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Abstract 16 

 Gene expression systems that transcend species barriers are needed for cross-species 17 

analysis of gene function. In particular, expression systems that can be utilized in both model 18 

and pathogenic bacteria underpin comparative functional approaches that inform conserved and 19 

variable features of bacterial physiology. Here, we develop replicative and integrative vectors 20 

alongside a novel, IPTG-inducible promoter that can be used in the model bacterium 21 

Escherichia coli K-12 as well as strains of the antibiotic-resistant pathogen, Acinetobacter 22 

baumannii. We generate modular vectors that transfer by conjugation at high efficiency and 23 

either replicate or integrate into the genome, depending on design. Embedded in these vectors, 24 

we also developed a synthetic, IPTG-inducible promoter, PabstBR, that induces to a high level, but 25 

is less leaky than the commonly used trc promoter. We show that PabstBR is titratable at both the 26 

population and single cell level, regardless of species, highlighting the utility of our expression 27 

systems for cross-species functional studies. Finally, as a proof of principle, we use our 28 

integrating vector to develop a reporter for the E. coli envelope stress σ factor, RpoE, and 29 

deploy the reporter in E. coli and A. baumannii, finding that A. baumannii does not recognize 30 

RpoE-dependent promoters unless RpoE is heterologously expressed. We envision that these 31 

vector and promoter tools will be valuable for the community of researchers that study 32 

fundamental biology of E. coli and A. baumannii. 33 

 34 
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Importance 35 

Acinetobacter baumannii is a multidrug-resistant, hospital-acquired pathogen with the 36 

ability to cause severe infections. Understanding the unique biology of this non-model bacterium 37 

may lead to the discovery of new weaknesses that can be targeted to treat antibiotic-resistant 38 

infections. Here, we provide expression tools that can be used to study gene function in A. 39 

baumannii, including in drug-resistant clinical isolates. These tools are also compatible with the 40 

model bacterium, Escherichia coli, enabling cross-species comparisons of gene function. We 41 

anticipate that the use of these tools by the scientific community will accelerate our 42 

understanding of Acinetobacter biology. 43 

44 

Keywords:  45 

synthetic biology, gene expression, cloning, shuttle vector, Tn7 vector 46 

47 

Introduction 48 

Historically, research in bacterial genetics focused on specific model organisms, such as 49 

Escherichia coli K-12, due to a lack of techniques, tools, reagents, genome sequences, and 50 

general knowledge of non-model bacteria (1, 2). As a result, much of our current understanding 51 

about the basic physiology of Gram-negative bacteria comes from E. coli (3, 4). Although most 52 

core cellular processes are likely conserved, gene function and regulation can vary subtly or 53 

even dramatically across species boundaries (4, 5). Such deviation is obvious in pathogens 54 

such as Acinetobacter baumannii, which has adopted many traits that are distinct from E. coli K-55 

12—most notably extreme antibiotic resistance (6-8). With advances in DNA sequencing and 56 

synthesis as well as tools that democratize genetic analysis across species (e.g., CRISPR 57 

approaches (9)), there now exists an enormous opportunity to shrink the knowledge and 58 

technique gaps between model bacteria and clinically relevant pathogens. One simple approach 59 

to bridge the gap would be to develop systems capable of assessing gene function in both 60 

model and pathogenic bacteria, such that the function of any gene could be readily compared in 61 

different strain or species backgrounds.  62 

Here, we focus on genetic tools that function in the antibiotic-resistant pathogen, A. 63 

baumannii. A. baumannii is considered an "urgent threat" by the Centers for Disease Control 64 

and Prevention due to its ability to resist nearly all available antibiotic treatments (10). Although 65 

some promising new anti-Acinetobacter compounds have recently been discovered (11, 12), 66 

more work is needed in this area as Acinetobacter is adept at acquiring and developing new 67 

resistance mechanisms (13-15). A. baumannii is poorly studied compared to E. coli K-12 and 68 
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even other Gram-negative pathogens such as Pseudomonas aeruginosa; however, 69 

understanding the distinct physiology of A. baumannii is critical to developing new treatments 70 

