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ABSTRACT

Genome-wide association studies (GWAS) with proteomics are essential tools for drug discovery. To date,
most studies have used affinity proteomics platforms, which have limited discovery to protein panels
covered by the available affinity binders. Furthermore, it is not clear to which extent protein epitope
changing variants interfere with the detection of protein quantitative trait loci (pQTLs). Mass
spectrometry-based (MS) proteomics can overcome some of these limitations. Here we report a GWAS

using the MS-based Seer Proteograph™

platform with blood samples from a discovery cohort of 1,260
American participants and a replication in 325 individuals from Asia, with diverse ethnic backgrounds. We
analysed 1,980 proteins quantified in at least 80% of the samples, out of 5,753 proteins quantified across
the discovery cohort. We identified 252 and replicated 90 pQTLs, where 30 of the replicated pQTLs have
not been reported before. We further investigated 200 of the strongest associated cis-pQTLs previously
identified using the SOMAscan and the Olink platforms and found that up to one third of the affinity
proteomics pQTLs may be affected by epitope effects, while another third were confirmed by MS
proteomics to be consistent with the hypothesis that genetic variants induce changes in protein
expression. The present study demonstrates the complementarity of the different proteomics approaches

and reports pQTLs not accessible to affinity proteomics, suggesting that many more pQTLs remain to be

discovered using MS-based platforms.
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INTRODUCTION

Genome-wide association studies (GWAS) with proteomics leverage the naturally occurring genetic
variation in human populations and link differences between individual genomes to their effects on the
proteome and beyond *. Protein quantitative trait loci (pQTLs) are central in the drug discovery process as
they provide supporting evidence for drug target identification and hypothesis generation on their modes
of action 2. Most large-scale GWAS so far have been conducted using affinity proteomics platforms 312, The
largest studies to date are from deCODE using the SOMAscan platform with 4,907 aptamers in 35,559
Icelandic samples from Icelanders 2 and from the UKB-PPP consortium using the Olink platform with dual
antibodies targeting 2,923 proteins in 54,219 samples from participants of the UK Biobank *. These studies
reported thousands of pQTLs that are now available for further exploitation, such as Mendelian

randomization (MR) experiments, to identify new drug targets and to further their development.

However, it should be noted that SOMAscan and Olink pQTLs represent genetic associations with protein
binding affinity, rather than protein expression. This is because protein altering variants (PAVs) can modify
the affinity binding epitopes of the proteins, thereby leading to genotype-dependent read-outs that do
not correspond to real changes in protein levels *°. Such epitope effects can invalidate conclusions drawn
from MR experiments, as their basic hypothesis requires that changes in the exposure, i.e. the protein
expression levels, are causal for changes in the disease outcome. Epitope effects can also skew the
prediction of protein levels using polygenic scores and confound correlations with other omics modalities.
Therefore, it is important to validate key pQTLs on an independent platform that isimmune against epitope

effects, such as MS-based proteomics.

A few smaller-scale MS-based GWAS have been previously reported. Johansson et al. ¢ identified and
guantified the abundance of 1,056 tryptic-digested peptides, representing 163 proteins in the plasma of
1,060 individuals from two population-based cohorts. Xu et al. ¥’ conducted a GWAS for 304 proteins
measured by SWATH-MS in blood serum from 2,958 Han Chinese individuals. Niu et al. *® performed a
GWAS for 420 proteins using MS-based proteomics in blood plasma from 1,914 children and adolescents

with a replication in 558 adults. However, these studies were all limited to a small number of proteins.

Here we conduct a GWAS using the MS-based Proteograph™ platform (Seer, Inc.) for deep, unbiased
proteomics %20, The Seer technology increases proteome coverage by using nanoparticle enrichment,
followed by a data-independent acquisition protocol implemented on a Bruker timsTOF Pro 2 mass

spectrometer (Bruker Daltonics). We have previously shown that the protein readouts of the Proteograph
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platform can reliably distinguish between epitope- and protein expression QTLs when a specific data
analysis protocol is applied that eliminates PAV-containing peptides. We extended this approach here to a
larger study cohort and a full GWAS *°. We analysed 1,980 proteins that were quantified in at least 80% of
the samples, out of 5,753 proteins quantified across a discovery cohort of 1,260 participants of a diverse
American ethnic background and a replication phase using 325 samples from participants of mainly Arab,
Indian, and Filipino ethnic backgrounds. We then validated the protein associations with age and sex
against those reported by the two largest affinity proteomics GWAS. Finally, we investigated the lead cis-

pQTLs reported by the SOMAscan and Olink platforms for potential epitope effects.

