription initiation activity and TSS positioning
(Fig. 4, Fig. 5). Our results contradict the assump-
tions of additivity and independence encoded in the Puffin
model. Experimental evidence supports the significance of
epistatic interactions among motifs in transcription initia-
tion, showing that a motif’s position relative to the TSS,
its orientation, and the surrounding sequence context sig-
nificantly influence its regulatory impact4.
We present two case studies that support the key role of

motif epistasis missed by Puffin.
Initiator (CA-Inr, TA-Inr) elements play a well-known

role in positioning TSSs. These are very short motifs, and
due to this, strong matches to their consensus sequence are
ubiquitous across the genome. However, only a tiny fraction
of these instances are associated with transcription. Pro-
CapNet clearly identifies Inr elements co-localized with a
large fraction of highly transcribed TSSs (Fig. 2). We also
find that the Inr is exceptionally epistatic and that inter-
actions with other motifs in the proximal sequence context
strongly affect the influence of each Inr on positioning (Fig.
4). Puffin cannot model such interactions, which leads it
to frequently miss active Inrs at well-positioned, strongly
active TSSs that are clearly identified by ProCapNet. This
issue occurs despite Puffin explicitly encoding both a short
and a long version of the Inr in the model. This limita-
tion becomes apparent in our comparative analyses of the
MYC promoter, where Puffin fails to detect multiple Inr
elements identified by ProCapNet which co-localize with
PRO-cap TSSs (Fig. 4 for ProCapNet, Fig. S6C for Puf-

fin). Puffin’s activation scores for the long and short Inr
motifs across this locus did not highlight any of the active
Inrs found by ProCapNet (Fig. S6C, bottom two tracks).
We also applied in-silico mutagenesis (ISM) for model in-
terpretation across the promoter sequence and further con-
firmed that Puffin did not predict any effects of mutations
at the Inr motif instances (Fig. S6C, third track). How-
ever, Puffin was sensitive to mutations in the TATA box
and SP1/BRE motifs; hence, the lack of sensitivity is very
specific to the Inrs. In contrast, ProCapNet clearly identi-
fies the TATA box and SP1/BRE motifs and shows strong
epistatic interactions between tham and the Inrs. Since
Puffin cannot learn these interactions, it cannot specifically
highlight these active Inrs. This lack of detection could also
be exacerbated due to these Inr instances not matching the
canonical Inr motif CANT; the upstream Inr has only the
+1 A, while the downstream Inr matches the TA variant
only identified by ProCapNet.

The GPR160 promoter is another case study showcas-
ing the importance of motif epistasis beyond Inrs. At
this locus, ProCapNet and Puffin models significantly differ
in their predictions, with ProCapNet more closely mirror-
ing the measured PRO-cap profiles (Fig. S6D). We ap-
plied ISM, a model-agnostic approach, to identify salient
sequence features driving both Puffin and ProCapNet pre-
dictions. This analysis highlighted distinct interpretations
by the two models, underscoring ProCapNet’s ability to rec-
ognize complex, epistatic interactions:

1. CTCF motif : ProCapNet’s ISM scores prominently
identify a CTCF motif upstream of the TSS, indica-
tive of its role in transcription regulation at this site.
Conversely, Puffin is insensitive to the CTCF motif, re-
flecting its absence from Puffin’s predefined motif set,
which underscores the limitation of not allowing the
model to autonomously learn and adapt motifs.

2. SP1/BRE motifs: Puffin incorrectly predicts sub-
stantial initiation activity downstream of the observed
TSS, localized near its high ISM scores for multiple
GC-rich sequences matching the SP1/BRE motif con-
sensus, which would inadvertently drive activity in a
purely additive model. ProCapNet assigns no contri-
bution to these GC-rich sequences, likely due to their
position (downstream of the primary TSS-predictive
sequence region), a logic that would be encoded via
context-aware epistatic interactions in the model.

3. Dual function Inr-ETS motif : ProCapNet predicts
that the main TSS in this locus co-localizes with with
a cryptic CA-Inr element that is intertwined within an
ETS motif. ProCapNet is able to learn these dual-role,
context-specific cryptic initiators because it has the
flexibility to learn motifs and context-aware epistatic
interactions (Fig. S3). In contrast, Puffin’s con-
straints limit its ability to detect these cryptic initia-
tors, thereby missing their strong contribution to posi-
tioning initiation at this TSS.
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These examples illustrate the advantages of ProCapNet’s
flexible “blackbox” architecture coupled with post-hoc in-
terpretation methods to accurately predict and interpret
transcription initiation, especially in scenarios involving
complex motif interactions.

ProCapNet enables interpretation of sequence
drivers of initiation rates and TSS positioning

Finally, ProCapNet models both the overall initiation activ-
ity over each sequence and the precise, base-resolution posi-
tioning of TSSs captured by the profile shape. In contrast,
Puffin claims to only predict profile shape and restricts all
downstream analyses to sequence drivers of profile shape,
even though it includes activity prediction in its loss func-
tion. Using ProCapNet, we explicitly analyze the contri-
bution of sequence features to activity and profile shape,
thereby clearly revealing preferential effects of some motifs
and higher-order syntax on activation and others on posi-
tioning (Fig. 2, Fig. 5). The ability to predict overall
initiation activity of a sequence is also crucial for design of
synthetic promoters with specific transcription output lev-
els and quantification of promoter strength more generally.
In conclusion, although Puffin’s innovative model design

enables transparent interpretation, the constraints hard-
wired into its design, coupled with its training on aggre-
gated, cell-type-agnostic profiles, lead to several shortcom-
ings in predicting and understanding the cis-regulatory
code of initiation. ProCapNet’s flexible architecture and in-
terpretation framework offers several advantages, highlight-
ing a key point that transparent models does not necessarily
yield deeper biological insights.
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