(16, 17). For instance, lipid A, an essential component of the outer membrane in most Gram-71 

negatives and a binding site for the antibiotic colistin (18), is not essential for viability in many A. 72 

baumannii strains including clinical isolates (19). Further, regulation of stress pathways that 73 

could play roles in antibiotic resistance, tolerance, or persistence is distinct in A. baumannii 74 

compared to other -proteobacteria, as A. baumannii lacks conserved transcription factors such 75 

as the stationary phase sigma (σ) factor, RpoS (20, 21). 76 

Vectors that are capable of replicating in or integrating into E. coli and A. baumannii 77 

have been previously described, but also share important limitations. Replicative shuttle vectors 78 

typically use a high-copy, ColE1 origin of replication for E. coli and either the pWH1266 (22) or 79 

pRSF1010 (23) origin for A. baumannii. The pWH1266 and pRSF1010 origins are compatible in 80 

A. baumannii, enabling expression from two replicative vectors in the same cell (23). Integrative 81 

vectors based on the site-specific transposon Tn7 insert DNA cargo into the genome 82 

downstream of the glmS gene and have been used extensively in E. coli (24), A. baumannii (25-83 

27), and many other species (28, 29). However, many of these vectors were not designed to 84 

contain easily swappable modules (e.g., different antibiotic markers) outside of standard 85 

multiple cloning sites (MCS). Existing vectors typically employ inducible promoters that are 86 

either native to or designed for use in E. coli (30, 31). These include E. coli native promoters 87 

such as Plac and ParaBAD that can be induced with IPTG or arabinose, respectively (22, 32), or 88 

semi-synthetic promoters such as Ptac and Ptrc which are IPTG-inducible (23). Unfortunately, 89 

characteristics of these promoters pose challenges for precise control of expression. For 90 

instance, ParaBAD expression cannot be titrated with sub-saturating concentrations of its inducer, 91 

arabinose, due to "all or nothing" effects that result in a fraction of cells inducing at high level 92 

while others show minimal activity (33-35). Ptac and Ptrc are sufficiently leaky that genes placed 93 

under their control often complement deletion phenotypes in the absence of inducer (30, 36, 94 

37), and full induction often results in overexpression toxicity (38). A titratable promoter with less 95 

leakiness and a lower maximal level of expression would be ideal for physiological expression 96 

and gene function studies in A. baumannii. 97 

In this work, we generate useful reagents for gene function studies in A. baumannii and 98 

E. coli. We create modular vectors that replicate or integrate in both species, and carry the 99 

novel promoter PabstBR, which can be induced and titrated with IPTG. In a proof of principle 100 

experiment, we combine all three reagents to probe the activity of the E. coli envelope stress σ 101 

factor, RpoE, in both species. 102 
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 103 

Results and Discussion 104 

Modular replicative and integrating vectors for E. coli and A. baumannii 105 

 We sought to construct a modular set of replicative and integrative vectors that could be 106 

used to examine gene function in A. baumannii and E. coli. Our shuttle vector (Fig. 1a) 107 

replicates in E. coli using the medium copy origin, p15A (20-30 copies per cell (39)), and in A. 108 

baumannii using the low copy origin pWH1266 (~9 copies per cell (40)). Our integrating vector 109 

(Fig. 1a) inserts into the genomes of E. coli and A. baumannii downstream of glmS using the 110 

Tn7 transposase (provided on a separate plasmid (9, 28)). Both vectors have an antibiotic 111 

module flanked by XhoI sites for easily swapping resistance markers using Gibson assembly 112 

(41). Here, we have provided hygromycin, apramycin, and kanamycin versions of both 113 

replicative and integrative vectors. We note that hygromycin and apramycin are attractive 114 

resistance markers for studying multidrug-resistant pathogens given that neither antibiotic is 115 

used against A. baumannii clinically (25, 42). FRT sites in the integrative vector allow for 116 

optional FLP recombinase-mediated excision of the antibiotic marker (43, 44). The cloning 117 

module, or multiple cloning site (MCS), has several restriction sites for cloning genes of interest 118 