RESULTS
A GWAS with the Seer Proteograph platform identified 252 and replicated 90 pQTLs.

We conducted a GWAS with 1,980 proteins detected in >80% of the 1,260 samples from the Tarkin study
(Table S1, see Methods). A total of 252 independent protein associations reached a Bonferroni level of
significance (p < 2.5x10!Y), involving 224 genetic loci for 152 different proteins (Figure 1 and Table S2).
Replication was attempted using 325 samples from the QMDiab study with matching genotype and
proteomics data. A pQTL was considered replicated if its association reached a significance level of p <0.05
/ 252 and had concordant effect direction. A total of 90 pQTLs satisfied these criteria. Of the 94 pQTLs
calculated to have 80% replication power, determined by sampling, a total of 60 pQTLs (63.8%) replicated,
and most of the non-replicated pQTLs also had concordant directionality (Figure 2A). Differences in allele
frequencies of the pQTLs between Tarkin and QMDiab were generally in the range of +/-10% allele

frequency (Figure 2B).

MS-based proteomics platforms generate a rich set of readouts, including quantifications of multiple
peptides issued from a same protein, often repeatedly measured at multiple precursor charges. We
generated visualizations of this data stratified by genotype for each of the 252 pQTLs (Figure S1). An
example is given in Figure 3, where the associations with the four most frequently quantified peptides per
protein are shown together with the derived protein level associations, both for Tarkin and QMDiab.
Additionally, we present plots of PAV containing peptides, in cases they were detected for the protein in
guestion. These plots provide individual verifiable experimental evidence that further supports the validity

of these pQTLs.
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We then asked which MS-based pQTLs had been identified before, and which were novel. Summary
statistics from the deCODE SOMAscan study ! and the UKB-PPP Olink study * were used to identify
overlapping associations with previously reported pQTLs. Of the 252 pQTLs identified in this study, 65 were
found by both platforms, 43 were reported by SOMAscan alone and 33 were seen by Olink alone. Four
pQTLs were not reported by either of these studies, but were identified using PhenoScanner ! as a pQTL
in some other study. This leaves 107 pQTLs that have not been reported before, including 30 of the 90
replicated pQTLs (Table 1), suggesting an expected novel discovery rate when using the Proteograph

platform of about one in three compared to existing affinity pQTLs.
Age and sex associations were concordant between the affinity and MS based proteomics platforms.

We computed the associations between all 1,980 protein readouts with age, sex, and the ten genotype
principal components (Table S3). We then asked whether the associations with age and sex were
concordant between the two affinity platforms and between the affinity and the MS proteomics platforms.
A total of 507 proteins were quantified on all three platforms (Figure S1A and Table S4). The overall effect
sizes were concordant for most of the proteins between all three platforms (Figure 4), although with some
exceptions for the associations with age. Overall, 62 proteins shared significant associations with sex
across all three platforms (Figure S1B), while 110 proteins exhibited significant associations with age

(Figure S1C).
One third of affinity proteomics pQTLs are potentially affected by epitope effects.

The deCODE SOMAscan study ** and the UKB-PPP Olink study * reported 1,881 and 1,917 cis-pQTLs,
respectively (Table S5 & S6). For 1,041 and 1,415 of these pQTLs matching genetic variants were available
in Tarkin and QMDiab. Out of these, 322 and 374 pQTLs also had the matching protein quantified in Tarkin
with a missing rate of less than 20%. For these pQTLs the genetic associations with the matching protein
and all corresponding peptide levels were computed using the Proteograph data, both for the Tarkin and
the QMDiab study (Table S7 & S8). Note that most pQTLs without a matching variant in Tarkin had minor

allele frequencies below 5% and were excluded from our analysis.

Quantification of protein levels from peptide intensities is sometimes a limiting factor in MS proteomics
and prone to large uncertainties. We therefore integrated information from individual peptide
measurements. For each pQTL the association data was integrated into what we refer to here as the MS
peptide association (MSPA) score. This score is designed as a proxy for the likelihood of a protein

expression signal being observed in the MS proteomics data and combines association signals from all
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peptides observed for a given protein. Note that PAV containing peptides had been removed from our MS
peptide library. We defined the MSPA score as follows: All peptides were attributed a weight using the
number of individual peptide detections for that protein, divided by the sum of all peptide detections for
that protein. Repeated peptide detections with different precursor charges were excluded, retaining the
peptide with the highest number of detections. The weights of all peptide associations where the 99%
confidence interval of the beta estimate did not contain the zero were then summed up. An MSPA score
of one therefore represents a case where all peptides support a genetic association with the protein
expression level, and an MSPA score of zero indicates cases where the data provides no statistical support
for such an association, suggesting either a lack of statistical power to detect an association or the
presence of an epitope effect. As association directionality was not included into the score, and to identify
possible artifacts, the associations for all analysed pQTLs were visualized for additional manual

inspections; no inconsistencies were found (Figure S2&S3).

The MSPA score of each pQTL was then plotted against the rank of the p-value of the original pQTL from
the affinity proteomics study. As shown in Figure 5, a sigmoid distribution running from the upper left to
the lower right corner of the plot may be discerned for both studies. This curve approximately represents
the MSPA score expected for a protein expression QTL as a function of pQTL rank as statistical power
decreases with rank. Roughly, the first 100 pQTLs of each study appear to have sufficient power to replicate
in Tarkin. Within these 100 strongest cis-pQTLs, both studies have almost the same proportions of protein
expression QTLs (35% SOMA, 37% Olink) and the same number of likely epitope effect driven pQTLs (33%
for SOMA and Olink). Hence, these plots suggest that about one third of the affinity proteomics pQTLs are
possibly due to epitope effects, one third are reproducible using MS proteomics in a study of our current
size, and one third fall into a “grey zone” where power may be an issue, but hybrids of epitope- and
expression-pQTLs are also possible, that is, cases where a genetic variant interferes with the affinity

binding, but at the same time affects protein expression via some biological feedback mechanism.

To further support the validity of the MSPA score as a proxy for the detection/non-detection of a genetic
association and its potential to identify true positive protein expression pQTLs, we selected all pQTLs that
were reported on the same genetic variant by deCODE and UKBPPP, and for which also matching protein
and genetic data were also available in Tarkin and QMDiab. We used this set of 46 pQTLs as a gold standard
for comparing effect sizes and directionality without the caveat of having to use proxy SNPs (Table S9). A
few things were notable when looking at this set of pQTLs. Firstly, in contrast to the overall distribution of

the MSPA scores in Figures 5A and 5B, where there were many high ranking pQTLs with low and zero MSPA
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scores present, the top ranking pQTLs in this set all had high MSPA scores (Figures 5C and 5D), suggesting
that none of these pQTLs were affected by epitope effects. This inference is further supported by the near
perfect correlation of the effect sizes between the Olink and the SOMAscan platforms (Figure 5E).
Considering that these pQTLs had been pre-selected based on the requirement that they were detected
on both affinity platforms, it appears that a pQTL being detected by both affinity platforms is also a strong
indicator for a true protein expression QTL and the absence of an epitope effect. This is a reasonable
assumption because there is low likelihood that two different affinity binders target the same surface area

of a protein and lead to a similar epitope readout.

If these 46 pQTLs are mostly devoid of epitope effects, the dependence of the MSPA values on the
association strength (rank) should follow the power of each pQTL to be detected by the Tarkin study,
supporting our earlier assumption that the high-ranking pQTLs with low MSPA scores in Figure 5A and 5B
are epitope-effect driven pQTLs. We therefore asked whether a candidate epitope-changing variant was
identifiable in all these cases (the pQTLs in the red zone of Figure 5A and 5B). We manually queried the
Ensembl database ?? for coding variants that were potentially epitope-changing (Table $10) and found that
for 23 out of 33 SOMA and 25 out of 33 Olink pQTLs such a variant had been reported (requiring LD r>>0.8).
The lead pQTL SNP or a SNP in perfect LD of r’=1 was apparently epitope-changing in all but four of the 48
cases. Additionally, in 11 out of these 48 cases, a PAV-containing peptide was also detected on the
Proteograph platform, with heterozygotes having about half the protein level, showing that the absence
of a protein expression pQTL is not due to limitations in the quantification of the peptides, and confirming
the presence of the protein variant in blood. In five cases (CPN2, SERPINA1, ENO3, HDGF, APOBR) both
alleles, reference (REF) and alternate (ALT), were detected and showed significant associations with the

coding variant, while all other peptides did not associate with the variant (for an example see Figure 7).

DISCUSSION

This study presents the first comprehensive GWAS using the MS-based Seer Proteograph platform,
accompanied by a full replication, and employing a proteomics data analysis protocol that accounts for
genetic variants within the analysed peptide *°. Our methodology not only identified new pQTLs on
proteins previously unassessed by affinity proteomics platforms, but also examined previously reported
affinity pQTLs for confounding due to epitope-altering variants. We estimate that about one-third of the

200 pQTLs evaluated were influenced by such effects. However, due to limitations in statistical power that
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restricted evaluation to only the strongest affinity pQTLs, which are the ones most likely to be enriched for

epitope effects due to ascertainment bias, this estimate should be considered as an upper bound.