(Fig. 1b and 1c). Although other sites can be used, we recommend cloning into NcoI because it 119 

contains a translation start codon (ATG) in alignment with a strong upstream ribosome binding 120 

site (RBS) taken from the classic expression vector pTrc99a (45). The promoter module exists 121 

between AatII and NcoI sites for the replicating vector and SpeI and NcoI sites for the 122 

integrating vector. We provide these vectors with a novel, IPTG-inducible promoter (PabstBR, 123 

described below), but other promoters and RBSs of interest can be readily swapped into the 124 

module. Additionally, both the replicative and integrative vectors can be used in the same strain 125 

as multiple markers are available and only one vector replicates, ruling out compatibility issues. 126 

 We next determined the efficiency of transfer for both vectors into E. coli and A. 127 

baumannii. Both vectors contain oriT sites, enabling transfer by conjugation from E. coli cells 128 

that are auxotrophic for diaminopimelic acid (DAP-) to DAP+ recipient bacteria followed by 129 

antibiotic selection to recover only vector-containing recipients. Additionally, both vectors can be 130 

transferred by electroporation into competent recipient cells, if desired. To quantify efficiency of 131 

transfer by conjugation, we mated DAP- E. coli donor cells (E. coli K-12 WM6026) with model 132 

strains of E. coli K-12 (BW25113) and A. baumannii (ATCC 17978). We found that both vectors 133 

were transferred at efficiencies consistent with use in downstream experiments ranging in scale 134 

from individual genes to large libraries (Fig. S1a and S1b). Transfers of both the replicative and 135 

integrative vectors were highly efficient in E. coli (>10-1 efficiencies for both vectors) and A. 136 
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baumannii (>10-2 and 10-4 efficiencies for replicative and integrative vectors, respectively). 137 

Importantly, our observed transfer efficiencies were on par with those needed for library 138 

construction for genome-scale experiments (9). We note that we observed instances of 139 

unintended integration of the Tn7 vector backbone in both E. coli and A. baumannii (i.e., co-140 

integrates (46)). The presence of such co-integrates in recipient colonies can be tested by 141 

screening for the ampR/bla gene (which confers carbenicillin resistance) present in the vector 142 

backbone. We patched 40 transconjugants for each organism, and while the frequency of 143 

integration with the vector backbone was relatively low (≤3/40 for each), we recommend testing 144 

transconjugants to verify insertion accuracy (Fig. S1c). Taken together, we have created 145 

modular replicative and integrative vectors for E. coli and A. baumannii that can be transferred 146 

at efficiencies that are useful for a variety of applications. 147 

 148 

A tightly regulated, IPTG-inducible promoter for E. coli and A. baumannii 149 

 We sought to develop an IPTG-inducible promoter with low leakiness and high 150 

expression for A. baumannii. We previously found that a broadly utilized synthetic promoter in E. 151 

coli, PLlacO-1, was unstable when used to express a toxic protein in A. baumannii (dCas9) (27). 152 

When we selected for mutants with stable expression of dCas9, we found that lacO repeats in 153 

the promoter had collapsed, creating a new IPTG-regulated promoter (Fig. 2a, Acinetobacter 154 

Suppressor of Toxicity or Pabst). We hypothesized this promoter was weaker due to its success 155 

at repressing toxicity. To measure promoter activity in A. baumannii, we cloned Pabst upstream 156 

of a gene encoding Superfolder Green Fluorescent Protein (sfgfp) in our replicative vector (Fig. 157 

2b). Our measurements confirmed that Pabst expression was very weak, with less than 2-fold 158 

increase in expression at saturating levels of inducer. This weak activity is likely due to 159 

divergence between the Pabst -35 element (TTATAA) and the consensus σ70 -35 (TTGACA), 160 

especially at the -33 position (A versus G, respectively). 161 

 To generate a new promoter with higher activity but without repeating lacO elements, we 162 

used site-directed mutagenesis to replace the Pabst -35 sequence with a consensus -35 (Fig. 163 

2a). We found that the new promoter, PabstBR (Acinetobacter Suppressor of Toxicity with Better 164 