We reported a total of 252 pQTLs, with 90 successfully replicated in an independent population. While the
replication rate of 63.8% for sufficiently powered pQTLs is high, it falls below the theoretically expected
80%. We attribute this difference to genetic and probably also lifestyle differences between the discovery
and replication cohorts, which are ethnically very distinct. Nonetheless, this diversity also enhances the

robustness and translatability of the replicated pQTLs across populations.

The use of a proteome library that accounts for PAVs was central to our study. Without using this approach,
a very high number of false positive pQTLs would have been detected, as we previously discussed °.
Traditional proteomics data analysis methods often rely on a limited peptide library for protein
guantification, and the presence of a single peptide with a large effect can skew the quantification. A PAV
containing peptide would not be detected in homozygotes of the alternate allele and heterozygotes would
have half the peptide level. The inclusion of PAV containing peptides into the protein quantification would
hence lead to the equivalent of an epitope effect, that is, a pQTL signal where in reality, there is no
genotype dependence of the protein expression level. Also, PAV peptides corresponding to the alternate
allele are not present in an in-silico digest library of the standard UniProt database. Indeed, using data
from a standard proteomics data processing run, we observed cases where fragment spectra of these
peptides miss-matched to peptides from other proteins and in extreme cases led to false protein

identifications.

We used the associations with sex and age to externally validate the comparability of the affinity and MS
proteomics readouts to predict non-genetic outcomes. Although our MS-based study was less powered
compared to the two much larger affinity proteomics studies, the scatterplots of the effect sizes between
the two large studies and one of the large studies and our study are largely comparable. Key signals, such
as the association of sex hormone binding globulin (SHBG) with sex and leptin (LEP) with age, were
significant on all platforms. There are more age-related associations with conflicting effect sizes. These
may be population specific and lifestyle related effects. Noteworthy is also the higher number of positive

associations with age that is present across all three platforms, which we can only speculate about.

Our study also has some caveats. The interpretation of absence of pQTL signal in MS proteomics as
indicative of epitope effects necessitates formal power analysis. However, such an approach is challenging

because it requires precisely estimating the effect sizes for MS-based data from associations using affinity
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proteomics, whereas effect sizes are measured in relative units of standard deviations within the study
population that do not translate between platforms and studies. Thus, we limited our analysis to the 100
strongest pQTLs in each study, under the assumption that these are sufficiently powered to replicate using
MS proteomics, if the signal is truly based on protein expression rather than affinity binding. We support

this argument using the distribution of the MSPA scores as discussed around Figure 5.

As we interpret the absence of a pQTL signal using an MS platform as an indicator of a potential epitope
effect, we applied a stringent missingness criterion (<20%). The total number of 1,980 proteins analysed
in this GWAS are therefore lower than the 5,753 proteins that were quantified in any sample across the

study.

Additionally, the matching of proteins between platforms using UniProt identifiers can be challenging, as
affinity proteomics platforms sometimes report multiple protein identifiers when they are targeting
protein complexes or use the UniProt identifier specific to the proteoform employed to generate the
affinity binder while alternate proteoforms may be included in the MS library, occasionally leading to
annotations by protein groups rather than specific proteins. Mapping of UniProt ids to gene names can
also be challenging, especially when the versions of the underlying databases do not match between

studies.

While we reported many novel pQTLs, about one third of the identified pQTLs, we opted not to highlight
any new biologically relevant findings. We believe that the biomedical relevance of pQTLs has already been
amply shown in many of the previous pQTL studies, and that cherry-picking one or two new highlights
would distract from the central message of our paper, which is to demonstrate the complementarity of
MS proteomics to affinity approaches in (1) validating associations that may be driven by epitope effects

and (2) substantially extending the panel of proteins accessible to pQTL studies.

METHODS

Ethics. The original Tarkin study was reviewed and approved by the IRCM IRB and the Mass General
Brigham IRB. Participants provided written informed consent to take part in the study. The WCMQ IRB
determined that use of the Tarkin data for the present project does not meet the definition of human
research for this study (IRB document HRP-532). The QMDiab study was approved by the institutional
research boards of Weill Cornell Medicine — Qatar under protocol #2011-0012 and of Hamad Medical

Corporation under protocol #11131/11 and complies with all relevant ethical regulations. For forthgoing
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work with the study a non-human subject research determination was obtained. The study design and
conduct complied with all relevant regulations regarding the use of human study participants and was

conducted in accordance with the criteria set by the Declaration of Helsinki.

Cohorts. The samples used in the Tarkin study were obtained from the Massachusetts General Brigham
(MGB) Biobank. Joint phenotype and genotype data were available for 1,260 samples, comprised of 662
females and 598 males with an age range of 23-99 years (median 70 years, mean 67.2 years). 1,057 of the
participants were white. This subset of MGB samples together with its deep omics characterization is
referred to here as the “Tarkin study” in this paper 2. For replication, a total of 345 previously unthawed
citrate blood plasma samples from participants of the Qatar Metabolomics study of Diabetes (QMDiab),
including adult female and male participants of predominantly Arab, Indian, and Filipino ethnic
background, with and without diabetes in an age range from 18-80 were assayed using the Proteograph

platform (Seer Inc.) 1>24%,

Genotyping. Imputed genotype data for 1,980 samples of the Tarkin study was received on a per-
chromosome basis in vcf format (build 37, imputed using Minimac3, no indels). The genotype data was
filtered for biallelic variants and variant names were standardized using bcftools (version 1.16), converted
to plink format and filtered using plink2 (version v2.00a5LM) with the options --geno 0.1 --mac 10 --maf
0.05 --hwe 1E-15. For 1,260 samples proteomics data was available. These samples were merged into a
single genotype file and further filtered using plink2 with the options --maf 0.05 --hwe 1E-6 --geno 0.02,
leaving data for 5,461,287 genetic variants. The first ten genetic principal components were then
computed using plink2 with the --pca option. QMDiab samples were genotyped using the [llumina Omni
2.5 array (version 8) and imputed using the SHAPEIT software with 1000 Genomes (phase3) haplotypes.

Genotyping data was available for 325 of the 345 samples with proteomics data.

Proteomics. The workflow used for the proteomics analyses of the Tarkin and the QMDiab samples were
essentially identical and have been described in detail before °. Briefly, plasma samples were prepared

using the Proteograph workflow %°

(Seer, Inc.) to generate purified peptides that were then analyzed
using a dia-PASEF method % on a timsTOF Pro 2 mass spectrometer (Bruker Daltonics). Each study was
conducted at independent times using two mass spectrometers. One mass spectrometer coincidentally
was reused in both studies. DIA-NN (1.8.1) 27 was used to derive peptide and protein intensities. A library-
free search based on UniProt version UPO00005640 9606 was used, processing the data a second time

using the match between runs (MBR) option. Two additional libraries were created, one excluding

common (MAF > 10%) protein-altering variant (PAV) containing peptides, and one injecting the alternate
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alleles into the reference protein sequences. These libraries were referred to as the PAV-exclusive library
and the PAV-inclusive library, respectively. Details of this library generation process have been described
elsewhere . DIA-NN’s normalized intensities (PG.Normalised) were used as protein readout. 5,753 unique
protein groups were quantified, 4,109 were detected in at least 20% of the samples, and 1,980 had less
than 20% of missing values. Wherever a protein was detected at this level in more than one nanoparticle
run, the one with the largest sum of protein intensities was retained. Protein levels were then log-scaled,
residualized using age, sex and the ten first genotype principal components, and finally inverse-normal

scaled.

Genome-wide association. Genetic associations of 1,980 residualized and inverse-normal scaled protein
levels with 5,461,287 genetic variants in 1,260 samples were evaluated using linear models (plink
v1.90b7.1, option --linear). Missing data points were excluded. The Bonferroni significance level for protein
associations was psont = 5x10%/1,980 = 2.5x10!. For six proteins, the residualization did not entirely
remove association with these confounders. Three of these proteins presented with inflated GWAS
statistics and the corresponding pQTLs were removed (UniProt VOGYE7, B1AKGO, and 015230). Protein
associations on correlated variants were clumped on a per-trait basis using an LD cut-off of r?=0.1 For each
cluster the trait sentinel association was identified. Sentinel associations were then clumped using an LD

cut-off of r?=0.9 into loci.

Replication. Replication was attempted using data from 325 samples of the QMDiab study that had joint
genotype and proteomics information. Power to replicate 80% of the pQTLs was determined as the 80%
guantile of the p-values obtained from 1,000 random samples from Tarkin data set using the number of

samples available in the QMDiab for the respective genotype-protein pair.