Regulation), showed significantly higher induction than Pabst (~150-fold; Welch's t-test, p=0.003) 165 

in A. baumannii (Fig. 2b). PabstBR also showed ~3-fold reduced leakiness compared to Ptrc, a 166 

popular IPTG-inducible promoter used in both E. coli (30) and A. baumannii (23); although 167 

induction at saturating levels of IPTG was somewhat lower (~3-fold) than Ptrc. With reduced 168 

leakiness and a more physiologically appropriate expression range, PabstBR has advantages for 169 

complementation and expression with reduced toxicity (36, 47). 170 
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 171 

PabstBR expression is titratable at the population and single cell level 172 

Investigators frequently titrate promoter activity to determine expression-phenotype 173 

relationships and avoid toxic overexpression. To determine if PabstBR expression is titratable at 174 

the population level, we induced expression of PabstBR-sfgfp at varying concentrations of IPTG 175 

from both our replicative and integrative vectors in E. coli K-12 BW25113 and A. baumannii 176 

ATCC 17978 (Fig. 3a and 3b). We found that PabstBR was titratable in all tested contexts. 177 

Plasmid-borne PabstBR showed similar patterns of IPTG induction in both E. coli and A. 178 

baumannii and had ~10-fold higher level of maximal expression compared to an integrated 179 

copy. Unexpectedly, Tn7 integrated PabstBR showed a higher apparent level of expression in A. 180 

baumannii compared to E. coli at nearly every concentration of IPTG, including saturating 181 

concentrations (Fig. 3b). In addition to 17978, the A. baumannii field uses strains ATCC 19606 182 

and AB5075 as antibiotic susceptible and resistant models, respectively. To test PabstBR 183 

titratability in those strain backgrounds, we again expressed PabstBR-sfgfp at varying IPTG 184 

concentrations (Fig. S3). As expected, we found that PabstBR was titratable at the population 185 

level. 186 

Inducible promoters can erroneously appear to be titratable at the population level due to 187 

varying subpopulations of fully induced cells, as is seen in systems with active transport and 188 

feedback of inducer molecules (e.g., arabinose and ParaBAD (33)). To rule out this possibility, we 189 

measured induction of PabstBR-sfgfp at varying concentrations of IPTG in single cells using flow 190 

cytometry (Fig. 4a and 4b). We measured PabstBR expression from replicative vectors as we 191 

reasoned that variations in plasmid copy number would be more likely to have a subpopulation 192 

effect. We found that PabstBR was fully titratable at the single cell level in E. coli K-12 BW25113 193 

and A. baumannii ATCC 17978. Distributions of sfGFP fluorescence were unimodal at all IPTG 194 

concentrations in both species, consistent with relatively uniform induction of PabstBR at the single 195 

cell level. Although increasing concentrations of IPTG fully shifted the sfGFP distributions in A. 196 

baumannii, the distributions were wider than those seen in E. coli for unknown reasons (Fig. 197 

4b). One possibility to explain increased expression variation in A. baumannii is simply that the 198 

pWH1266 origin has intrinsically greater plasmid copy number variation than p15A, although 199 

testing plasmid copy number at the single cell level is fraught with challenges (48). We conclude 200 

that PabstBR is titratable at the single cell level, enabling gene function studies with precise levels 201 

of expression.  202 

 203 
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Modular vectors and PabstBR enable gene regulation studies in E. coli and A. baumannii204 

 As a proof of principle to demonstrate the utility of our PabstBR vector set in studying gene 205 

function, we investigated RpoE promoter activity in E. coli and A. baumannii. RpoE, also known 206 

as σE, is an extracytoplasmic function (ECF) σ factor that regulates the envelope stress 207 

response in E. coli and related -proteobacteria (49-52). Species as distant from E. coli as 208 

Pseudomonas aeruginosa have a functional ortholog (AlgU, 66% identity) that recognizes the 209 

same DNA sequence as RpoE (53); however, a BLAST search of the A. baumannii genome 210 

recovered no hits for RpoE. To determine if A. baumannii recognizes RpoE-dependent 211 

promoters, we cloned the autoregulated rpoE promoter (PrpoE) from E. coli into our integration 212 

vector upstream of a gene encoding monomeric Red Fluorescent Protein (mrfp) as a reporter. 213 