Overlap with previous OLINK and SOMAscan pQTLs. Summary statistics from UKB-PPP Olink study ** and
deCODE SOMAscan study > were downloaded from the respective sites. Associations were reported for
4,660 proteins by deCODE and for 2,908 proteins by UKB-PPP. All protein associations on variants matching
one of the Proteograph pQTLs were retrieved. An association reported by deCODE and Olink was
considered as significant at levels of p < 0.05/139/4660 and p < 0.05/117/2908, respectively, accounting

for the number of evaluated variants and proteins on the panel.

Evaluation of age and sex associations. Summary statistics for age and sex associations were retrieved
from the from the supplementary Excel files of Ferkingstad et al. > for deCODE SOMAscan (sheet ST01)

and of Sun et al. ** for UKB-PPP Olink (sheet ST5). Associations with age and sex for the Tarkin study were
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computed with PLINK using identical datasets and models as for the genome-wide association (option --
linear no-snp). Proteins were matched using UniProt identifiers. In rare cases when there were matches

to multiple protein groups, the strongest association was retained.

Evaluation of OLINK and SOMAscan cis-pQTLs. Cis-pQTLs were obtained from the supplementary tables
of the respective studies (STO2 from Ferkingstad et al. 3 for deCODE SOMAscan and ST10 from Sun et al.
14 for UKB-PPP OLINK). pQTLs were limited to variants that were located on autologous chromosomes, had
a suitable replication SNP available in both, Tarkin and QMDiab (LD r? > 0.8), and a minor allele frequency
greater than 5% in the Tarkin study. Matching of proteins between platforms was done using Uniprot IDs,
allowing for matches to protein groups that contained the Uniprot ID. Ambiguous cases where more than
one matching protein group was found were omitted. In cases where protein readouts for multiple
nanoparticle runs where available, the one with the highest single number of peptide detections was used.

Cases where the number of quantified proteins in Tarkin was below 80% were excluded.

Annotation of pQTLs. snipa.org %, phenoscanner.medschl.cam.ac.uk % and omicsciences.org »° were used
to annotate pQTLs with overlapping information on disease GWAS, gene expression and metabolomics

QTLs. Protein epitope changing variants were identified using Ensembl 22,
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TABLES

Table 1: List of 30 previously unreported replicated pQTLs discovered using the Seer Proteograph platform.

Discovery (Tarkin) Replication (QMDiab)
Gene UniProt rsID SNP Eff EAF Gene locus
N Beta Log10p N Beta Log10p
LEFTY1 075610 rs360057 1:226074563:T:G G 35.2% 1255 -0.507 36.0 322 -0.300 4.2 cis
ANGPTL6 Q8NI99 rs6542680 2:3640142:C:T C 17.3% 1257 0.343 11.2 325 0.288 3.9 COLEC11
C20rf40 Q9H1Z8 rs13014521 2:106687456:G:C C 11.5% 1214 -0.809 37.2 316 -0.795 8.3 cis
MAN1C1 Q9NR34 rs4305381 3:126249877:A:C C 24.5% 1123 -0.420 17.1 319 -0.542 6.5 C3orf22,CHST13
AMBP P02760 rs1056522 3:126261345:G:A A 30.6% 1257 -0.713 67.4 325 -0.514 7.8 CHST13
CCDC132 Q96JG6 rs1056522 3:126261345:G:A A 30.6% 1250 -0.665 57.2 257 -0.575 7.1 CHST13
ZNF618 Q5T7WO0 rs9835865 3:186380167:A:T T 49.2% 1153 0.421 23.6 279 0.339 4.6 FETUB,HRG
ZNF618 Q5T7WO0 rs11708856 3:186390393:G:C C 6.4% 1153 -0.682 12.9 279 -0.795 6.9 FETUB,HRG
GNB2 P62879 rs1042464 3:186395572:A:T A 49.1% 1252 -0.310 14.2 320 -0.336 4.8 HRG
CTSS P25774 rs5030062 3:186454180:A:C C 38.9% 1255 0.313 14.4 325 0.372 5.9 KNG1
HLA-G Q5RI85 rs2517718 6:29916391:A:C C 43.1% 1213 -0.658 65.5 315 -0.578 12.0 cis
HLA-G Q5RI85 rs2442717 6:31322470:C:G C 16.7% 1213 0.747 50.2 315 0.590 3.9 cis
FUCA2 Q9BTY2 rs11155297 6:143825104:G:T T 25.1% 1253 -0.523 30.1 325 -0.651 11.2 cis
SRCRB4D Q8WTU2 rs111666614 7:76044757:G:T T 7.1% 1140 0.528 11.0 318 0.725 7.5 cis
PEBP4 Q96596 rs3087803 8:22570901:C:T T 9.0% 1255 0.925 46.6 325 0.987 114 cis
PEBP4 Q96596 rs1129474 8:22584718:T:C C 49.3% 1255 -0.454 30.7 325 -0.529 11.6 cis
CD34 P28906 rs687621 9:136137065:A:G G 34.4% 1051 0.357 14.5 269 0.374 5.4 ABO
MMRN2 Q9H8L6 rs34587013 10:88696622:C:G G 8.3% 1250 -0.493 11.6 325 -0.510 4.0 cis
TSKU Q8WUAS8 rs1149596 11:76469093:C:T T 13.9% 1253 -0.477 16.5 321 -0.353 3.9 cis
FXYD2 P54710 rs4936409 11:117694392:A:G G 48.3% 1237 -0.406 24.2 322 -0.365 6.2 cis
PRB1 AOA4W8X8U3 rs7966710 12:11522616:G:A G 26.7% 1133 -0.609 37.4 238 -0.462 4.2 cis
PROZ P22891 rs559054 13:113800622:T:C T 37.6% 1256 -0.383 21.2 325 -0.385 6.7 cis
GALC P54803 rs380142 14:88393918:A:C C 45.2% 1252 -1.022 205.0 317 -0.889 40.6 cis
GALC P54803 rs12434101 14:88478827:T:C C 8.8% 1252 -0.625 18.9 317 -0.616 8.8 cis
GALC P54803 rs12323470 14:88496080:G:T T 13.9% 1252 0.700 36.3 317 0.866 12.4 cis
IGHV2-70 AOA0C4DH43 rs10134517 14:107173745:T:C C 29.6% 1090 0.504 27.9 283 0.516 8.0 cis
IGHV2-70 AOAO0C4DH43 rs7161739 14:107184357:G:A A 13.7% 1090 -0.562 15.8 283 -0.620 8.4 cis
FN3K Q9H479 rs3848403 17:80693899:C:T T 50.0% 1243 -0.673 69.2 281 -0.412 5.9 cis
RCN3 Q96D15 rs73582463 19:50037446:C:G G 8.4% 1255 0.858 35.5 324 0.549 5.0 cis
BPIFA1 QINP55 rs6059187 20:31828265:A:G G 49.1% 1245 -0.388 23.9 323 -0.377 6.9 cis
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GRAPHICAL ABSTRACT summarizing the approach taken to identify potential epitope effects.
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Figure 1: Manhattan plot. Shown are all protein associations that reached a significance level p < 5x10%
in the discovery study.
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Figure 2: Effect size and effect allele frequencies. Scatterplot of the pQTL effect sizes from the discovery
(Tarkin) and the replication (QMDiab) study, replicated loci are shown in red (A); Scatterplot of the effect
allele frequencies (EAF), Tarkin versus QMDiab (B).
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Figure 3: Visualization of the Proteograph MS-proteomics data for a prototypical pQTL. Violin plots of
log-scaled engine-normalized protein and peptide intensities by genotype for the indicated protein and
genetic variant (bottom left box, details are in Table S2); Top row (green): Tarkin data, using PAV-exclusive
library, Middle row (grey): QMDiab data, using PAV-exclusive library, Bottom row (red): Tarkin data, using
PAV-inclusive library, limited to PAV containing peptides; Plot titles indicate the protein UniProt identifier
and the pQTL type (cis/trans) above the Tarkin protein plot, and HGNC gene name and nanoparticle
number are above the QMDiab protein plot; Titles of the peptide plots indicate the respective peptide
sequences and precursor charges (pc), and additionally the PAV variant rsID and allele type (REF/ALT) for
the PAV peptide plots; Summary statistics are reported below the plots based on linear models with
residualized and inverse-normal scaled data for associations with the PAV-exclusive library data (top two
rows) and Fisher’s exact test for PAV-inclusive library data (bottom row); Associations with peptide data
are sorted by increasing p-values from left to right and limited to a maximum of four plots; Whenever
peptides were detected at multiple precursor charge values, only the strongest association was plotted;
Numbers at the x-axis tick marks indicate the number of detected peptides by genotype followed by the
number a samples with the corresponding genotype (e.g. 662:665); Genotypes are ordered as (1) other
allele, (2) heterozygote, (3) effect allele, where the effect allele is indicated following the SNP name
(chr:pos:ref:alt_eff, e.g. 3:49721532:G:A_A). Similar plots for all 252 pQTLs are provided as Figure S2.
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Figure 4: Scatterplot of the effect sizes for the protein associations with sex and age. Summary statistics
for the associations with affinity proteomics were from the respective GWAS studies. Associations that
reached Bonferroni significance in both respective studies are in red and in one study are in blue (p < 0.05
/ number of reported associations). The effect sizes (beta) are reported in units of standard deviations
(s.d.). Data points outside the plotting window are indicated by diamonds on the plot frames. Plot data
are available in Table ST4. Scatterplots are limited to 507 unique proteins that were reported by all three
studies. In cases where data for multiple affinity binders was reported, the most significant association
was retained.
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Figure 5: MS-peptide association score plotted by pQTL rank. Scatterplot of the MSPA scores against the
rank of the affinity proteomics pQTLs of the deCODE SOMAscan (panel A, data in Table S7) and the UKB-
PPP OLINK (panel B, data in Table S8) studies, ranked starting with the lowest p-value. The first 100 pQTLs
(out of 322 pQTLs for SOMAscan and 374 pQTLs for Olink) are coloured to indicate likely protein expression
QTLs (MSPA score > 0.8; green) and likely epitope effect driven pQTLs (MSPA score < 0.2; red), the sigmoid
curve indicates the assumed dependence of power to detect a pQTL as a function of the strength of the
association, approximated by the rank of the pQTL in the respective study; MSPA scores limited to 46
pQTLs that were reported on the same variant in deCODE (panel C) and UKBPPP (panel D); scatterplot of
the effect size (beta) of the 46 pQTLs reported deCODE and UKBPPP (panel E, data in Table S9).
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Figure 6: Scatterplot of the effect sizes (beta) of 46 pQTLs that were reported by deCODE and UKBPPP on
the same SNP and for which association data was also available for Tarkin and QMDiab; Tarkin vs. QMDiab
(A), Tarkin vs. deCODE (B), Tarkin vs. UKBPPP (C); associations that reach a significance level of p < 0.05 /
46 in Tarkin are in red (Table S9).
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Figure 7: Example of a pQTL that is likely affected by an epitope effect. See legend of Figure 3 for legend;
similar plots for all 374 pQTLs with OLINK data and for all 322 pQTLs with SOMAscan data are provided as
Figures S3 and S4; data is in Tables S6 and S7.
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SUPPLEMENTARY MATERIAL