We integrated this construct into both E. coli and A. baumannii and found PrpoE was only active 214 

in E. coli (Fig 5a and 5b). To determine if the promoter could be recognized in A. baumannii in 215 

the presence of RpoE, we cloned the rpoE gene into our replicating vector under the control of 216 

PabstBR. We found that expression of RpoE in A. baumannii was sufficient to drive expression 217 

from PrpoE (Fig 5a). This suggests that A. baumannii has no RpoE activity and that no other 218 

factors in A. baumannii can recognize RpoE promoters. As expected, we also found that 219 

overexpression of RpoE in E. coli resulted in increased PrpoE activity (Fig. 5b). Importantly, these 220 

results demonstrate the ability to utilize our integrative and replicative expression systems 221 

together, in the same strain, to better understand biology and gene function in both E. coli and 222 

A. baumannii.  223 

  224 

Conclusion 225 

Here, we have provided modular vectors that replicate and integrate into E. coli and A. 226 

baumannii, and a titratable, IPTG-inducible promoter, PabstBR. We envision that our vectors will 227 

be valuable for complementation studies, particularly for comparing the function of genes in E. 228 

coli to those found in A. baumannii. We predict that our tools will allow for precise tuning of gene 229 

expression to achieve physiological or somewhat higher levels of expression while avoiding 230 

toxicity from extreme high-level overexpression. As such, our vectors could also be used for 231 

expressing gene fusions with fluorescent proteins for localization studies. The high integration 232 

efficiencies make library scale experiments possible, as we have previously shown for Tn7-233 

based CRISPRi work (9). Given the host ranges of our vector components, we expect our 234 

vectors to be broadly useful for gene function studies in Acinetobacter species not tested here, 235 

including multidrug-resistant isolates. 236 

 237 
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Materials and Methods 238 

Strains and growth conditions. Strains are listed in Table S1. Escherichia coli and 239 

Acinetobacter baumannii were grown in Lennox lysogeny broth (LB) at 37°C shaking in a flask 240 

at 250 rpm, in a culture tube on a rollerdrum at max speed, in a 96-well plate shaking at 900 241 

rpm, or in a plate reader shaking (Tecan Infinite Mplex or Tecan Sunrise). Culture medium was 242 

solidified with 1.5% agar for growth on plates. Antibiotics were added when necessary: 100 243 

μg/mL ampicillin (amp), 30 μg/mL kanamycin (kan), 50 μg/mL apramycin (apr), and 150 μg/mL 244 

hygromycin (hyg) for E. coli and 150 μg/mL carbenicillin (carb), 60 μg/mL kanamycin (kan), 100 245 

μg/mL apramycin (apr), 150 μg/mL hygromycin (hyg) for A. baumannii. Diaminopimelic acid 246 

(DAP) was added at 300 μM to support growth of E. coli dap- donor strains. IPTG (isopropyl b-247 

D-1-thiogalactopyranoside) was added at varying concentrations from 0 to 1 mM as indicated in 248 

the figures or figure legends. Strains were preserved in 15% glycerol at -80°C. Plasmids were 249 

propagated in E. coli strain BW25141 attTn7::acrIIA4 (sJMP3053) or in E. coli strain DH10B 250 

(sJMP1) for DNA extraction and analysis or in E. coli strain WM6026 attTn7::acrIIA4 (sJMP3257) 251 

for conjugation. 252 

 253 

General molecular biology techniques. A complete list of plasmids and oligonucleotides are 254 

listed in Tables S2 and S3. Oligonucleotides were synthesized by Integrated DNA Technologies 255 

(Coralville, IA). Plasmid DNA was purified using GeneJet Plasmid Miniprep kit (Thermo) or the 256 

Purelink HiPure Plasmid Midiprep kit (Invitrogen K210005). PCR was performed according to 257 

manufacturer directions using Q5, OneTaq, or Phusion DNA Polymerases (NEB). DNA was 258 

digested with restriction enzymes from NEB. PCR products were purified with DNA Spin and 259 

Concentrate kit (Zymo Research) following manufacturer instructions or gel-purified from kit 260 