Supplementary Tables [provided as a multi-sheet MS Excel file]
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1 'Supplementary Tables
2
3 Table Content
4 ST1 Annotated list of 1,980 proteins assayed in this GWAS
5 ST2 Annotated list of 252 pQTLs identified in this study
6 ST3 Summary statistics for association of the 1,980 with age, sex, and ten genotype principle components (PCs)
7 ST4 6498 proteins with age & sex associations in at least one of deCODE, UKBPPP, and Tarkin
8 ST5 1,881 pQTLs from deCODE, annotated with association data with proteins and peptides in Tarkin and QMDiab
9 ST6 1,917 pQTLs from UKB-PPP, annotated with association data with proteins and peptides in Tarkin and QMDiab
10 ST7 322 pQTLs from deCODE, scored with MSPA
il ST8 374 pQTLs from UKB-PPP, scored with MSPA
12 ST9 46 cis-pQTLs reported both by deCODE and UKBPPP, evaluated on same SNPs in Tarkin and QMDiab
13 ST10 66 cis-pQTLs with potential epitope-effect generating variants

Supplementary Figures
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Figure S1: Venn diagrams. Proteins reported by the three studies, 1,980 proteins with <20% missingness
for Tarkin, out of 5,753 proteins quantified across the discovery cohort (A); Proteins associated with sex
(B) and age (C) at a significance level of 0.05 / number of proteins reported.

The following Figures are provided as separate PDF files:

Figure S2: Violin plots of protein and peptide levels by genotype for 252 pQTLs identified in this study.
See Figure 3 for legend. File: Figure_S2_PGWAS_replicate_check.20240523.pdf

Figure S3: Violin plots of protein and peptide levels by genotype for 322 pQTLs identified by the deCODE
OLINK study. See Figure 7 for legend. File: Figure_S3_PGWAS_test_epitope_SOMA.20240523.pdf

Figure S4: Violin plots of protein and peptide levels by genotype for 374 pQTLs identified by the UKB-
PPP SOMAscan study. See Figure 7 for legend. File: Figure_S4_PGWAS_test_epitope_OLINK.20240523.pdf
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