(Zymo Research). Plasmids were assembled using NEBuilder HiFi DNA assembly kit (NEB). 261 

DNA was quantified on a Nanodrop Lite or Qubit. Plasmids and recombinant strains were 262 

sequenced via Sanger sequencing by Functional Biosciences or Oxford Nanopore sequencing 263 

by Plasmidsaurus. 264 

 265 

Construction of replicative expression vectors. Details for construction of expression vectors 266 

are listed under “Construction/notes” for corresponding vectors (Table S2). Briefly, base 267 

replicative expression plasmid construction was performed using HiFi assembly with: (i) p15A 268 

origin of replication and oriT from pJMP3262, (ii) pWH1266 origin of replication from pJMP3347, 269 

(iii) pTrc99a plasmid base including lacI and MCS from pJMP3067, and (iv) kanR marker from 270 

pJMP3341 to create plasmid pJMP3649. To swap the promoters, pJMP3649 was cut with AatII 271 
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and NcoI enzymes and HiFi assembled with gblocks containing the desired promoters, to create 272 

plasmids pJMP3651 (Pabst, kanR) and pJMP3653 (PabstBR, kanR). To swap the resistance 273 

markers, pJMP3653 was cut with XhoI enzyme and HiFi assembled with gblocks containing the 274 

desired resistance markers, to create plasmids pJMP3664 (PabstBR, aprR) and pJMP3665 275 

(PabstBR, hygR). To test expression of genes from these vectors, the kanR versions of the vectors 276 

with Ptrc, Pabst, and PabstBR (pJMP3649, pJMP3651, and pJMP3653, respectively) were cut with 277 

NcoI and BamHI enzymes and HiFi assembled with the sfgfp gene amplified from pJMP2748 to 278 

create plasmids pJMP3650, pJMP3652, and pJMP3654. 279 

 280 

Construction of PabstBR. Site-directed mutagenesis of the Pabst promoter was performed by 281 

single-primer high-fidelity Phusion PCR using pJMP3407 and oJMP2167. The PCR product was 282 

treated with DpnI, electroporated into sJMP3053, and selected on kan to make plasmid 283 

pJMP4481 containing the PabstBR promoter. The mutation was verified by whole-plasmid 284 

sequencing with Plasmidsaurus. 285 

 286 

Conjugative-based transfer of expression vectors. Replicative vector: Donor Dap- E. coli 287 

mating strain containing desired replicative expression vector and recipient strain (A. baumannii 288 

or E. coli) were both scraped off an agar plate into LB at OD600 of ~3. Strains were mixed at 289 

equal ratios, placed on a 0.45 µm filter on an LB plate, and incubated upright at 37°C for ~3 hrs. 290 

Filters were vortexed in LB media to remove cells and plated onto LB plates supplemented with 291 

appropriate antibiotic.  292 

Tn7 integrating vector: Conjugation was performed similarly to above, except with the 293 

addition of a donor Dap- E. coli strain carrying a Tn7 transposase plasmid (tri-parental mating) 294 

for E. coli, A. baumannii ATCC 17978, and AB5075 strains. For A. baumannii ATCC 19606, 295 

quad-parental mating was performed, using an additional Dap- donor E. coli strain (sJMP4061) 296 

harboring a helper plasmid that contains extra mating machinery to improve efficiency. Tn7 297 

matings were performed for ~4 hrs before plating on LB plates supplemented with appropriate 298 

antibiotic.  299 

 Ten-fold serial dilutions were spotted (10 µL) on LB and LB with antibiotic. Transfer 300 

efficiencies were calculated as transformants or transconjugants (colony forming units or CFUs 301 

on selective plates) divided by total cells (CFUs on LB only). 302 

 303 

Promoter activity assays. Promoter activities were assayed using the sfGFP expression 304 

vectors. Promoter-sfgfp or empty vector strains were grown to saturation in LB supplemented 305 
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with appropriate antibiotic and IPTG inducer, washed several times with 1xPBS to remove all 306 

media, and GFP fluorescence and OD600 were measured in a Tecan Infinite Mplex plate reader. 307 

Values were normalized to OD600 readings and were background-subtracted using empty vector 308 

cells. 309 

 310 

Flow cytometry. Cells containing either a PabstBR-sfgfp vector or empty vector control were 311 

grown in LB supplemented with kan and varying concentrations of IPTG to saturation overnight 312 

in tubes. Cells were formaldehyde fixed, washed, and resuspended in 1xPBS. GFP 313 

fluorescence was measured by flow cytometry on a LSR Fortessa instrument (BD Biosciences) 314 

at 100,000 events/sample. Data were analyzed in FlowJo (FlowJo, LLC) using singlet gates and 315 

dead cell or debris exclusion gates, as previously described (54). 316 

 317 

Data availability. Plasmids and their sequences are available from Addgene under accession 318 

numbers xxxx-xxxx (note: accession #s pending). R code for data analysis and graphs can be 319 

found at https://github.com/jasonpeterslab/Aba-Eco-expression-systems-2024. Data available 320 

on request. 321 
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Figure 1 Modular replicative and integrative expression vectors. (A) Circular 

plasmid map and features of the replicative shuttle vector containing both E. coli and A. 

baumannii origins of replication (top) and the Tn7 expression vector containing a 

transposon that will integrate into the chromosomal attTn7 site (bottom). Available 

antibiotic resistance cassettes (AbR) are listed. Maps are adapted from SnapGene 

(GSL Biotech). (B and C) Linear maps showing the modular promoter region and 

multiple cloning sites (MCS) for the replicative plasmid and Tn7 vector. NcoI site 

provides an ATG start codon optimally proximal to a strong ribosome binding site (RBS).  

 

Figure 2 PabstBR promoter construction and expression. (A) Promoter sequences 

showing the homologous recombination event in lacO repeat regions (red) of the PLlacO-1 

sequence that produces Pabst, which contains a -35-like region (yellow). Site-directed 

mutagenesis reverts the -35 region back to consensus (orange) to create PabstBR. (B) 

Dot plots showing sfGFP fluorescence from replicative vectors containing sfgfp under 

Pabst, PabstBR, or Ptrc promoters in A. baumannii ATCC 17978 with no IPTG (left) or 1 mM 

IPTG (right). Values were normalized to empty vector controls, and sample means are 

represented by a solid horizontal line (n=3). Asterisks and ns indicate significant and not 

significant sample differences, respectively (Welch’s t-tests; p-values < 0.05).  

 

Figure 3 Titration of PabstBR expression at the population level. Titration of 

expression from (A) the replicative plasmid or (B) the Tn7 transposon. Plots shown are 

normalized sfGFP levels expressed from PabstBR across IPTG concentrations for E. coli 
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BW25113 and A. baumannii ATCC 17978. Error bars represent standard deviation (n=3 

for replicative vector, n=6 for Tn7 transposon). 

 

Figure 4 Titration of PabstBR expression at the single-cell level. Titration of 

expression in (A) E. coli BW25113 or (B) A. baumannii ATCC 17978. Ridgeline plots 

depict overlapping density plots of sfGFP fluorescence for cells induced at different 

IPTG concentrations, measured by flow cytometry and expressed from the replicative 

expression vector under control of PabstBR. EV are empty vector (no GFP) control 

samples in 1 mM IPTG. 

 

Figure 5 Modular integrative and replicative vectors facilitate a functional reporter 

assay. (A) Graphical depiction of reporter assay experiments. Strains contain an mRFP 

reporter under control of the E. coli-native rpoE promoter (PrpoE) in the attTn7 site 

(constructed using the Tn7 vector) and either a PabstBR-rpoE overexpression vector or 

empty vector control (replicative plasmid). (B and C) Bar graphs of mRFP fluorescence 

from PrpoE with and without expression of RpoE in trans from the replicative plasmid in 

E. coli or A. baumannii. As RpoE is native to E. coli, the E. coli strains also carry a copy 

of the rpoE gene on the chromosome. Fluorescence is normalized to no mRFP controls, 

and individual data points and standard deviation are displayed (n=6). Asterisks and ns 

indicate significant and not significant sample differences, respectively (Welch’s t-tests; 

p-values < 0.05) 
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